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Abstract
In this paper, we prove the coupled coincidence point theorems for a w∗-compatible
mapping in partially ordered cone metric spaces over a solid cone without the mixed
g-monotone property. In the case of a totally ordered space, these results are
automatically obvious under the assumption given. Therefore, these results can be
applied in a much wider class of problems. We also prove the uniqueness of a
common coupled fixed point in this setup and give some example which is not
applied to the existence of a common coupled fixed point by using the mixed
g-monotone property but can be applied to our results.
MSC: 47H10; 54H25
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1 Introduction
The famous Banach contraction principle states that if (X,d) is a complete metric space
and T : X → X is a contraction mapping (i.e., d(Tx,Ty) ≤ αd(x, y) for all x, y ∈ X, where α

is a non-negative number such that α < ), then T has a unique fixed point. This principle
is one of the cornerstones in the development of nonlinear analysis. Fixed point theorems
have applications not only in the various branches of mathematics, but also in economics,
chemistry, biology, computer science, engineering, and others. Due to the importance,
generalizations of Banach’s contraction principle have been investigated heavily by several
authors.
Following this trend, the problem of existence and uniqueness of fixed points in par-

tially ordered sets has been studied thoroughly because of its interesting nature. In ,
Turinici [] presented the first result in this direction. Afterward, Ran and Reurings []
gave some applications of Turinici’s theorem to matrix equations. The results of Ran and
Reurings were further extended to ordered cone metric spaces in [–]. In , Nieto
and Rodríguez-López [] extended Ran and Reurings’s theorems for nondecreasing map-
pings and obtained a unique solution for a first-order ordinary differential equation with
periodic boundary conditions.
The notion of coupled fixed points was introduced by Guo and Lakshmikantham [].

Since then, the concept has been of interest to many researchers in metrical fixed point
theory. In , Bhaskar and Lakshmikantham [] introduced the concept of a mixed
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monotone property (see further Definition .). They proved classical coupled fixed point
theorems for mappings satisfying the mixed monotone property and also discussed an
application of their result by investigating the existence and uniqueness of a solution of
the periodic boundary value problem. Following this result, Harjani et al. [] (see also [,
]) studied the existence and uniqueness of solutions of a nonlinear integral equation as
an application of coupled fixed points. Very recently,motivated by thework of Caballero et
al. [], Jleli and Samet [] discussed the existence and uniqueness of a positive solution
for the singular nonlinear fractional differential equation boundary value problem

Dα
+u(t) = f

(
t,u(t),u(t)

)
,  < t < ,

u(a) = u′(b) = , a,b ∈ {, },
(.)

where α ∈ R such that  < α ≤ , Dα
+ is the Riemann-Liouville fractional derivative and

f : (, ] × [,∞) × [,∞) → [,∞) is continuous, limt→+ f (t, ·, ·) = +∞ (f is singular at
t = ) for all t ∈ (, ], f (t, ·, ·) is nondecreasing with respect to the first component and
decreasing with respect to its second and third components.
Since their important role in the study of the existence and uniqueness of a solution of

the periodic boundary value problem, a nonlinear integral equation, and the existence and
uniqueness of a positive solution for the singular nonlinear fractional differential equation
boundary value problem, a wide discussion on coupled fixed point theorems aimed the
interest of many scientists.
In , Lakshmikantham and Ćirić [] extended the concept of a mixed monotone

property to a mixed g-monotone mapping and proved coupled coincidence point and
common coupled fixed point theorems which are more general than the result of Bhaskar
and Lakshmikantham in []. A number of articles on coupled fixed point, coupled co-
incidence point, and common coupled fixed point theorems have been dedicated to the
improvement; see [–] and the references therein.
On the other hand, in , Huang and Zhang [] have re-introduced the concept of a

conemetric spacewhich is replacing the set of real numbers by an ordered Banach space E.
They went further and defined the convergence via interior points of the cone by which
the order in E is defined. This approach allows the investigation of cone spaces in the case
when the cone is not necessarily normal. They also continued with results concerned with
the normal cones only. One of themain results from [] is the Banach contraction princi-
ple in the setting of normal cone spaces. Afterward, many authors generalized their fixed
point theorems in cone spaces with normal cones. In other words, the fixed point problem
in the setting of cone metric spaces is appropriate only in the case when the underlying
cone is non-normal but just has interior that is nonempty. In this case only, proper gen-
eralizations of results from the ordinary metric spaces can be obtained. In , Janković
et al. [] gave some examples showing that theorems from ordinarymetric spaces cannot
be applied in the setting of cone metric spaces, when the cone is non-normal.
Recently, Nashine et al. [] established common coupled fixed point theorems for

mixed g-monotone andw∗-compatiblemappings satisfyingmore general contractive con-
ditions in ordered cone metric spaces over a cone that is only solid (i.e., has a nonempty
interior) which improve works of Karapınar [] and Shatanawi []. This result is an or-
dered version extension of the results of Abbas et al. [].
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In this work, we show that the mixed g-monotone property in common coupled fixed
point theorems in ordered cone metric spaces can be replaced by another property due
to Ðorić et al. []. This property is automatically satisfied in the case of a totally ordered
space. Therefore, these results can be applied in a much wider class of problems. Our
results generalize and extend many well-known comparable results in the literature. An
illustrative example is presented in this work when our results can be used in proving the
existence of a common coupled fixed point, while the results of Nashine et al. [] cannot.

2 Preliminaries
In this section, we give some notations and a property that are useful for our main results.
Let E be a real Banach space with respect to a given norm ‖ · ‖E and let E be a zero vector
of E. A nonempty subset P of E is called a cone if the following conditions hold:
. P is closed and P 	= {E};
. a,b ∈R, a,b≥ , x, y ∈ P =⇒ ax + by ∈ P;
. x ∈ P, –x ∈ P =⇒ x = E .
Given a cone P ⊂ E, a partial ordering≤P with respect to P is naturally defined by x≤P y

if and only if y – x ∈ P for x, y ∈ E. We will write x <P y to indicate that x ≤P y but x 	= y,
while x  y will stand for y – x ∈ int(P), where int(P) denotes the interior of P.
The cone P is said to be normal if there exists a real number K >  such that for all

x, y ∈ E,

E ≤P x≤P y =⇒ ‖x‖E ≤ K‖y‖E .

The least positive number K satisfying the above statement is called a normal constant
of P. In , Rezapour and Hamlbarani [] showed that there are no normal cones with
a normal constant K < .
In what follows, we always suppose that E is a real Banach space with cone P satisfying

int(P) 	= ∅ (such cones are called solid).

Definition . ([]) Let X be a nonempty set and d : X ×X → E satisfy
. E ≤P d(x, y) for all x, y ∈ X and d(x, y) = E if and only if x = y;
. d(x, y) = d(y,x) for all x, y ∈ X ;
. d(x, y) ≤P d(x, z) + d(z, y) for all x, y, z ∈ X .

Then d is called a cone metric on X and (X,d) is called a cone metric space.

Definition . ([]) Let (X,d) be a conemetric space, {xn} be a sequence inX, and x ∈ X.
. If for every c ∈ E with E P c, there is N ∈N such that d(xn,x) P c for all n≥ N ,

then {xn} is said to converge to x. This limit is denoted by limn→∞ xn = x or xn → x as
n→ ∞.

. If for every c ∈ E with E P c, there is N ∈N such that d(xn,xm) P c for all
n,m >N , then {xn} is called a Cauchy sequence in X .

. If every Cauchy sequence in X is convergent in X , then (X,d) is called a complete
cone metric space.

Let (X,d) be a cone metric space. Then the following properties are often used (partic-
ularly when dealing with cone metric spaces in which the cone need not be normal):

http://www.fixedpointtheoryandapplications.com/content/2013/1/22
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(p) if a ≤P ka, where a ∈ P and k ∈ [, ), then a = E ;
(p) if E ≤P u  c for each E  c, then u = E ;
(p) if u, v,w ∈ E, u≤P v and v w, then u w;
(p) if c ∈ int(P), E ≤P an ∈ E and an → E , then there exists k ∈ N such that for all n > k,

we have an  c.

Definition . Let X be a nonempty set. Then (X,d,�) is called an ordered cone metric
space if

(i) (X,d) is a cone metric space,
(ii) (X,�) is a partially ordered set.

Let (X,�) be a partially ordered set. By x� y, we mean y � x for x, y ∈ X. Elements x, y ∈
X are called comparable if x� y or y � x holds. A mapping f is said to be g-nondecreasing
(resp., g-nonincreasing) if, for all x, y ∈ X, gx � gy implies f (x)� f (y) (resp., f (y) � f (x)). If
g is the identity mapping, then f is said to be nondecreasing (resp., nonincreasing).

Definition . ([, ]) Let (X,�) be a partially ordered set and let F : X × X → X and
g : X → X. The mapping F is said to have a mixed g-monotone property if F is mono-
tone g-nondecreasing in its first argument and monotone g-nonincreasing in its second
argument, that is, for any x, y ∈ X,

x,x ∈ X, gx � gx =⇒ F(x, y) � F(x, y) (.)

and

y, y ∈ X, gy � gy =⇒ F(x, y) � F(x, y) (.)

hold. If in the previous relations g is the identity mapping, then it is said that F has amixed
monotone property.

Definition . ([, ]) Let X be a nonempty set and F : X × X → X, g : X → X. An
element (x, y) ∈ X ×X is called

(C) a coupled fixed point of F if x = F(x, y) and y = F(y,x);
(C) a coupled coincidence point of mappings g and F if

gx = F(x, y) and gy = F(y,x),

and in this case (gx, gy) is called a coupled point of coincidence;
(C) a common coupled fixed point of mappings g and F if

x = gx = F(x, y) and y = gy = F(y,x).

Definition . ([]) Let X be a nonempty set. Mappings F : X × X → X and g : X → X
are called

(W) w-compatible if gF(x, y) = F(gx, gy) whenever gx = F(x, y) and gy = F(y,x);
(W) w∗-compatible if gF(x,x) = F(gx, gx) whenever gx = F(x,x).

http://www.fixedpointtheoryandapplications.com/content/2013/1/22
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It is easy to see that w-compatible implies w∗-compatible. The following example shows
that the converse of the above argument is not true.

Example . Let X = [,∞) and F : X ×X → X and g : X → X be defined by

F(x, y) =

⎧⎪⎪⎨
⎪⎪⎩

π , (x, y) = (, ),

, (x, y) = (, ),

, otherwise,

gx =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

π , x = ,

, x = ,

, x ∈ {,, , . . .},
, otherwise.

It is easy to see that g = π = F(, ) and g =  = F(, ), but gF(, ) =  	=  = F(g, g).
Hence, F and g are not w-compatible.
However, F(x,x) = gx is possible only if x ∈ {,, , . . .} and for all points in this case, we

get gF(x,x) =  = F(gx, gx). Therefore, F and g are w∗-compatible.

For elements x, y of a partially ordered set (X,�), we will write x � y whenever x and y
are comparable (i.e., x� y or y � x holds).
Next, we give a new property due to Ðorić et al. [].
Let X be a nonempty set and let g : X → X and F : X × X → X. We will consider the

following condition:

if x, y,u, v ∈ X are such that gx � F(x, y) = gu, then F(x, y)� F(u, v). (.)

In particular, when g = IX , it reduces to

for all x, y, v, if x � F(x, y), then F(x, y)� F
(
F(x, y), v

)
. (.)

Remark . We obtain that the conditions (.) and (.) are trivially satisfied if (X,�) is
the totally ordered.

The following examples show that the condition (.) ((.), resp.) may be satisfiedwhen
F does not have the mixed g-monotone property (monotone property, resp.).

Example . Let X = {a,b, c,d}, �= {(a,a), (b,b), (c, c), (d,d), (a,b), (c,d)},

g :

(
a b c d
c d c d

)
, F :

(
(a, y) (b, y) (c, y) (d, y)
b a c d

)

for all y ∈ X. Since ga = c � d = gb but F(a, y) � F(b, y) for all y ∈ X, the mapping F does
not have the mixed g-monotone property. But it has property (.) since
() For each y ∈ X , we get gc � F(c, y) = gc and F(c, y) � F(c, v) for all v ∈ X .
() For each y ∈ X , we get gd � F(d, y) = gd and F(d, y) � F(d, v) for all v ∈ X .

Example . Let X = {a,b, c,d}, �= {(a,a), (b,b), (c, c), (d,d), (a,b), (c,d)},

F :

(
(a, y) (b, y) (c, y) (d, y)
b a c d

)

http://www.fixedpointtheoryandapplications.com/content/2013/1/22
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for all y ∈ X. Since a� b but F(a, y) = b � a = F(b, y) for all y ∈ X, the mapping F does not
have the mixed monotone property. But it has property (.) since
() For each y ∈ X , we get a� F(a, y) and F(a, y) = b � a = F(F(a, y), v) for all v ∈ X .
() For each y ∈ X , we get b� F(b, y) and F(b, y) = a � b = F(F(b, y), v) for all v ∈ X .
() The other two cases are trivial.

3 Coupled coincidence point theorems lacking themixed g-monotone
property

In this section, we give the existence of coupled coincidence point theorems in ordered
cone metric spaces lacking the mixed g-monotone property. Our first main result is the
following theorem.

Theorem . Let (X,d,�) be an ordered cone metric space over a solid cone P and let
g : X → X and F : X ×X → X. Suppose that the following hold:

(i) F(X ×X) ⊆ g(X) and g(X) is a complete subspace of X ;
(ii) g and F satisfy property (.);
(iii) there exist x, y ∈ X such that gx � F(x, y) and gy � F(y,x);
(iv) there exists ai ≥  for i = , , . . . ,  and

∑
i= ai <  such that for all x, y,u, v ∈ X

satisfying gx � gu and gy� gv,

d
(
F(x, y),F(u, v)

)
≤P ad(gx, gu) + ad

(
F(x, y), gx

)
+ ad(gy, gv)

+ ad
(
F(u, v), gu

)
+ ad

(
F(x, y), gu

)
+ ad

(
F(u, v), gx

)
(.)

holds;
(v) if xn → x when n→ ∞ in X , then xn � x for n sufficiently large.

Then there exist x, y ∈ X such that

F(x, y) = gx and F(y,x) = gy,

that is, F and g have a coupled coincidence point (x, y) ∈ X ×X.

Proof Starting from x, y (condition (iii)) and using the fact that F(X × X) ⊆ g(X) (con-
dition (i)), we can construct sequences {gxn} and {gyn} in X such that

gxn = F(xn–, yn–) and gyn = F(yn–,xn–) (.)

for all n ∈N. By (iii), we get gx � F(x, y) = gx, and the condition (ii) implies that

gx = F(x, y) � F(x, y) = gx.

Proceeding by induction, we get that gxn– � gxn and, similarly, gyn– � gyn for all n ∈ N.
Therefore, we can apply the condition (.) to obtain

d(gxn, gxn+) = d
(
F(xn–, yn–),F(xn, yn)

)
≤P ad(gxn–, gxn) + ad

(
F(xn–, yn–), gxn–

)

http://www.fixedpointtheoryandapplications.com/content/2013/1/22
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+ ad(gyn–, gyn) + ad
(
F(xn, yn), gxn

)
+ ad

(
F(xn–, yn–), gxn

)
+ ad

(
F(xn, yn), gxn–

)
= ad(gxn–, gxn) + ad(gxn, gxn–) + ad(gyn–, gyn)

+ ad(gxn+, gxn) + ad(gxn, gxn) + ad(gxn+, gxn–)

≤P ad(gxn–, gxn) + ad(gxn, gxn–) + ad(gyn–, gyn)

+ ad(gxn+, gxn) + a
[
d(gxn–, gxn) + d(gxn, gxn+)

]
≤P (a + a + a)d(gxn–, gxn) + ad(gyn–, gyn)

+ (a + a)d(gxn, gxn+),

which implies that

( – a – a)d(gxn, gxn+) ≤P (a + a + a)d(gxn–, gxn) + ad(gyn–, gyn). (.)

Similarly, starting with d(gyn, gyn+) = d(F(yn,xn),F(yn–,xn–)) and using gxn– � gxn and
gyn– � gyn for all n ∈N, we get

( – a – a)d(gyn, gyn+)≤P (a + a + a)d(gyn–, gyn) + ad(gxn–, gxn). (.)

Combining (.) and (.), we obtain that

( – a – a)
[
d(gxn, gxn+) + d(gyn, gyn+)

]
≤P (a + a + a + a)

[
d(gxn–, gxn) + d(gyn–, gyn)

]
. (.)

Now, starting from d(gxn+, gxn) = d(F(xn, yn),F(xn–, yn–)) and using gxn– � gxn and
gyn– � gyn for all n ∈N, we get that

( – a – a)d(gxn, gxn+) ≤P (a + a + a)d(gxn–, gxn) + ad(gyn–, gyn).

Similarly, starting from d(gyn+, gyn) = d(F(yn,xn),F(yn–,xn–)) and using gxn– � gxn and
gyn– � gyn for all n ∈N, we get that

( – a – a)d(gyn, gyn+) ≤P (a + a + a)d(gyn–, gyn) + ad(gxn–, gxn).

Again adding up, we obtain that

( – a – a)
[
d(gxn, gxn+) + d(gyn, gyn+)

]
≤P (a + a + a + a)

[
d(gxn–, gxn) + d(gyn–, gyn)

]
. (.)

Finally, adding up (.) and (.), it follows that

d(gxn, gxn+) + d(gyn, gyn+)≤P λ
[
d(gxn–, gxn) + d(gyn–, gyn)

]
(.)

http://www.fixedpointtheoryandapplications.com/content/2013/1/22
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with

 ≤ λ =
a + a + a + a + a + a

 – a – a – a – a
< , (.)

since
∑

i= ai < .
From the relation (.), we have

d(gxn, gxn+) + d(gyn, gyn+) ≤P λ
[
d(gxn–, gxn) + d(gyn–, gyn)

]
≤P λ[d(gxn–, gxn–) + d(gyn–, gyn–)

]
...

≤P λn[d(gx, gx) + d(gy, gy)
]
.

If d(gx, gx) + d(gy, gy) = E , then (x, y) is a coupled coincidence point of F and g . So,
let E <P d(gx, gx) + d(gy, gy).
For anym > n≥ , repeated use of the triangle inequality gives

d(gxn, gxm) + d(gyn, gym)

≤P d(gxn, gxn+) + d(gxn+, gxn+) + · · · + d(gxm–, gxm)

+ d(gyn, gyn+) + d(gyn+, gyn+) + · · · + d(gym–, gym)

≤P
[
λn + λn+ + · · · + λm–][d(gx, gx) + d(gy, gy)

]
≤P

λn

 – λ

[
d(gx, gx) + d(gy, gy)

]
.

Since λn

–λ
→  as n→ ∞, we get λn

–λ
[d(gx, gx) + d(gy, gy)] → E as n → ∞.

From (p), we have for E  c and large n,

λn

 – λ

[
d(gx, gx) + d(gy, gy)

]  c.

By (p), we get

d(gxn, gxm) + d(gyn, gym)  c.

Since

d(gxn, gxm) ≤P d(gxn, gxm) + d(gyn, gym)

and

d(gyn, gym) ≤P d(gxn, gxm) + d(gyn, gym),

then by (p), we get d(gxn, gxm)  c and d(gyn, gym)  c for n large enough. Therefore,
we get {gxn} and {gyn} are Cauchy sequences in g(X). By completeness of g(X), there exist
gx, gy ∈ g(X) such that gxn → gx and gyn → gy as n→ ∞.

http://www.fixedpointtheoryandapplications.com/content/2013/1/22
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By (v), we have gxn � gx and gy � gyn for all n ≥ . Now, we prove that F(x, y) = gx and
F(y,x) = gy.
If gxn = gx and gyn = gy for some n≥ , from (.) we have

d
(
F(x, y), gx

) ≤P d
(
F(x, y), gxn+

)
+ d(gxn+, gx)

= d
(
F(x, y),F(xn, yn)

)
+ d(gxn+, gx)

≤P ad(gx, gxn) + ad
(
F(x, y), gx

)
+ ad(gy, gyn)

+ ad
(
F(xn, yn), gxn

)
+ ad

(
F(x, y), gxn

)
+ ad

(
F(xn, yn), gx

)
+ d(gxn+, gx)

≤P ad(gx, gxn) + ad
(
F(x, y), gx

)
+ ad(gy, gyn)

+ ad(gxn+, gx) + ad(gx, gxn) + ad
(
F(x, y), gx

)
+ ad(gx, gxn)

+ ad(gxn+, gx) + d(gxn+, gx)

= ad
(
F(x, y), gx

)
+ ad(gxn+, gx) + ad

(
F(x, y), gx

)
+ ad(gxn+, gx) + d(gxn+, gx),

which further implies that

d
(
F(x, y), gx

) ≤P
 + a + a
 – a – a

d(gxn+, gx).

Since gxn → gx, then for E  c, there exists N ∈N such that

d(gxn+, gx) ( – a – a)c
 + a + a

for all n ≥ N . Therefore,

d
(
F(x, y), gx

)  c.

Now, according to (p), it follows that d(F(x, y), gx) = E and F(x, y) = gx. Similarly, we can
prove that F(y,x) = gy. Hence, (x, y) is a coupled coincidence point of themappings F and g .
So, we suppose that (gxn, gyn) 	= (gx, gy) for all n ≥ . Using (.), we get

d
(
F(x, y), gx

) ≤P d
(
F(x, y), gxn+

)
+ d(gxn+, gx)

= d
(
F(x, y),F(xn, yn)

)
+ d(gxn+, gx)

≤P ad(gx, gxn) + ad
(
F(x, y), gx

)
+ ad(gy, gyn)

+ ad
(
F(xn, yn), gxn

)
+ ad

(
F(x, y), gxn

)
+ ad

(
F(xn, yn), gx

)
+ d(gxn+, gx)

≤P ad(gx, gxn) + ad
(
F(x, y), gx

)
+ ad(gy, gyn)

+ ad(gxn+, gx) + ad(gx, gxn) + ad
(
F(x, y), gx

)
+ ad(gx, gxn)

+ ad(gxn+, gx) + d(gxn+, gx),
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which further implies that

d
(
F(x, y), gx

)
≤P

a + a + a
 – a – a

d(gx, gxn) +
 + a + a
 – a – a

d(gxn+, gx) +
a

 – a – a
d(gy, gyn).

Since gxn → gx and gyn → gy, then for E  c, there exists N ∈ N such that d(gxn, gx) 
(–a–a)c
(a+a+a)

, d(gxn+, gx) (–a–a)c
(+a+a)

, and d(gyn, gy)  (–a–a)c
a

for all n≥ N . Thus,

d
(
F(x, y), gx

)  c

+
c

+
c

= c.

Now, according to (p), it follows that d(F(x, y), gx) = E and F(x, y) = gx. Similarly, F(y,x) =
gy. Hence, (x, y) is a coupled coincidence point of the mappings F and g . �

Remark . In Theorem ., the condition (ii) is a substitution for themixed g-monotone
property that has been used in most of the coupled coincidence point theorems so far.
Therefore, Theorem . improves the results of Nashine et al. []. Moreover, it is an or-
dered version extension of the results of Abbas et al. [].

Corollary . Let (X,d,�) be an ordered cone metric space over a solid cone P and let
g : X → X and F : X ×X → X. Suppose that the following hold:

(i) F(X ×X) ⊆ g(X) and g(X) is a complete subspace of X ;
(ii) g and F satisfy property (.);
(iii) there exist x, y ∈ X such that gx � F(x, y) and gy � F(y,x);
(iv) there exist α,β ,γ ≥  and α + β + γ <  such that for all x, y,u, v ∈ X satisfying

gx� gu and gy � gv,

d
(
F(x, y),F(u, v)

) ≤P αd(gx, gu) + βd(gy, gv) + γd
(
F(x, y), gu

)
(.)

holds;
(v) if xn → x when n→ ∞ in X , then xn � x for n sufficiently large.

Then there exist x, y ∈ X such that

F(x, y) = gx and F(y,x) = gy,

that is, F and g have a coupled coincidence point (x, y) ∈ X ×X.

Putting g = IX , where IX is the identity mapping from X into X in Theorem ., we get
the following corollary.

Corollary . Let (X,d,�) be an ordered cone metric space over a solid cone P and let
F : X ×X → X. Suppose that the following hold:

(i) X is complete;
(ii) g and F satisfy property (.);
(iii) there exist x, y ∈ X such that x � F(x, y) and y � F(y,x);

http://www.fixedpointtheoryandapplications.com/content/2013/1/22
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(iv) there exists ai ≥  for i = , , . . . ,  and
∑

i= ai <  such that for all x, y,u, v ∈ X
satisfying x � u and y� v,

d
(
F(x, y),F(u, v)

)
≤P ad(x,u) + ad

(
F(x, y),x

)
+ ad(y, v)

+ ad
(
F(u, v),u

)
+ ad

(
F(x, y),u

)
+ ad

(
F(u, v),x

)
(.)

holds;
(v) if xn → x when n→ ∞ in X , then xn � x for n sufficiently large.

Then there exist x, y ∈ X such that

F(x, y) = x and F(y,x) = y,

that is, F has a coupled fixed point (x, y) ∈ X ×X.

Our second main result is the following.

Theorem . Let (X,d,�) be an ordered cone metric space over a solid cone P. Let F :
X ×X → X and g : X → X be mappings. Suppose that the following hold:

(i) F(X ×X) ⊆ g(X) and g(X) is a complete subspace of X ;
(ii) g and F satisfy property (.);
(iii) there exist x, y ∈ X such that gx � F(x, y) and gy � F(y,x);
(iv) there is some h ∈ [, /) such that for all x, y,u, v ∈ X satisfying gx� gu and

gy� gv, there exists

�x,y,u,v ∈ {
d(gx, gu),d(gy, gv),d

(
F(x, y), gu

)}
such that

d
(
F(x, y),F(u, v)

) ≤P h�x,y,u,v;

(v) if xn → x when n→ ∞ in X , then xn � x for n sufficiently large.
Then there exist x, y ∈ X such that

F(x, y) = gx and F(y,x) = gy,

that is, F and g have a coupled coincidence point (x, y) ∈ X ×X.

Proof Since F(X ×X) ⊆ g(X) (condition (i)), we can start from x, y (condition (iii)) and
construct sequences {gxn} and {gyn} in X such that

gxn = F(xn–, yn–) and gyn = F(yn–,xn–) (.)

for all n ∈N. From (iii), we get gx � F(x, y) = gx and the condition (ii) implies that

gx = F(x, y) � F(x, y) = gx.

http://www.fixedpointtheoryandapplications.com/content/2013/1/22
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By repeating this process, we have gxn– � gxn. Similarly, we can prove that gyn– � gyn for
all n ∈N.
Since gxn– � gxn and gyn– � gyn for all n ∈ N, from (iv), we have that there exist h ∈

[, /) and

� ∈ {
d(gxn–, gxn),d(gyn–, gyn),d

(
F(xn–, yn–), gxn

)}
=

{
d(gxn–, gxn),d(gyn–, gyn), E

}

such that

d(gxn, gxn+) = d
(
F(xn–, yn–),F(xn, yn)

) ≤P h�.

Similarly, one can show that there exists

� ∈ {
d(gxn–, gxn),d(gyn–, gyn), E)

}

such that

d(gyn, gyn+) = d
(
F(yn–,xn–),F(yn,xn)

) ≤P h�.

Now, denote δn = d(gxn, gxn+) + d(gyn, gyn+). Since the cases � = E and � = E are
trivial, we have to consider the following four possibilities.

Case . d(gxn, gxn+) ≤P hd(gxn–, gxn) and d(gyn, gyn+) ≤P hd(gyn–, gyn). Adding up, we
get that

δn ≤P hδn– ≤P hδn–.

Case . d(gxn, gxn+) ≤P hd(gxn–, gxn) and d(gyn, gyn+) ≤P hd(gxn–, gxn). Then

δn ≤P hd(gxn–, gxn) ≤P hd(gxn–, gxn) + hd(gyn–, gyn) = hδn–.

Case . d(gxn, gxn+) ≤P hd(gyn–, gyn) and d(gyn, gyn+) ≤P hd(gxn–, gxn). This case is
treated analogously to Case .

Case . d(gxn, gxn+) ≤P hd(gyn–, gyn) and d(gyn, gyn+) ≤P hd(gyn–, gyn). This case is
treated analogously to Case .

Thus, in all cases, we get δn ≤P hδn– for all n ∈N, where  ≤ h < . Therefore,

δn ≤P hδn– ≤P (h)δn– ≤P · · · ≤P (h)nδ,

and by the same argument as in Theorem ., it is proved that {gxn} and {gyn} are Cauchy
sequences in g(X). By the completeness of g(X), there exist gx, gy ∈ g(X) such that gxn → gx
and gyn → gy.
From (v), we get gxn � gx and gy� gyn for all n ≥ . Now, we prove that F(x, y) = gx and

F(y,x) = gy.
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If gxn = gx and gyn = gy for some n≥ , from (iv) we have

d
(
F(x, y), gx

) ≤P d
(
F(x, y), gxn+

)
+ d(gxn+, gx)

= d
(
F(x, y),F(xn, yn)

)
+ d(gxn+, gx)

≤P h�x,y,xn ,yn + d(gxn+, gx),

where �x,y,xn ,yn ∈ {d(gx, gxn),d(gy, gyn),d(F(x, y), gxn)}. Let c ∈ int(P) be fixed. If �x,y,xn ,yn =
d(gx, gxn) = E or �x,y,xn ,yn = d(gy, gyn) = E , then for n sufficiently large, we have that

d
(
F(x, y), gx

)  c.

By property (p), it follows that F(x, y) = gx. If �x,y,xn ,yn = d(F(x, y), gxn), then we get that

d
(
F(x, y), gx

) ≤P hd
(
F(x, y), gxn

)
+ d(gxn+, gx)

≤P hd
(
F(x, y), gx

)
+ hd(gx, gxn) + d(gxn+, gx)

= hd
(
F(x, y), gx

)
+ d(gxn+, gx).

Now, it follows that for n sufficiently large,

d
(
F(x, y), gx

) ≤P


 – h
d(gxn+, gx)

≤P


 – h
( – h)c

= c.

Therefore, again by property (p), we get that F(x, y) = gx. Similarly, we can prove that
F(y,x) = gy. Hence, (x, y) is a coupled point of coincidence of F and g .
Then, we suppose that (gxn, gyn) 	= (gx, gy) for all n≥ . For this, consider

d
(
F(x, y), gx

) ≤P d
(
F(x, y), gxn+

)
+ d(gxn+, gx)

= d
(
F(x, y),F(xn, yn)

)
+ d(gxn+, gx)

≤P h�x,y,xn ,yn + d(gxn+, gx),

where �x,y,xn ,yn ∈ {d(gx, gxn),d(gy, gyn),d(F(x, y), gxn)}. Let c ∈ int(P) be fixed. If �x,y,xn ,yn =
d(gx, gxn) or �x,y,xn ,yn = d(gy, gyn), then for n sufficiently large, we have that

d
(
F(x, y), gx

)  h · c
h

+
c

= c.

By property (p), it follows that F(x, y) = gx. If �x,y,xn ,yn = d(F(x, y), gxn), then we get that

d
(
F(x, y), gx

) ≤P hd
(
F(x, y), gxn

)
+ d(gxn+, gx)

≤P hd
(
F(x, y), gx

)
+ hd(gx, gxn) + d(gxn+, gx).
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Now, it follows that for n sufficiently large,

d
(
F(x, y), gx

) ≤P
h

 – h
d(gx, gxn) +


 – h

d(gxn+, gx)

 h
 – h

·  – h
h

· c

+


 – h

( – h)
c

= c.

Thus, again by property (p), we get that F(x, y) = gx.
Similarly, F(y,x) = gy is obtained. Hence, (x, y) is a coupled point of coincidence of the

mappings F and g . �

Remark . It would be interesting to relate our Theorem . with Theorem . of Long
et al. [].

Putting g = IX , where IX is the identity mapping from X into X in Theorem ., we get
the following corollary.

Corollary . Let (X,d,�) be an ordered cone metric space over a solid cone P. Let F :
X ×X → X be mappings. Suppose that the following hold:

(i) X is complete;
(ii) F satisfies property (.);
(iii) there exist x, y ∈ X such that x � F(x, y) and y � F(y,x);
(iv) there is some h ∈ [, /) such that for all x, y,u, v ∈ X satisfying x � u and y � v,

there exists

�x,y,u,v ∈ {
d(x,u),d(y, v),d

(
F(x, y),u

)}
such that

d
(
F(x, y),F(u, v)

) ≤P h�x,y,u,v.

(v) if xn → x when n→ ∞ in X , then xn � x for n sufficiently large.
Then there exist x, y ∈ X such that

F(x, y) = x and F(y,x) = y,

that is, F has a coupled fixed point (x, y) ∈ X ×X.

4 Common coupled fixed point theorems lacking themixedmonotone
property

Some questions arise naturally from Theorems . and .. For example, one may ask if
there are necessary conditions for the existence and uniqueness of a common coupled
fixed point of F and g?
The next theoremprovides a positive answer to this questionwith additional hypotheses

to Theorems . and ..
For the given partial order � on the set X, we will denote also by � the order on X ×X

given by

(x, y) � (x, y) ⇐⇒ x � x and y � y. (.)

http://www.fixedpointtheoryandapplications.com/content/2013/1/22
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Theorem . In addition to the hypotheses of Theorem ., suppose that for every (x, y),
(x∗, y∗) ∈ X ×X, there exists (u, v) ∈ X ×X such that

(
F(u, v),F(v,u)

) � (
F(x, y),F(y,x)

)
and

(
F(u, v),F(v,u)

) � (
F
(
x∗, y∗),F(

y∗,x∗)).
If F and g are w∗-compatible, then F and g have a unique common coupled fixed point,
that is, there exists a unique (û, v̂) ∈ X ×X such that

û = gû = F(û, v̂) and v̂ = gv̂ = F(v̂, û).

Proof From Theorem ., the set of coupled coincidence points of F and g is nonempty.
Suppose (x, y) and (x∗, y∗) are coupled coincidence points of F , that is, gx = F(x, y), gy =
F(y,x), gx∗ = F(x∗, y∗) and gy∗ = F(y∗,x∗). We will prove that

gx = gx∗ and gy = gy∗. (.)

By assumption, there exists (u, v) ∈ X ×X such that

(
F(u, v),F(v,u)

) � (
F(x, y),F(y,x)

)
and

(
F(u, v),F(v,u)

) � (
F
(
x∗, y∗),F(

y∗,x∗)).
Put u = u, v = v and choose u, v ∈ X so that gu = F(u, v) and gv = F(v,u). Then,
similarly as in the proof of Theorem ., we can inductively define sequences {gun}, {gvn}
with

gun+ = F(un, vn) and gvn+ = F(vn,un)

for all n. Further, set x = x, y = y, x∗
 = x∗, y∗

 = y∗ and, in a similar way, define the se-
quences {gxn}, {gyn} and {gx∗

n}, {gy∗
n}. Then it is easy to show that

gxn → F(x, y), gyn → F(y,x)

and

gx∗
n → F

(
x∗, y∗), gy∗

n → F
(
y∗,x∗)

as n→ ∞.
Since

(gx, gy) = (gx, gy) =
(
F(x, y),F(y,x)

) � (
F(u, v),F(v,u)

)
= (gu, gv),
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we have gx� gu and gy� gv. It is easy to show that, similarly,

(gx, gy)� (gun, gvn)

for all n ≥ , that is, gx� gun and gy� gvn for all n≥ . Thus, from (.), we have

d(gun+, gx) = d
(
F(un, vn),F(x, y)

)
≤P ad(gun, gx) + ad

(
F(un, vn), gun

)
+ ad(gvn, gy)

+ ad
(
F(x, y), gx

)
+ ad

(
F(un, vn), gx

)
+ ad

(
F(x, y), gun

)
= ad(gun, gx) + ad(gun+, gun) + ad(gvn, gy)

+ ad(gx, gx) + ad(gun+, gx) + ad(gx, gun)

≤P ad(gun, gx) + a
[
d(gun+, gx) + d(gx, gun)

]
+ ad(gvn, gy)

+ ad(gun+, gx) + ad(gx, gun),

that is,

( – a – a)d(gun+, gx)≤P (a + a + a)d(gun, gx) + ad(gvn, gy).

In the same way, starting from d(gvn+, gy), we can show that

( – a – a)d(gvn+, gy) ≤P (a + a + a)d(gvn, gy) + ad(gun, gx).

Thus,

( – a – a)
[
d(gun+, gx) + d(gvn+, gy)

]
≤P (a + a + a + a)

[
d(gun, gx) + d(gvn, gy)

]
. (.)

In a similar way, starting from d(gx, gun+), resp. d(gy, gvn+), and adding up the obtained
inequalities, one gets that

( – a – a)
[
d(gx, gun+) + d(gy, gvn+)

]
≤P (a + a + a + a)

[
d(gx, gun) + d(gy, gvn)

]
. (.)

Finally, adding up (.) and (.), we obtain that

d(gun+, gx) + d(gvn+, gy) ≤P λ
[
d(gun, gx) + d(gvn, gy)

]
, (.)

where λ is determined as in (.), and hence  ≤ λ < .
By inequality (.) n time, we have

d(gun, gx) + d(gvn, gy)

≤P λ
[
d(gun–, gx) + d(gvn–, gy)

]
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≤P λ[d(gun–, gx) + d(gvn–, gy)
]

...

≤P λn[d(gu, gx) + d(gv, gy)
]
.

It follows from λn[d(gu, gx) + d(gv, gy)] → E as n→ ∞ that

d(gun, gx) + d(gvn, gy)  c

for all c ∈ int(P) and large n. Since

E ≤P d(gun, gx)≤P d(gun, gx) + d(gvn, gy),

it follows by (p) that d(gun, gx)  c for large n, and so gun → gx when n → ∞. Similarly,
gvn → gy when n → ∞. By the same procedure, one can show that gun → gx∗ and gvn →
gy∗ as n → ∞. By the uniqueness of the limit, we get gx = gx∗ and gy = gy∗, i.e., (.) is
proved. Therefore, (gx, gy) is the unique coupled point of coincidence of F and g .
Note that if (gx, gy) is a coupled point of coincidence of F and g , then (gy, gx) is also a

coupled point of coincidence of F and g . Then gx = gy and therefore (gx, gx) is the unique
coupled point of coincidence of F and g .
Next, we show that F and g have a common coupled fixed point. Let û := gx. Then we

have û = gx = F(x,x). Since F and g are w∗-compatible, we have

gû = ggx = gF(x,x) = F(gx, gx) = F(û, û).

Thus, (gû, gû) is a coupled point of coincidence of F and g . By the uniqueness of a coupled
point of coincidence of F and g , we get gû = gx. Therefore, û = gû = F(û, û), that is, (û, û)
is a common coupled fixed point of F and g .
Finally, we show the uniqueness of a common coupled fixed point of F and g . Let (ũ, ũ) ∈

X ×X be another common coupled fixed point of F and g . So,

ũ = gũ = F(ũ, ũ).

Then (gû, gû) and (gũ, gũ) are two common coupled points of coincidence of F and g and,
as was previously proved, it must be gû = gũ, and so û = gû = gũ = ũ. This completes the
proof. �

Next, we give some illustrative example which supports Theorem ., while the results
of Nashine et al. [] do not.

Example . Let X =R be ordered by the following relation:

x � y ⇐⇒ x≥ y.

Let E = C
R
[, ] with ‖f ‖ = ‖f ‖∞ + ‖f ′‖∞ for all f ∈ E and

P =
{
f ∈ E : f (t) ≥  for t ∈ [, ]

}
.
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It is well known (see, e.g., []) that the cone P is not normal. Let

d(x, y) = |x – y|ϕ

for all x, y ∈ X, for a fixed ϕ ∈ P (e.g., ϕ(t) = et for t ∈ [, ]). Then (X,d) is a complete
ordered cone metric space over a non-normal solid cone.
Let g : X → X and F : X ×X → X be defined by

gx =
x


and F(x, y) =

x + y


.

Consider y =  and y = , we have for x = , we get y =  �  = y, but

F(x, y) =



� 


= F(x, y).

So, the mapping F does not satisfy the mixed g-monotone property. Therefore, Theo-
rems . and . of Nashine et al. [] cannot be used to reach this conclusion.
Now, we show that Theorem . can be used for this case.
Take a = a = 

 and a = a = a = a = . We will check that the condition (.) in
Theorem . holds.
For x, y,u, v ∈ X satisfying gu� gx and gv� gy, we have

d
(
F(x, y),F(u, v)

)
=

∣∣∣∣x + y


–
u + v



∣∣∣∣ϕ
≤P




∣∣∣∣x –
u



∣∣∣∣ϕ +



∣∣∣∣y –
v



∣∣∣∣ϕ
=



d(gx, gu) +



d(gy, gv)

= ad(gx, gu) + ad(gy, gv).

Next, we show that F and g are w∗-compatible. We note that if gx = F(x,x), then we get
only one case, that is, x = , and hence

gF(x,x) = gF(, ) = g =  = F(, ) = F(g, g) = F(gx, gx).

Therefore, F and g are w∗-compatible.
Moreover, other conditions in Theorem . are also satisfied. Now, we can apply Theo-

rem . to conclude the existence of a unique common coupled fixed point of F and g that
is a point (, ).

The following uniqueness result corresponding to Theorem . can be proved in the
same way as Theorem ..

Theorem . In addition to the hypotheses of Theorem ., suppose that for every (x, y),
(x∗, y∗) ∈ X ×X, there exists (u, v) ∈ X ×X such that

(
F(u, v),F(v,u)

) � (
F(x, y),F(y,x)

)

http://www.fixedpointtheoryandapplications.com/content/2013/1/22
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and

(
F(u, v),F(v,u)

) � (
F
(
x∗, y∗),F(

y∗,x∗)).
If F and g are w∗-compatible, then F and g have a unique coupled common fixed point,
that is, there exists a unique (û, v̂) ∈ X ×X such that

û = gû = F(û, v̂) and v̂ = gv̂ = F(v̂, û).
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24. Karapınar, E, Türkoǧlu, AD: Best approximations theorem for a couple in cone Banach spaces. Fixed Point Theory
Appl. 2010, Article ID 784578 (2010)

25. Karapınar, E, Kaymakcalan, B, Tas, K: On coupled fixed point theorems on partially ordered G-metric spaces. J. Inequal.
Appl. 2012, 200 (2012)

26. Sintunavarat, W, Cho, YJ, Kumam, P: Coupled coincidence point theorems for contractions without commutative
condition in intuitionistic fuzzy normed spaces. Fixed Point Theory Appl. 2011, 81 (2011)

27. Sintunavarat, W, Cho, YJ, Kumam, P: Coupled fixed point theorems for weak contraction mapping under F-invariant
set. Abstr. Appl. Anal. 2012, Article ID 324874 (2012)

28. Sintunavarat, W, Cho, YJ, Kumam, P: Coupled fixed-point theorems for contraction mapping induced by cone
ball-metric in partially ordered spaces. Fixed Point Theory Appl. 2012, 128 (2012)
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32. Janković, S, Kadelburg, Z, Radenović, S: On cone metric spaces: a survey. Nonlinear Anal. 74, 2591-2601 (2011)
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