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Abstract
We show that the fixed point methods allow to investigate Ulam’s type stability of
additivity quite efficiently and precisely. Using them we generalize, extend and
complement some earlier classical results concerning the stability of the additive
Cauchy equation.
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Introduction
In applications quite often we have to do with functions that satisfy some equations only
approximately. One of possible ways to deal with them is just to replace such functions by
corresponding (in suitable ways) exact solutions to those equations. But there of course
arises the issue of errors which we commit in this way. Some tools to evaluate such errors
are provided within the theory of Ulam’s type stability. For instance, we can introduce the
following definition, which somehow describes the main ideas of such stability notion for
the Cauchy equation

f (x + y) = f (x) + f (y). ()

Definition  Let (A, +) and (X, +) be semigroups, d be a metric in X, E ⊂ C ⊂ R
A
+ be

nonempty, and T be an operator mapping C into RA
+ (R+ stands for the set of nonnegative

reals). We say that Cauchy equation () is (E ,T )-stable provided for every ε ∈ E and ϕ ∈
XA with

d
(
ϕ(x + y),ϕ(x) + ϕ(y)

) ≤ ε(x, y), x, y ∈ A, ()

there exists a solution ϕ ∈ XA of equation () such that

d
(
ϕ(x),ϕ(x)

) ≤ T ε(x), x ∈ A. ()

(As usual, CD denotes the family of all functions mapping a set D �= ∅ into a set C �= ∅.)
Roughly speaking, (E ,T )-stability of equation () means that every approximate (in the
sense of ()) solution of () is always close (in the sense of ()) to an exact solution to ().
Let usmention that this type of stability has been a very popular subject of investigations

for the last nearly fifty years (see, e.g., [–]). Themainmotivation for it was given by S.M.
Ulam (cf. [, ]) in  in his talk at the University of Wisconsin, where he presented, in
particular, the following problem.
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Let G be a group and (G,d) be a metric group. Given ε > , does there exist δ >  such
that if f :G →G satisfies

d
(
f (xy), f (x)f (y)

)
< δ, x, y ∈G,

then a homomorphism T :G →G exists with d(f (x),T(x)) < ε for x ∈ G?
Hyers [] published a partial answer to it, which can be stated as follows.
Let E and Y be Banach spaces and ε > . Then, for every g : E → Y with

sup
x,y∈E

∥∥g(x + y) – g(x) – g(y)
∥∥ ≤ ε,

there is a unique f : E → Y that is additive (i.e., satisfies equation ()) and such that

sup
x∈E

∥∥g(x) – f (x)
∥∥ ≤ ε.

Quite often we describe that result of Hyers simply saying that Cauchy functional equa-
tion () is Hyers-Ulam stable (or has the Hyers-Ulam stability).
In the next few years, Hyers and Ulam published some further stability results for poly-

nomial functions, isometries and convex functions in [–]. Let usmention yet that now
we are aware of an earlier (than that of Hyers) result concerning such stability that is due
to Pólya and Szegö [, Teil I, Aufgabe ] (see also [, Part I, Ch. , Problem ]) and
reads as follows (N stands for the set of positive integers).
For every real sequence (an)n∈N with supn,m∈N |an+m –an –am| ≤ , there is a real number

ω such that supn∈N |an –ωn| ≤ . Moreover, ω = limn→∞ an/n.
The next theorem is considered to be one of the most classical results.

Theorem  Let E and E be two normed spaces, E be complete, c ≥  and p �=  be fixed
real numbers. Let f : E → E be a mapping such that

∥∥f (x + y) – f (x) – f (y)
∥∥ ≤ c

(‖x‖p + ‖y‖p), x, y ∈ E \ {}. ()

Then there exists a unique additive function T : E → E with

∥∥f (x) – T(x)
∥∥ ≤ c‖x‖p

|p– – | , x ∈ E \ {}. ()

It wasmotivated by Th.M. Rassias (see [–]) and is composed of the outcomes in [,
, ]. Note that Theorem  with p =  yields the result of Hyers and it is known (see [];
cf. also [, ]) that for p =  an analogous result is not valid. Moreover, it was shown in
[] that estimation () is optimum for p≥  in the general case.
Theorem  has a very nice simple form. However, recently, it was shown in [] that it

can be significantly improved; namely, in the case p < , each f : E → E satisfying ()
must actually be additive and the assumption of completeness of E is not necessary in
such a situation. So, taking into account that result in [], we can reformulate Theorem 
in the following way.
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Theorem Let E and E be two normed spaces and c ≥  and p �=  be fixed real numbers.
Let f : E → E be a mapping satisfying (). If p≥  and E is complete, then there exists a
unique additive function T : E → E such that () holds. If p < , then f is additive.

The second statement of Theorem , for p < , can be described as the ϕ-hyperstability
of the additive Cauchy equation for ϕ(x, y) ≡ c(‖x‖p + ‖y‖p). Unfortunately, such result
does not remain valid if we restrict the domain of f , as the following remark shows it.

Remark  Let p < , a ≥ , I = (a,∞), and f ,T : I → R be given by T(x) =  and f (x) = xp

for x ∈ I . Then, clearly,

∣∣f (x) – T(x)
∣∣ = xp, x ∈ I,

and (cf. Example )

∣∣f (x + y) – f (x) – f (y)
∣∣ ≤ xp + yp, x, y ∈ I.

1 Themain result
In this paper we prove the following complement to Theorem , which covers also the
situation described in Remark  (see Remark ).

Theorem  Let (X, +) be a commutative semigroup, (E, +) be a commutative group, d be
a complete metric in E which is invariant (i.e., d(x + z, y + z) = d(x, y) for x, y, z ∈ X), and
h : X →R+ be a function such that

M :=
{
n ∈ N : s(n) + s(n + ) < 

} �= ∅,

where s(n) := inf{t ∈ R+ : h(nx) ≤ th(x) for all x ∈ X} for n ∈ N. Assume that f : X → E
satisfies the inequality

d
(
f (x + y), f (x) + f (y)

) ≤ h(x) + h(y), x, y ∈ X. ()

Then there exists a unique additive T : X → E such that

d
(
f (x),T(x)

) ≤ sh(x), x ∈ X, ()

with

s := inf

{
 + s(n)

 – s(n) – s(n + )
: n ∈M

}
.

It is easily seen that Theorem  yields the subsequent corollary.

Corollary  Let X, E and d be as in Theorem  and h : X → (,∞) be such that

lim inf
n→∞ sup

x∈X
h(nx) + h(( + n)x)

h(x)
= . ()

http://www.fixedpointtheoryandapplications.com/content/2013/1/285
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Assume that f : X → E satisfies (). Then there is a unique additive T : X → E with

d
(
f (x),T(x)

) ≤ h(x), x ∈ X. ()

Remark  If E and E are normed spaces and X is a subsemigroup of the group (E, +)
such that  /∈ X, then it is easily seen that the function h : X → E, given by h(x) = c‖x‖p for
x ∈ X, with some real p <  and c > , fulfils condition (). This shows that Corollary  (and
therefore Theorem , as well) complements Theorem  and in particular also Theorem .
Note that for such h, () takes the form

∥∥f (x) – T(x)
∥∥ ≤ c‖x‖p, x ∈ X, ()

which is sharper than () for p < .
A bit more involved example of h : X → E satisfying () we obtain taking

h(x) = γ (x)A(x)p, x ∈ X

for any real p < , any bounded function γ : X → R with infγ (X) > , and any A : X →
(,∞) such that A(nx)≥ nA(x) for x ∈ X, ∈N (for instance, we can take A(x) := ‖α(x)‖ for
x ∈ X, with some additive α : E → E).
In some cases, estimation () provided in Corollary  is optimum as the subsequent

example shows. Unfortunately, this is not always the case, because the possibly sharpest
such estimation we have in Theorem  for p < .

Example  Let p < , a≥ , I = [a,∞), andA : I →R be additive and such thatX := {x ∈ I :
A(x) > } �= ∅. Write h(x) = A(x)p for x ∈ X. Then it is easily seen that X is a subsemigroup
of the semigroup (I, +) and () is valid. Define f ,T : X → R by T(x) =  and f (x) = A(x)p

for x ∈ X. Then

∣∣f (x) – T(x)
∣∣ = A(x)p = h(x), x ∈ X.

We show that

∣∣f (x + y) – f (x) – f (y)
∣∣ ≤ h(x) + h(y), x, y ∈ X.

Actually, the calculations are very elementary, but for the convenience of readers, we pro-
vide them.
So, fix x, y ∈ X. Suppose, for instance, that A(x) ≤ A(y). Then

A(x) +A(y) ≥ A(x),

which means that

A(x + y)p =
(
A(x) +A(y)

)p ≤ pA(x)p < A(x)p < A(x)p +A(y)p

http://www.fixedpointtheoryandapplications.com/content/2013/1/285
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and consequently

∣∣f (x + y) – f (x) – f (y)
∣∣ = A(x)p +A(y)p –A(x + y)p

≤ A(x)p +A(y)p = h(x) + h(y).

2 Auxiliary result
The proof of Theorem  is based on a fixed point result that can be easily derived from
[, Theorem ] (cf. [, Theorem ] and []). Let us mention that [, Theorem ] was
already used, in a similar way as here, for the first time in [] for proving some stability
results for the functional equation of p-Wright affine functions, next in [, ] in proving
hyperstability of theCauchy equation, and (very recently) also for investigations of stability
and hyperstability of some other equations in [–] (the Jensen equation, the general
linear equation, and the Drygas functional equation, respectively).
The fixed point approach to Ulam’s type stability was proposed for the first time in []

(cf. [] for a generalization; see also []) and later applied in numerous papers; for a
survey on this subject, we refer to [].
We need to introduce the following hypotheses.
(H) X is a nonempty set and (Y ,d) is a complete metric space.
(H) f, f : X → X are given maps.
(H) T : YX → YX is an operator satisfying the inequality

d
(
T ξ (x),T μ(x)

) ≤ d
(
ξ
(
f(x)

)
,μ

(
f(x)

))
+d

(
ξ
(
f(x)

)
,μ

(
f(x)

))
, ξ ,μ ∈ YX ,x ∈ X.

(H) 	 :RX
+ →R

X
+ is an operator defined by

	δ(x) := δ
(
f(x)

)
+ δ

(
f(x)

)
, δ ∈R

X
+ ,x ∈ X.

Now we are in a position to present the above mentioned fixed point result following
from [, Theorem ].

Theorem  Assume that hypotheses (H)-(H) are valid. Suppose that there exist func-
tions ε : X → R+ and ϕ : X → Y such that

∥∥T ϕ(x) – ϕ(x)
∥∥ ≤ ε(x), ε∗(x) :=

∞∑
n=

(
	nε

)
(x) < ∞, x ∈ X.

Then there exists a unique fixed point ψ of T with

∥∥ϕ(x) –ψ(x)
∥∥ ≤ ε∗(x), x ∈ X.

Moreover, ψ(x) := limn→∞(T nϕ)(x) for x ∈ X.

3 Proof of Theorem 3
Note that () with y =mx gives

d
(
f
(
( +m)x

)
, f (x) + f (mx)

) ≤ (
 + s(m)

)
h(x), x ∈ X,m ∈N. ()

http://www.fixedpointtheoryandapplications.com/content/2013/1/285
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Define operators Tm : EX → EX and 	m :RX
+ →R

X
+ by

Tmξ (x) := ξ
(
( +m)x

)
– ξ (mx), x ∈ X, ξ ∈ EX ,m ∈N,

	mδ(x) := δ
(
( +m)x

)
+ δ(mx), x ∈ X, δ ∈ R

X
+ ,m ∈N.

()

Then it is easily seen that, for each m ∈ N, 	 := 	m has the form described in (H) with
f(x) =mx and f(x) = ( +m)x. Moreover, since d is invariant, () can be written in the
form

d
(
Tmf (x), f (x)

) ≤ (
 + s(m)

)
h(x) =: εm(x), x ∈ X,m ∈N, ()

and

d
(
Tmξ (x),Tmμ(x)

)
= d

(
ξ
(
( +m)x

)
– ξ (mx),μ

(
( +m)x

)
–μ(mx)

)
≤ d

(
ξ
(
( +m)x

)
,μ

(
( +m)x

))
+ d

(
ξ (mx),μ(mx)

)
()

for every ξ ,μ ∈ EX , x ∈ X, m ∈ N. Consequently, for each m ∈ N, also (H) is valid with
Y := E and T := Tm.
It is easy to show by induction on n that

	n
mεm(x)≤

(
 + s(m)

)
h(x)

(
s(m) + s( +m)

)n

for x ∈ X, n ∈N (nonnegative integers) andm ∈M. Hence

ε∗
m(x) :=

∞∑
n=

(
	n

mεm
)
(x)

≤ (
 + s(m)

)
h(x)

∞∑
n=

(
s(m) + s( +m)

)n

=
( + s(m))h(x)

 – s(m) – s( +m)
, x ∈ X,m ∈M.

Now, we can use Theorem  with Y = E and ϕ = f . According to it, the limit

Tm(x) := lim
n→∞

(
T n
m f

)
(x)

exists for each x ∈ X and m ∈M,

d
(
f (x),Tm(x)

) ≤ ( + s(m))h(x)
 – s(m) – s( +m))

, x ∈ X,m ∈M, ()

and the function Tm : X → E, defined in this way, is a solution of the equation

T(x) = T
(
( +m)x

)
– T(mx). ()

http://www.fixedpointtheoryandapplications.com/content/2013/1/285
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Now we show that

d
(
T n
m f (x + y),T n

m f (x) + T n
m f (y)

)
≤ (

s(m) + s( +m)
)n(h(x) + h(y)

)
()

for every x, y ∈ X, n ∈ N and m ∈ M. Since the case n =  is just (), take k ∈ N and
assume that () holds for n = k and every x, y ∈ X,m ∈M. Then

d
(
T k+
m f (x + y),T k+

m f (x) + T k+
m f (y)

)
= d

(
T k
mf

(
( +m)(x + y)

)
– T k

mf
(
m(x + y)

)
,

T k
mf

(
( +m)x

)
– T k

mf (mx) + T k
mf

(
( +m)y

)
– T k

mf (my)
)

≤ d
(
T k
mf

(
( +m)x + ( +m)y

)
,T k

mf
(
( +m)x

)
+ T k

mf
(
( +m)y

))
+ d

(
T k
mf (mx +my),T k

mf (mx) + T k
mf (my)

)

≤ (
s(m) + s( +m)

)k(h(( +m)x
)
+ h

(
( +m)y

))

+
(
s(m) + s( +m)

)k(h(mx) + h(my)
)

≤ (
s(m) + s( +m)

)k+(h(x) + h(y)
)
, x, y ∈ X,m ∈ M.

Thus, by induction we have shown that () holds for every x, y ∈ X, n ∈ N, and m ∈ M.
Letting n → ∞ in (), we obtain the equality

Tm(x + y) = Tm(x) + Tm(y), x, y ∈ X,m ∈M. ()

Next, we prove that each additive function T : X → Y satisfying the inequality

d
(
f (x),T(x)

) ≤ Lh(x), x ∈ X, ()

with some L > , is equal to Tm for eachm ∈M. To this end, fixm ∈ M and an additive
T : X → Y satisfying (). Note that by (),

d
(
T(x),Tm (x)

) ≤ d
(
T(x), f (x)

)
+ d

(
f (x),Tm (x)

)

= Lh(x)
∞∑
n=

(
s(m) + s( +m)

)n, x ∈ X ()

for some L >  (the case h(x)≡  is trivial, so we exclude it here). Observe yet that T and
Tm are solutions to equation () for allm ∈M.
We show that for each j ∈N,

d
(
T(x),Tm (x)

) ≤ Lh(x)
∞∑
n=j

(
s(m) + s( +m)

)n, x ∈ X. ()

http://www.fixedpointtheoryandapplications.com/content/2013/1/285
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The case j =  is exactly (). So, fix l ∈ N and assume that () holds for j = l. Then, in
view of (),

d
(
T(x),Tm (x)

)
= d

(
T

(
( +m)x

)
– T(mx),Tm

(
( +m)x

)
– Tm (mx)

)
≤ d

(
T

(
( +m)x

)
,Tm

(
( +m)x

))
+ d

(
T(mx),Tm (mx)

)

≤ L
(
h
(
( +m)x

)
+ h(mx)

) ∞∑
n=l

(
s(m) + s( +m)

)n

≤ Lh(x)
∞∑

n=l+

(
s(m) + s( +m)

)n, x ∈ X.

Thus we have shown (). Now, letting j → ∞ in (), we get

T = Tm . ()

Thus we have also proved that Tm = Tm for eachm ∈M, which (in view of ()) yields

d
(
f (x),Tm (x)

) ≤ ( + s(m))h(x)
 – s(m) – s( +m)

, x ∈ X,m ∈M. ()

This implies () with T := Tm ; clearly, equality () means the uniqueness of T as well.

Remark  Note that from the above proof we can derive a much stronger statement on
the uniqueness of T than the one formulated in Theorem . Namely, it is easy to see that
T := Tm is the unique additive mapping such that () holds with some L > .
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