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Abstract
In this paper, first we introduce the notion of a Gm-Meir-Keeler contractive mapping
and establish some fixed point theorems for the Gm-Meir-Keeler contractive mapping
in the setting of G-metric spaces. Further, we introduce the notion of a Gm

c -Meir-Keeler
contractive mapping in the setting of G-cone metric spaces and obtain a fixed point
result. Later, we introduce the notion of a G-(α,ψ )-Meir-Keeler contractive mapping
and prove some fixed point theorems for this class of mappings in the setting of
G-metric spaces.
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1 Introduction
In nonlinear functional analysis, the study of fixed points of givenmappings satisfying cer-
tain contractive conditions in various abstract spaces has been at the center of vigorous
research activity in the last decades. The Banach contraction mapping principle is one of
the initial and crucial results in this direction: In a complete metric space each contrac-
tion has a unique fixed point. Following this celebrated result, many authors have devoted
their attention to generalizing, extending and improving this theory. For this purpose, the
authors consider to extend some well-known results to different abstract spaces such as
symmetric spaces, quasi-metric spaces, fuzzy metric, partial metric spaces, probabilistic
metric spaces and a G-metric space (see, e.g., [–]). Several authors have reported inter-
esting (common) fixed point results for various classes of functions in the setting of such
abstract spaces (see, e.g., [, , –]).
In this paper, we consider especially a G-metric space and cone metric spaces which

are introduced by Mustafa-Sims [] and Huang-Zhang [], respectively. Roughly speak-
ing, a G-metric assigns a real number to every triplet of an arbitrary set. On the other
hand, a cone metric space is obtained by replacing the set of real numbers by an ordered
Banach space. Very recently, a number of papers on these concepts have appeared [,
–].
One of the remarkable notions in fixed point theory is Meir-Keeler contractions []

which have been studied by many authors (see, e.g., [–]). In this paper, first we intro-
duce the notion of a Gm-Meir-Keeler contractive mapping and establish some fixed point
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theorems for the Gm-Meir-Keeler contractive mapping in the setting of G-metric spaces.
In Section , we introduce the notion of a Gm

c -Meir-Keeler contractive mapping in the
setting of cone G-metric spaces and establish a fixed point result. Later, we introduce the
notion of a G-(α,ψ)-Meir-Keeler contractive mapping and prove some fixed point theo-
rems for this class of mappings in the setting of G-metric spaces.

2 Preliminaries
We present now the necessary definitions and results in G-metric spaces which will be
useful; for more details, we refer to [, ]. In the sequel,R,R+ andN denote the set of real
numbers, the set of nonnegative real numbers and the set of positive integers, respectively.

Definition  Let X be a nonempty set. A function G : X × X × X –→ R+ is called a
G-metric if the following conditions are satisfied:
(G) if x = y = z, then G(x, y, z) = ;
(G)  <G(x, y, y) for any x, y ∈ X with x �= y;
(G) G(x,x, y)≤ G(x, y, z) for any points x, y, z ∈ X , with y �= z;
(G) G(x, y, z) =G(x, z, y) =G(y, z,x) = · · · , symmetry in all three variables;
(G) G(x, y, z) ≤ G(x,a,a) +G(a, y, z) for any x, y, z,a ∈ X .

Then the pair (X,G) is called a G-metric space.

Definition  Let (X,G) be a G-metric space, and let {xn} be a sequence of points of X.
A point x ∈ X is said to be the limit of the sequence {xn} if limn,m→+∞ G(x,xm,xn) = , and
we say that the sequence {xn} is G-convergent to x and denote it by xn –→ x.

We have the following useful results.

Proposition  (see []) Let (X,G) be a G-metric space. Then the following are equiva-
lent:
() {xn} is G-convergent to x;
() limn→+∞ G(xn,xn,x) = ;
() limn→+∞ G(xn,x,x) = .

Definition  ([]) Let (X,G) be a G-metric space, the sequence {xn} is called G-Cauchy
if for every ε > , there is k ∈ N such that G(xn,xm,xl) < ε for all n,m, l ≥ k, that is,
G(xn,xm,xl) →  as n,m, l → +∞.

Proposition  ([]) Let (X,G) be a G-metric space. Then the following are equivalent:
() the sequence {xn} is G-Cauchy;
() for every ε > , there is k ∈N such that G(xn,xm,xm) < ε for all n,m ≥ k.

Definition  ([]) A G-metric space (X,G) is called G-complete if every G-Cauchy se-
quence in (X,G) is G-convergent in (X,G).

Proposition  (see []) Let (X,G) be a G-metric space. Then, for any x, y, z,a ∈ X, it
follows that
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(i) if G(x, y, z) = , then x = y = z;
(ii) G(x, y, z) ≤ G(x,x, y) +G(x,x, z);
(iii) G(x, y, y) ≤ G(y,x,x);
(iv) G(x, y, z) ≤ G(x,a, z) +G(a, y, z);
(v) G(x, y, z)≤ 

 [G(x, y,a) +G(x,a, z) +G(a, y, z)];
(vi) G(x, y, z) ≤ G(x,a,a) +G(y,a,a) +G(z,a,a).

Proposition  (see []) Let (X,G) be a G-metric space. Then the function G(x, y, z) is
jointly continuous in all three of its variables.

Now, we introduce the following notion of a Gm-Meir-Keeler contractive mapping.

Definition  Let (X,G) be a G-metric space. Suppose that f : X → X is a self-mapping
satisfying the following condition:
For each ε > , there exists δ >  such that for all x, y ∈ X and for allm ∈ N, we have

ε ≤ G
(
x, f (m)x, y

)
< ε + δ implies G

(
fx, f (m+)x, fy

)
< ε. (.)

Then f is called a Gm-Meir-Keeler contractive mapping.

Remark  If f : X → X is aGm-Meir-Keeler contractivemapping on aG-metric spaceX,
then

G
(
fx, f (m+)x, fy

)
<G

(
x, f (m)x, y

)
(.)

holds for all x, y ∈ X and for all m ∈ N when G(x, f (m)x, y) > . On the other hand, if
G(x, f (m)x, y) = , by Proposition , x = f (m)x = y, and so G(fx, f (m+)x, fy) = . Hence, for
all x, y ∈ X and for allm ∈N, we have

G
(
fx, f (m+)x, fy

) ≤ G
(
x, f (m)x, y

)
. (.)

3 Fixed point result for Gm-Meir-Keeler contractive mappings
Now, we are ready to state and prove our main result.

Theorem  Let (X,G) be a G-complete G-metric space and let f be a Gm-Meir-Keeler
contractive mapping on X . Then f has a unique fixed point.

Proof Define the sequence {xn} in X as follows:

xn = fxn– for all n ∈N. (.)

Suppose that there exists n such that xn = xn+. Since xn = xn+ = fxn , then xn is the
fixed point of f . Hence, we assume that xn �= xn+ for all n ∈N∪ {}, and so

G(xn,xn+,xn+) >  for all n ∈N∪ {}. (.)

http://www.fixedpointtheoryandapplications.com/content/2013/1/34
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By Remark  withm = , we get

G(xn+,xn+,xn+) = G
(
fxn, f xn, fxn+

)
< G(xn, fxn,xn+)

= G(xn,xn+,xn+)

for all n ∈ N∪ {}. Define sn =G(xn,xn+,xn+). Then {sn} is a strictly decreasing sequence
in R+ and so it is convergent, say, to s ∈ R+. Now, we show that s must be equal to .
Suppose, to the contrary, that s > . Clearly, we have

 < s <G(xn,xn+,xn+) for all n ∈N∪ {}. (.)

Assume ε = s > . Then by hypothesis, there exists a convenient δ(ε) >  such that (.)
holds. On the other hand, by the definition of ε, there exists n ∈ N such that

ε < sn =G(xn ,xn+,xn+) < ε + δ. (.)

Now, by condition (.) with m =  and (.), we get

sn+ =G(xn+,xn+,xn+) =G
(
fx, f x, fxn+

)
< ε = s, (.)

which contradicts (.). Hence s = , that is, limn→+∞ sn = .
We will show that {xn} is a G-Cauchy sequence. For all ε > , by the hypothesis, there

exists a suitable δ(ε) >  such that (.) holds. Without loss of generality, we assume δ < ε.
Since s = , there exists N ∈N such that

sn– =G(xn–,xn,xn) < δ for all n≥ N . (.)

We assert that for any fixed k ≥ N , the condition

G(xk ,xk+l,xk+l) ≤ ε for all l ∈N (.)

holds. To prove it, we use the method of induction. By Remark  and (.), assertion (.)
is satisfied for l = . Suppose that (.) is satisfied for l = , , . . . ,m for some m ∈ N. Now,
for l =m + , using (.), we obtain

G
(
xk–, f (m+)xk–,xk+m

)
= G(xk–,xk+m,xk+m)

≤ G(xk–,xk ,xk) +G(xk ,xk+m,xk+m)

< ε + δ. (.)

If G(xk–,xk+m,xk+m)≥ ε, then by (.) we get

G(xk ,xk+m+,xk+m+) =G
(
fxk–, f (m+)xk–, fxk+m

)
< ε

and hence (.) is satisfied.
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If G(xk–,xk+m,xk+m) = , then xk– = xk+m and hence xk = fxk– = fxk+m = xk+m+. This
implies

G(xk ,xk+m+,xk+m+) =G(xk ,xk ,xk) =  < ε

and (.) is satisfied.
If  <G(xk–,xk+m,xk+m) < ε, by Remark , we obtain

G(xk ,xk+m+,xk+m+) = G
(
fxk–, f (m+)xk–, fxk+m

)
< G(xk–,xk+m,xk+m) < ε.

Consequently, (.) is satisfied for l =m +  and hence

G(xn,xm,xm) < ε for allm ≥ n≥ N . (.)

Now, if n >m ≥ N , by (.) and Proposition , we have

G(xn,xm,xm) ≤ G(xm,xn,xn) < ε.

Hence, for allm,n≥ N , the following holds:

G(xn,xm,xm) < ε.

Thus {xn} is aG-Cauchy sequence. Since (X,G) isG-complete, there exists z ∈ X such that
{xn} is G-convergent to z. Now, by Remark  withm = , we have

G(xn+,xn+, fz) =G
(
fxn, f ()xn, fz

) ≤ G(xn, fxn, z) =G(xn,xn+, z). (.)

By taking the limit as n → +∞ in the above inequality and using the continuity of the
function G, we get

G(z, z, fz) = lim
n→+∞G(xn+,xn+, fz) = 

and hence, z = fz, that is, z is a fixed point of f . To prove the uniqueness, we assume that
w ∈ X is another fixed point of f such that z �= w. Then G(z, f (m)z,w) =G(z, z,w) > . Now,
by Remark , we get

G(z, z,w) =G
(
fz, f (m+)z, fw

)
<G

(
z, f (m)z,w

)
=G(z, z,w),

which is a contradiction and hence z = w. �

Example  Let X = [,∞) and

G(x, y, z) =

⎧⎨
⎩
, if x = y = z,

max{x, y} +max{y, z} +max{x, z}, otherwise

http://www.fixedpointtheoryandapplications.com/content/2013/1/34
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be a G-metric on X. Define f : X → X by fx = 
x. Then f mx = 

m x. Assume that x ≤ y.
Then

G
(
x, f mx, y

)
=max

{
x, f mx

}
+max

{
f mx, y

}
+max{x, y} = x + y

and

G
(
fx, f m+x, fy

)
= max

{
fx, f m+x

}
+max

{
f m+x, fy

}
+max{fx, fy}

= fx + fy =


(x + y).

Let, ε > . Then, for any δ = ε, condition (.) holds. Similarly, condition (.) holds when
y ≤ x. That is, f is a Gm-Meir-Keeler contractive mapping. The condition of Theorem 
holds, and so f has a unique fixed point.

4 Fixed point for G-(α,ψ )-Meir-Keeler contractive mappings
In this section we introduce a notion of a G-(α,ψ)-Meir-Keeler contractive mapping and
establish some results of a fixed point for such class of mappings.
Denotewith� the family of nondecreasing functionsψ : [, +∞) → [, +∞) continuous

in t =  such that
• ψ(t) =  if and only if t = ;
• ψ(t + s) ≤ ψ(t) +ψ(s).
Samet, Vetro and Vetro [] introduced the following concept.

Definition  Let f : X → X and α : X ×X →R+. We say that f is an α-admissible map-
ping if

α(x, y)≥  implies α(fx, fy) ≥ ,x, y ∈ X.

Now, we apply this concept in the following definition.

Definition  Let (X,G) be a G-metric space and ψ ∈ � . Suppose that f : X → X is an
α-admissible mapping satisfying the following condition:
For each ε > , there exists δ >  such that

ε ≤ ψ
(
G(x, y, z)

)
< ε + δ implies α(x,x)α(y, y)α(z, z)ψ

(
G(fx, fy, fz)

)
< ε (.)

for all x, y, z ∈ X. Then f is called a G-(α,ψ)-Meir-Keeler contractive mapping.

Remark  Let f be a G-(α,ψ)-Meir-Keeler contractive mapping. Then

α(x,x)α(y, y)α(z, z)ψ
(
G(fx, fy, fz)

)
< ψ

(
G(x, y, z)

)

for all x, y ∈ X when G(x, y, z) > . Also, if G(x, y, z) = , then x = y = z, which implies
G(fx, fy, fz) = , i.e.,

α(x,x)α(y, y)α(z, z)ψ
(
G(fx, fy, fz)

) ≤ ψ
(
G(x, y, z)

)

for all x, y, z ∈ X.
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Theorem  Let (X,G) be a G-complete G-metric space. Suppose that f is a contin-
uous G-(α,ψ)-Meir-Keeler contractive mapping and that there exists x ∈ X such that
α(x,x) ≥ . Then f has a fixed point.

Proof Let x ∈ X and define the sequence {xn} by xn = f nx for all n ∈ N. Since f is an α-
admissible mapping and α(x,x) ≥ , we deduce that α(x,x) = α(fx, fx) ≥ . By contin-
uing this process, we get α(xn,xn)≥  for all n ∈N∪{}. If xn = xn+ for some n ∈ N∪{},
then obviously f has a fixed point. Hence, we suppose that

xn �= xn+ (.)

for all n ∈N∪ {}. By (G), we have

G(xn,xn+,xn+) >  (.)

for all n ∈N∪ {}. Now, define sn = ψ(G(xn,xn+,xn+)). By Remark , we deduce that for
all n ∈N∪ {},

α(xn+,xn+)α(xn+,xn+)α(xn+,xn+)ψ
(
G(xn+,xn+,xn+)

)
= α(xn+,xn+)α(xn+,xn+)α(xn+,xn+)ψ

(
G(fxn, fxn+, fxn+)

)
< ψ

(
G(xn,xn+,xn+)

)
,

which implies

ψ
(
G(xn+,xn+,xn+)

)
< ψ

(
G(xn,xn+,xn+)

)
.

Hence, the sequence {sn} is decreasing in R+ and so it is convergent to s ∈ R+. We will
show that s = . Suppose, to the contrary, that s > . Hence, we have

 < s < ψ
(
G(xn,xn+,xn+)

)
for all n ∈ N∪ {}. (.)

Let ε = s > . Then by hypothesis, there exists a δ(ε) >  such that (.) holds. On the
other hand, by the definition of ε, there exists n ∈N such that

ε < sn = ψ
(
G(xn ,xn+,xn+)

)
< ε + δ.

Now, by (.) we have

sn+ = ψ
(
G(xn+,xn+,xn+)

)
≤ α(xn+,xn+)α(xn+,xn+)α(xn+,xn+)ψ

(
G(xn+,xn+,xn+)

)
= α(xn+,xn+)α(xn+,xn+)α(xn+,xn+)ψ

(
G(fxn , fxn+, fxn+)

)
< ε = s,
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which is a contradiction. Hence s = , that is, limn→+∞ sn = . Now, by the continuity of ψ
in t = , we have

lim
n→+∞G(xn,xn+,xn+) = .

For given ε > , by the hypothesis, there exists a δ = δ(ε) >  such that (.) holds.Without
loss of generality, we assume δ < ε. Since s = , then there exists N ∈ N such that

sn– = ψ
(
G(xn–,xn,xn)

)
< δ for all n≥ N . (.)

We will prove that for any fixed k ≥ N,

ψ
(
G(xk ,xk+l,xk+l)

) ≤ ε for all l ∈N (.)

holds. Note that (.), by (.), holds for l = . Suppose condition (.) is satisfied for
somem ∈N. For l =m + , by (G) and (.), we get

ψ
(
G(xk–,xk+m,xk+m)

) ≤ ψ
(
G(xk–,xk ,xk) +G(xk ,xk+m,xk+m)

)
≤ ψ

(
G(xk–,xk ,xk)

)
+ψ

(
G(xk ,xk+m,xk+m)

)
< ε + δ. (.)

If ψ(G(xk–,xk+m,xk+m)) ≥ ε, then by (.) we get

ψ
(
G(xk ,xk+m+,xk+m+)

)
≤ α(xk ,xk)α(xk+m+,xk+m+)α(xk+m+,xk+m+)ψ

(
G(xk ,xk+m+,xk+m+)

)
= α(xk ,xk)α(xk+m+,xk+m+)α(xk+m+,xk+m+)ψ

(
G(fxk–, fxk+m, fxk+m)

)
< ε

and hence (.) holds.
If ψ(G(xk–,xk+m,xk+m)) < ε, by Remark , we get

ψ
(
G(xk ,xk+m+,xk+m+)

)
≤ α(xk ,xk)α(xk+m+,xk+m+)α(xk+m+,xk+m+)ψ

(
G(xk ,xk+m+,xk+m+)

)
≤ ψ

(
G(xk–,xk+m,xk+m)

)
< ε.

Consequently, (.) holds for l =m + . Hence, ψ(G(xk ,xk+l,xk+l))≤ ε for all k ≥ N and
l ≥ , which means

G(xn,xm,xm) < ε for allm ≥ n≥ N. (.)

Then, for all n >m ≥ N, by (.) and Proposition , we have

ψ
(
G(xn,xm,xm)

) ≤ ψ
(
G(xm,xn,xn)

)
= ψ

(
G(xm,xn,xn)

)
< ε.
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That is, for allm,n≥ N, the following condition holds:

ψ
(
G(xn,xm,xm)

)
< ε.

Consequently, limm,n→+∞ ψ(G(xn,xm,xm)) = . By the continuity of ψ in t = , we get
limn→+∞ G(xn,xm,xm) = .Hence {xn} is aG-Cauchy sequence. Since (X,G) isG-complete,
there exists z ∈ X such that

lim
n→∞G(xn, z, z) = lim

n→+∞G(xn,xn, z) = . (.)

Also, by the continuity of f , we have

lim
n→+∞G(xn, fz, fz) = 

and hence

G(z, fz, fz) ≤ lim
n→+∞G(z,xn,xn) + lim

n→+∞G(xn, fz, fz) = ,

that is, z = fz. �

Theorem  Let (X,G) be a G-complete G-metric space and let f be a G-(α,ψ)-Meir-
Keeler contractive mapping. If the following conditions hold:

(i) there exists x ∈ X such that α(x,x) ≥ ;
(ii) if {xn} is a sequence in X such that α(xn,xn) ≥  for all n and xn → x as n→ +∞,

then α(x,x)≥ ,
then f has a fixed point.

Proof Let x ∈ X such that α(x,x) ≥ . Define the sequence {xn} in X by xn = f nx for
all n ∈ N. Following the proof of Theorem , we say that α(xn,xn) ≥  for all n ∈ N ∪ {}
and that there exists z ∈ X such that xn → z as n → +∞. Hence, from (ii) α(z, z) ≥ . By
Remark , we have

ψ
(
G(fz, z, z)

) ≤ ψ
(
G(fz, fxn, fxn) +G(fxn, z, z)

)
≤ ψ

(
G(fz, fxn, fxn)

)
+ψ

(
G(fxn, z, z)

)
≤ α(z, z)α(xn,xn)α(xn,xn)ψ

(
G(fz, fxn, fxn)

)
+ψ

(
G(fxn, z, z)

)
≤ ψ

(
G(z,xn,xn)

)
+ψ

(
G(xn+, z, z)

)
.

By taking limit as n → +∞, in the above inequality, we get ψ(G(fz, z, z)) ≤ , that is,
G(fz, z, z) = . Hence fz = z. �

Theorem  Assume that all the hypotheses of Theorem  (and ) hold. Adding the fol-
lowing conditions:
(iii) α(z, z) ≥  for all z ∈ X ,

we obtain the uniqueness of the fixed point of f .
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Proof Suppose that z and z* are two fixed points of f such that z �= z*. Then G(z*, z, z) > .
Now, by Remark , we have

ψ
(
G

(
z*, z, z

)) ≤ α
(
z*, z*

)
α(z, z)α(z, z)ψ

(
G

(
fz*, fz, fz

))
<ψ

(
G

(
z*, z, z

))
,

which is a contradiction. Hence, z = z*. �

If in Theorems  and  we take α(x, y) = a and ψ(t) = t where a ≥ , then we have the
following corollary.

Corollary  Let (X,G) be a G-complete G-metric space. Suppose that f : X → X is a
mapping satisfying the following condition:
For each ε > , there exists δ >  such that

ε ≤ G(x, y, z) < ε + δ implies aG(fx, fy, fz) < ε (.)

for all x, y, z ∈ X where a ≥ . Then f has a unique fixed point.

5 Fixed point in G-conemetric spaces
In this section we recall the notion of a cone G-metric [], we introduce the notion of
a Gm

c -Meir-Keeler contractive mapping and establish the result of a fixed point for such
class of mappings.

Definition  ([]) Let E be a real Banach space with θ as the zero element and with
the norm ‖ · ‖. A subset P of E is called a cone if and only if the following conditions are
satisfied:

(i) P is closed, nonempty and P �= {θ};
(ii) a,b ≥  and x ∈ P implies ax + by ∈ P;
(iii) x ∈ P and –x ∈ P implies x = θ .
Let P ⊂ E be a cone, we define a partial ordering � on E with respect to P by x � y if

and only if y – x ∈ P; we write x ≺ y whenever x � y and x �= y, while x 
 y will stand for
y – x ∈ intP (the interior of P). The cone P ⊂ E is called normal if there is a positive real
number K such that for all x, y ∈ E, θ � x � y ⇒ ‖x‖ ≤ K‖y‖. The least positive number
satisfying the above inequality is called the normal constant of P. If K = , then the cone
P is called monotone.

Definition  Let (E,‖ · ‖) be a real Banach space with a monotone solid cone P. A map-
ping Gc : X ×X ×X –→ E satisfying the following conditions:
(F) if x = y = z, then Gc(x, y, z) = θ ;
(F) θ 
 Gc(x, y, y) for any x, y ∈ X with x �= y;
(F) Gc(x,x, y)� Gc(x, y, z) for any points x, y, z ∈ X , with y �= z;
(F) Gc(x, y, z) =Gc(x, z, y) =Gc(y, z,x) = · · · , symmetry in all three variables;
(F) Gc(x, y, z) � Gc(x,a,a) +Gc(a, y, z) for any x, y, z,a ∈ X

is a cone G-metric on X and (X,Gc) is a cone G-metric space.
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Lemma  ([, ]) Let (E,‖ · ‖) be a real Banach space with a monotone solid cone P.
Then

θ � x
 y ⇒ ‖x‖ < ‖y‖.

Proposition  ([]) Let (E,‖ · ‖) be a real Banach space with a monotone solid cone P. If
Gc : X ×X ×X –→ E is a G-cone metric on X, then the function G : X ×X ×X –→ [, +∞)
defined by G(x, y, z) = ‖Gc(x, y, z)‖ is a G-metric on X and (X,G) a G-metric space.

Definition  Let (E,‖ · ‖) be a real Banach space with a monotone solid cone P and
(X,Gc) be a cone G-metric space. Suppose that f : X → X is a self-mapping satisfying the
following condition:
For each ϒ ∈ intP, there exists 
 ∈ intP such that for all x, y ∈ X and for allm ∈N,

⎧⎨
⎩

ϒ –Gc(x, f (m)x, y) /∈ intP,

Gc(x, f (m)x, y) – (ϒ +
) /∈ P,
⇒ Gc

(
fx, f (m+)x, fy

) 
 ϒ . (.)

Then f is called a Gm
c -Meir-Keeler contractive mapping.

Theorem  Let (E,‖ · ‖) be a real Banach space with amonotone solid cone P and (X,Gc)
be aG-complete G-conemetric space and f be aGm

c -Meir-Keeler contractivemapping on X .
Then f has a unique fixed point.

Proof For a given ε > , let ε ≤ G(x, f (m)x, y), where G = ‖Gc‖. This implies

εH
‖H‖ –Gc

(
x, f (m)x, y

)
/∈ intP (.)

for given H ∈ intP. Indeed, if εH
‖H‖ –Gc(x, f (m)x, y) ∈ intP, then

Gc
(
x, f (m)x, y

) 
 εH
‖H‖

and so by Lemma , we get G(x, f (m)x, y) < ε, which is a contradiction. Therefore (.)
holds.
Now suppose that G(x, f (m)x, y) < ε + δ. This implies

Gc
(
x, f (m)x, y

)
–

(
εH
‖H‖ +

δH
‖H‖

)
/∈ P. (.)

Indeed if

Gc
(
x, f (m)x, y

)
–

(
εH
‖H‖ +

δH
‖H‖

)
∈ P,

then

(ε + δ)
H

‖H‖ =
εH
‖H‖ +

δH
‖H‖ � Gc

(
x, f (m)x, y

)

and so ε + δ ≤ G(x, f (m)x, y), which is a contradiction. This implies that (.) holds.
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Now, by (.), (.) and (.), we have

Gc
(
fx, f (m+)x, fy

) 
 εH
‖H‖ .

Again, by Lemma , we get

G
(
fx, f (m+)x, fy

)
< ε.

Thus f is a Gm-Meir-Keeler contractive mapping, and by Theorem , f has a unique
fixed point. �

Similarly, we have the following corollary.

Corollary  Let (E,‖·‖) be a real Banach space with amonotone solid cone P and (X,Gc)
be a G-complete G-conemetric space and f be amapping such that for eachϒ ∈ intP, there
exists 
 ∈ intP such that

⎧⎨
⎩

ϒ –Gc(x, y, z) /∈ intP,

Gc(x, y, z) – (ϒ +
) /∈ P,
⇒ aGc(fx, fy, fz) 
 ϒ (.)

for all x, y ∈ X, where a ≥ . Then f has a unique fixed point.
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