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Abstract

In this paper we introduce the concept of cone metric spaces with Banach algebras,
replacing Banach spaces by Banach algebras as the underlying spaces of cone metric
spaces. With this modification, we shall prove some fixed point theorems of
generalized Lipschitz mappings with weaker conditions on generalized Lipschitz
constants. An example shows that our main results concerning the fixed point
theorems in the setting of cone metric spaces with Banach algebras are more useful
than the standard results in cone metric spaces presented in the literature.
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1 Introduction

Cone metric spaces were introduced by Huang and Zhang as a generalization of metric
spaces in [1]. The distance d(x,y) of two elements x and y in a cone metric space X is
defined to be a vector in an ordered Banach space E, and a mapping 7 : X — X is said to
be contractive if there is a constant k € [0,1) such that

d(Tx, Ty) < kd(x,y), x,y€X. (1)

The right-hand side of inequality (1) is the vector as the result of the operation of scalar
multiplication in cone metric spaces. In [1], the authors proved that there exists a unique
fixed point for contractive mappings in complete cone metric spaces. Recently, scholars
obtained that any cone metric space (X, d) is equivalent to the usual metric space (X, d*),
where the real-valued metric function d* is defined by a nonlinear scalarization func-
tion &,. See, for instance, [2, 3] and [4]. In particular, for each contractive mapping T in
(X, d) satisfying (1), one can get

d*(Tx, Ty) < kd*(x,5), x,yeX, (2)

which implies that cone metric spaces are a special case of classical metric spaces. After
that, some other interesting generalizations were developed. See, for instance, [5].

In this paper, we replace the Banach space E by a Banach algebra A and obtain the con-
cept of cone metric spaces with Banach algebras. In this way, we shall prove some fixed
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point theorems of generalized Lipschitz mappings with weaker and natural conditions on
the Lipschitz constant k. Our results generalize metric spaces and reveal the fact that the
essential conditions on the contraction constant k are neither order relations nor norm
relations, but spectrum radius.

Let A always be a real Banach algebra. That is, A is a real Banach space in which an
operation of multiplication is defined, subject to the following properties (for all x,y,z € A4,
o € R):

1. (xy)z = x(y2);

2. x(y+z) =xy+azand (x + y)z = xz + yz;

3. alxy) = (ax)y = x(ay);

4. Jlayll < xlllyll.

In this paper, we shall assume that a Banach algebra has a unit (i.e., a multiplicative identity)
e such that ex = xe = x for all x € A. An element x € A is said to be invertible if there is an
inverse element y € A such that xy = yx = e. The inverse of x is denoted by ™. For more
details, we refer to [6].

The following proposition is well known (see [6]).

Proposition 1.1 Let A be a Banach algebra with a unit e, and x € A. If the spectral radius
px) of x is less than 1, i.e.,

1
n

pla) = Tim "7 = inf || 7 <1,

n>1

then e — x is invertible. Actually,

(e—x)"' = ixi.
i=0

A subset P of A is called a cone if

1. Pis non-empty closed and {0, e} C P;

2. P + BP C P for all non-negative real numbers o, j;

3. P>=PPCP;

4. PN (-P) ={0}.

For a given cone P C A, we can define a partial ordering < with respect to P by x <y
if and only if y —x € P. x S y will stand for x < y and x # y. While x < y will stand for
y —x € int P, where int P denotes the interior of P.

The cone P is called normal if there is a number M > 0 such that for all x,y € A,

O<sx<y = Ixll =Myl

The least positive number satisfying the above is called the normal constant of P [1].
In the following we always assume that P is a cone in A with int P # J and < is the partial

ordering with respect to P.

Definition 1.1 (See [1]) Let X be a non-empty set. Suppose that the mapping d: X x X —
A satisfies
1. 0 <d(x,y) for all x,y € X and d(x,y) = 0 if and only if x = y;
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2. d(x,y) =d(y,x) for all x,y € X;

3. d(x,y) <d(x,z) +d(z,x) for all x,y,z € X.
Then d is called a cone metric on X, and (X, d) is called a cone metric space (with a Banach
algebra A).

We present some examples in the following.

Example 1.1 Let A = M,(R) = {a = (@;})uxn | aj € R for all 1 <i,j < n} be the algebra of all

n-square real matrices, and define the norm

Then A is a real Banach algebra with the unit e, the identity matrix.
LetP={acAl|a;>0foralll <ij<n}. Then P C A is a normal cone with a normal
constant M = 1.
Let X = M,(R), and define the metricd : X x X — A by

dx,y) = d((xz'j)nxn, (Yij)nxn) = (|xij _yij|)n><n €A.
Then (X, d) is a cone metric space with a Banach algebra A.

Example 1.2 Let A be the Banach space C(K) of all continuous real-valued functions on
a compact Hausdorff topological space K, with multiplication defined pointwise. Then A
is a Banach algebra, and the constant function f(¢) = 1 is the unit of A.

LetP={f € A|f(t) > 0forallt € K}. Then P C A is a normal cone with a normal con-
stant M =1.

Let X = C(K) with the metric mapping d : X x X — A defined by

, whereteKk.

d(f,g) = |f(£) - g(®)

Then (X, d) is a cone metric space with a Banach algebra A.

Example 1.3 Let A = ¢! = {a = (@n)n=0 | Yo |@n| < 00} with convolution as multiplica-

tion:

ab = (an)nzo(bn)nzo = (Z “ib/>

i+j=n n=0

Thus A is a Banach algebra. The unit e is (1,0,0,...).

Let P={a = (ay)u>0 € A | a, > 0 for all n > 0}, which is a normal cone in A.
And let X = ¢! with the metric d : X x X — A defined by

d(x,y) = d((xn)nzo, ()’n)nzo) = (|xn _)’n|)n20'

Then (X, d) is a cone metric space with A.

Page 3 of 10
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Definition 1.2 (See [1]) Let (X, d) be a cone metric space, x € X and {x,} a sequence in X.
Then
1. {x,} converges to x whenever for each ¢ € A with 0 < ¢, there is a natural number N
such that d(x,,x) < ¢ for all n > N. We denote this by lim,,_, » %, = x or x,, — x.
2. {x,} is a Cauchy sequence whenever for each ¢ € A with 0 < ¢, there is a natural
number N such that d(x,,x,,) < ¢ for all n,m > N.
3. (X,d) is a complete cone metric space if every Cauchy sequence is convergent.

Finally, we shall appeal to the following lemmas in the sequel [1].

Lemma 1.1 Let (X,d) be a cone metric space, P be a normal cone with a normal constant
M. Let {x,} be a sequence in X. Then {x,} converges to x ifand only if d(x,,,x) — 0 (n — 00).

Lemma 1.2 Let (X,d) be a cone metric space, P be a normal cone with a normal constant
M. Let {x,,} be a sequence in X. Then {x,} is a Cauchy sequence if and only if d(x,, x,,) — O

(n,m — 00).

2 Main results
In this section we shall prove some fixed point theorems of generalized Lipschitz mappings
in the setting of cone metric spaces with Banach algebras.

Theorem 2.1 Let (X,d) be a complete cone metric space and P be a normal cone with a
normal constant M. Suppose that the mapping T : X — X satisfies the generalized Lipschitz
condition

d(Tx, Ty) < kd(x,y), forallx,ye X,

where k € Pwith p(k) <1. Then T has a unique fixed point in X. And for any x € X, iterative
sequence {T"x} converges to the fixed point.

Proof Choose xy € X and set x,, = T"x, n > 1. We have
d(xn+1rxn) =< kd(xmxn—l) < = knd(xl’x())'
Thus, for n < m,

d(xnrxm) =< d(xn’xrﬁl) L d(xm—l;xm)
< (K" 4+ -+ K" d (e, %0)
(e +k+-o+ k”’"‘_l)k”d(xl,xo)

(Z kl‘) K" d(x1,%0)
=0

= (e — k)K" d (%1, %0).

IA

Since P is normal with a normal constant M, and note that |k"|| — 0 (n — 00), we have

|dtsn )| < M e~ 07| " o, )| = 0 n = o).


http://www.fixedpointtheoryandapplications.com/content/2013/1/320

Liu and Xu Fixed Point Theory and Applications 2013, 2013:320 Page 5 of 10
http://www.fixedpointtheoryandapplications.com/content/2013/1/320

Hence {x,} is a Cauchy sequence. By the completeness of X, there exists x* € X such that
x, — x* (n — 00). Furthermore, one has

d(Tx*,x*) < d(Tx", Txn) + d(Tx,,,x*) < kd (x*,%,) + d(x,,+1,x*),
and consequently,
|a(Te,2) | < Mkl d(x" 2) | + (| @i, 27) [) > 0 (12— 00).

Hence ||d(Tx*,x*)| = 0. This implies 7Tx* = x*. So, x* is a fixed point of 7.
Now if y*is another fixed point of T, then

d(x*,y*) = d(Tx", Ty") < kd(x*,").
That is,
(e— k)d(x*,y*) <0.

Multiplying both sides above by

(e-h'=Y K=o,

i=0
we get d(x*,y*) < 0. Thus d(x*,y*) = 0, which implies that x* = y*, a contradiction. Hence,

the fixed point is unique. O

Remark 2.1 Note that in Theorem 2.1 we only suppose that the spectral radius of k is
less than 1, neither k < e nor ||k|| <1 assumed. This is a vital improvement. In fact, the
condition p(k) < 1is weaker than that ||k|| <1, as is illustrated by Example 2.1 in the sequel.
The improvement of the condition about the generalized Lipschitz constant k shows that
it is meaningful to introduce the concepts of cone metric spaces with Banach algebras and
a generalized Lipschitz condition.

Theorem 2.2 Let (X, d) be a complete cone metric space, P be a normal cone with a nor-
mal constant M. Suppose that the mapping T : X — X satisfies the generalized Lipschitz
condition

d(Tx, Ty) < k(d(Tx,y) + d(Ty,x)), forallx,y € X,

where k € Pwith p(k) < % Then T has a unique fixed point in X. And for any x € X, iterative
sequence {T"x} converges to the fixed point.

Proof Choose xy € X, and set x,, = T"x, n > 1. We have

d(xn+1rxn) = d(Txn: Txn—l)
= k(d(Txm xn—l) + d(Txn—l»xn))
< k(d(ps1,%0) + d (% %0-1)).
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That is,
d(xm—lr xn) S (6 - k)_lkd(xn:xn—l)~
We shall prove that

. BUNIE
nhﬁn;o” ((e—k) k) <1,

which implies that {x,} is a Cauchy sequence by the proof of Theorem 2.1. Note that (e —
k)™! and k commute.
Let n be large enough such that

| Wi <a, foralli> 0,

where « € R such that lim,,_, ||k”||% <a<i.

2
Denote that
00 n %)
et (S¥) -y
i=0 i=0

where ﬁi(") € R, n,i > 0. It is easy to see that ﬁl.(") >0 for all n,i > 0.
Then

[ (e~ k)" | = -k = | 3 Bk
i=0

[o¢] o0
< Z'Bi(n) ||kn+iH < Zﬁlgn)anﬂ'
i=0 i=0

Hence

tim [ (e~ 74"

1 o
"< <1,
l-«o

and {x,} is a Cauchy sequence.
By the completeness of X, there is x* € X such thatx, — x* (n — 00). To verify Tx* = x*,

we have
d(Tx*,x*) < d(Tx*, Tx,,) + d(Tx,,,x*)
< k(d(Tx*, %) + d(Txp,x%)) + d (041, %%)
< k(d(Tx*,x*) + d(x*,x,,) + d(x,,+1,x*)) + d(x,,+1,x*).
That is,

(e — k)d(Tx*,x*) < kd(x*,%,) + (e + k) (x*, %11).
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By the normality of P, we have
() | < Ml e = 7 [ (kN ") | + e+ B ", %) [) — 0

as n — 0o. Hence x* is a fixed point of 7'
Now if y* is another fixed point, then

d(x*,y*) = d(Tx", Ty")
< k(d(Tx*,y*) + d(Ty*,x%))
= 2kd(x*,y*),

Thus
d(x",y") < 2k)"d(x",5")

for any 7 > 1. Since lim,_« [|(2k)" ]| = 0, we have
|a(,y") | < M| @[ [d"y*) | -0 (21— o0).

Then d(x*,y*) = 0, which implies that x* = y*, a contradiction. Hence, the fixed point is
unique. 0

Theorem 2.3 Let (X,d) be a complete cone metric space, P be a normal cone with a nor-
mal constant M. Suppose that the mapping T : X — X satisfies the generalized Lipschitz
condition

d(Tx, Ty) < k(d(Tx,x) + d(Ty,y)) forallx,y € X,

where k € P with p(k) < % Then T has a unique fixed point in X. And for any x € X, the
iterative sequence {T"x} converges to the fixed point.

Proof Choose x € X, and set x,, = T"x, n > 1. We have

d(xnﬂyxn) = d(Txm Txn—l)

IA

(d( Txm xn) + d( Txn—b xn—l))

k
k(d(xwrlyxn) + d(xn,xn—l))'

That is,

d(xn+1» xn) S (e - k)_lkd(xm xn—l)-
As is shown in the proof of Theorem 2.2, it follows that {x,} is a Cauchy sequence, and, by
the completeness of X, the limit of x, exists and is denoted by x*.

To see that x* is a fixed point of T, we have

d(Tx*,x*) < d(Tx", Txn) + d(Tx,,,x*) < k(d(Tx*,x*) + d(Tx,,,x,,)) + d(xn+1,x*).
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Therefore,
d(Tx*,x*) < (e — k)™ (kd(@ps1, %) + d (%11, %7)),
and
|d(z" ) | < Ml e = 07 [ (15N | donr )| + [ d (") [) — 0

as n — oo.
Now if y* is another fixed point of T, then

d(x*,y*) = d(Tx*, Ty") < k(d(Tx",x%) + d(Ty",y")) = 0,
which implies that x* = y*, a contradiction. Hence, the fixed point is unique. d

We conclude the paper with an example.

Example 2.1 Let A = R2. For each (x1,%,) € A, ||(x1,%2)|| = |#1| + |%2]. The multiplication
is defined by

xy = (x1,%2) (Y1, ¥2) = (X1y1, X192 + X21).
Then A is a Banach algebra with unit e = (1, 0).

Let P = {(x1, %) € R? | x1, %2 > 0}. Then P is normal with a normal constant M =1.
Let X = R? and the metric d be defined by

d(x,y) = d((x1,%2), 01,52)) = (161 = 1, |%2 = y2|) € P.

Then (X, d) is a complete cone metric space.
Now define the mapping 7': X — X by

T(x1,%2) = (log(2 + |x1]), arctan(3 + |x2]) + azxy), (3)

where « can be any large positive real number.
From Lagrange mean value theorem, we have

1 1
d(T(x1,%2), T, 92)) < (E'xl -2l E|x2 = y2| + ol —J’1|>
1
< <§;Ol>d((x1;x2),(yl;J’2)),
and

o1
—>5<1 (n — 00).

G =16 ())

Then, by Theorem 2.1, T has a unique fixed point in X.
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Remark 2.2 In Example 2.1 above, we see that (%,a) £ (1,0) = e and ||(%,oz)|| = % >1
(for o > 1). Moreover, T is not a contractive mapping in the Euclidean metric on X. Hence,
Example 2.1 shows that the main results in this paper are more powerful than the standard
results of cone metric spaces presented in the literature.

Remark 2.3 Example 2.1 also shows that one is unable to conclude that the cone metric
space (X, d) with a Banach algebra A defined above is equivalent to the metric space (X, d*),
where the metric d* is defined by d* = &, o d; here, the nonlinear scalarization function
& :A — R (e € intP) is defined by

() =inf{reR:yere-P}.

See [2, 3] and [4] for more details. In fact, under this situation, we have
intP = {(xl,xz) eR? | xp, %2 > 0}.

Fore=(e;,e;) €intP and a = (a1,a,) €A,

&c(a) = Ee((“l, 42))

=inf{t € R | (a1, a2) < t(er, )}

ay ap
=maxy —, — ¢,
€1 €

and for x,y € X,

d*(x,9) = (£ 0 d)(x,3) = max{ bl eyl }
€1 €

Now let the mapping 7' : X — X be defined as in (3) with « > %, and consider x = (1,0),
y=(0,0). We have

>—>—=d"(xy),

log3 —log?2 1
d*(Tx,Ty):max{u,g} o
€y (58

€1 €

which implies that T is not a contraction in the metric space (X, d*). This shows that one
is unable to prove that Theorem 2.1 above is a consequence of the corresponding results
in metric spaces by means of the methods presented in the literature.
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