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Abstract
In this paper the variational iteration method is used to solve the fractional differential
equations with a fuzzy initial condition. We consider a differential equation of
fractional order with uncertainty and present the concept of solution. We compared
the results with their exact solutions in order to demonstrate the validity and
applicability of the method.
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1 Introduction
With the rapid development of linear and nonlinear science, many different methods such
as the variational iteration method (VIM) [] were proposed to solve fuzzy differential
equations.
Fuzzy initial value problems for fractional differential equations have been considered

by some authors recently [, ]. To study some dynamical processes, it is necessary to take
into account imprecision, randomness or uncertainty. The uncertainty can be modeled by
incorporating it into the dynamical system and considering fuzzy differential equations.
Some recent contributions on the theory of differential equations with uncertainty can be
seen in [].
Let q ∈ (, ], T >  and E be the set of fuzzy real numbers [, ].
We consider a differential equation with uncertainty of the type

Dqu(t) = f
(
t,u(t)

)
, t ∈ (,T], ()

where f : [,T]×R →R is continuous.Wewill consider this equationwith some adequate
initial condition for a given u ∈ E:
• If f : [,T]×R →R and u ∈R, then () reduces to a fractional differential equation.
• If q = , then () is just a first-order fuzzy differential equation.
Here we combine both types of differential equations, of fractional order and with un-

certainty, to consider a new type of dynamical system: fuzzy differential equations of frac-
tional order []. The objective of the present paper is to extend the application of the varia-
tional iteration method, to provide approximate solutions for fuzzy initial value problems
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of differential equations of fractional order, and to make comparison with that obtained
by an exact fuzzy solution.

2 Preliminaries
In this section the most basic notations used in fuzzy calculus are introduced. We start
with defining a fuzzy number.

Definition  A fuzzy number (or an interval) u in parametric form is a pair (u,u) of func-
tions u(r), u(r),  ≤ r ≤ , which satisfy the following requirements []:
. u(r) is a bounded non-decreasing left continuous function in (, ] and right

continuous at .
. u(r) is a bounded non-decreasing left continuous function in (, ] and right

continuous at .
. u(r)≤ u(r),  ≤ r ≤ .

Definition  The Riemann-Liouville fractional derivative of order  < q <  of a continu-
ous function f :R+ →R is given by

Dqf (t) =


�( – q)
d
dt

∫ t


(t – s)–qf (s)ds,

provided the right-hand side is pointwisely defined on R
+.

3 Fuzzy fractional differential equations with uncertainty
Consider the following fuzzy fractional differential equation:

Dqu(t) = f
(
t,u(t)

)
, ()

where  < q <  and f : [,T]× E → E is a continuous function on [,T]× E.
A fuzzy function u ∈ C((,T],E)∩ L((,T),E) is a solution of fuzzy fractional differen-

tial equation () ifDqu is continuous on (,T]; and assume that there exits μ >  such that
the nonlinearity f is of the form

Dqu(t) = μu(t) + g
(
t,u(t)

)
, t ∈ (,T], ()

where

Dqu(t) =


�( – q)
d
dt

∫ t


(t – s)–qu(s)ds,

is the usual Riemann-Liouville fractional derivative of order q of the function u : (,T] →
R and g : [,T]× E → E is continuous.
Also, we can associate the following initial condition to fuzzy fractional differential

equation ():

lim
t→+

t–qu(t) = u ∈ E.

Lemma
(i) If there exists limt→+ t–qu(t) = v, then there also exists limt→+ t–qu(t) = �(q)v.
(ii) If there exists limt→+ t–qu(t) = w, then limt→+ t–qu(t) = w

�(q) .

http://www.fixedpointtheoryandapplications.com/content/2013/1/13


Khodadadi and Çelik Fixed Point Theory and Applications 2013, 2013:13 Page 3 of 7
http://www.fixedpointtheoryandapplications.com/content/2013/1/13

Proof (i) If there exists limt→+ t–qu(t) = v, then for each ε > , we can choose δ = δ(ε)
such that

d
(
t–qu(t), v

)
<

ε

�(q)

for |t| < δ. Since I–qt–q = �(q), we have

d
(
D–qu(t),�(q)v

)
= d

(
D–qu(t),D–qtq–v

)
=


�( – q)

d
(∫ t


(t – s)–qu(s)ds,

∫ t


(t – s)–qsq– ds

)
≤ 

�( – q)

∫ t


(t – s)–qsq–d

(
sq–u(s), v

)
ds < ε

which proves (i). Assertion (ii) is obvious []. �

Hence, we define a solution of this Eq. () as a function u : [,T] → E such that

u(t) = u�(q)tq–Eq,q
(
μtq

)
+

∫ t


(t – s)q–Eq,q

(
μ(t – s)q

)
g
(
s,u(s)

)
ds,

where Eα,β is the classical Mittag-Leffler function

Eα,β (z) =
∞∑
k=

zk

�(αk + β)
(α > ,β > ).

Example  Consider the fractional differential equation

Dqu(t) = , t ∈ (,T].

The general solution of this equation [] is

u(t) = ceq–, c ∈R.

Imposing the initial condition

lim
t→+

t–qu(t) = u,

we then have

u(t) = utq–.

In the fuzzy case, the solution is also

u(t) = utq–.

Now, let μ >  and  < q ≤  and consider the equation

Dqu(t) = μu(t), t ∈ (,T].
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The solution is given by the following expression:

u(t) = �(q)tq–Eq,q
(
μtq

)
u.

4 Analysis of the variational iterationmethod
We consider the fractional differential equation

Dqu(t) = μu(t) + g
(
t,u(t)

)
, t ∈ (,T] ()

with the fuzzy initial condition

lim
t→+

t–qu(t) = u,

where t ∈ (, ],  < q ≤ , and u ∈ E is a fuzzy triangular number,

[u]α =
[
u(t,α),u(t,α)

]
for α ∈ (, ].

According to the variational iteration method [], we construct a correction functional
for () which reads

un+(t;α) = un(t;α)t
q–

+


�(q)

∫ t


(t – ξ )q–λ(ξ ;α)

(
∂qun
∂ξ q (ξ ;α) –μun(ξ ;α) – g

(
ξ ,un(ξ ;α)

))
dξ ,

un+(t;α) = un(t;α)tq–

+


�(q)

∫ t


(t – ξ )q–λ(ξ ;α)

(
∂qun
∂ξ q (ξ ;α) –μun(ξ ;α) – g

(
ξ ,un(ξ ;α)

))
dξ ,

where λ and λ are general Lagrange multipliers, which can be identified optimally via the
variational, and ũn and ũn are restricted variations that are δũn =  and δũn = .
Therefore, we first determine the Lagrange multipliers λ and λ that will be identified

via integration by parts. Respectively, the successive approximations un+(t;α) ≥  and
un+(t;α) ≥  of the solutions u(t;α) and u(t;α) will be readily obtained upon using the
Lagrange multiplier obtained by using any selective functions u(t;α) and u(t;α). Con-
sequently, the solutions are obtained by taking the limits:

u(t;α) = lim
n→∞un(t;α), u(t;α) = lim

n→∞un(t;α). ()

Example  Consider the crisp differential equation

Dqu(t) = –u(t) ()

with the fuzzy initial condition

lim
t→+

t–qu(t) = ( |  | ), ()
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where t ∈ (, ],  < q ≤ , and u = ( |  | ) ∈ E is a fuzzy triangular number, [u]α =
[ + α,  – α] for α ∈ (, ].
If we put [u(t)]α = [uα(t),uα(t)], then [Dqu(t)]α = [Dquα(t),Dquα(t)]. We obtain the sys-

tem

Dquα(t) = –uα(t), lim
t→+

t–quα(t) =  + α,

Dquα(t) = –uα(t), lim
t→+

t–quα(t) =  – α,

or

Dqy(t) = Ay(t), lim
t→+

t–qy(t) = c, ()

where

y(t) =

[
uα(t)
uα(t)

]
, A =

[
 –
– 

]
, c =

[
 + α

 – α

]
.

Using the same method as that in [], we obtain the solution of (). It is given by

y(t) = tq–Eq,q
(
Atq

)
c = tq–Eq,q

(
Atq

)[
 + α

 – α

]
,

where

Eq,q
(
Atq

)
=

∞∑
k=

(Atq)k

�(q(k + ))
=

∞∑
k=

(tq)k

�(q(k + ))

([
 –
– 

])k

=
∞∑
n=

(tq)n

�(q(n + ))

([
 –
– 

])n

+
∞∑
n=

(tq)n+

�(q(n + ))

([
 –
– 

])n+

=
∞∑
n=

(tq)n

�(q(n + ))

[
 
 

]
+

∞∑
n=

(tq)n+

�(q(n + ))

[
 –
– 

]
.

Then we obtain

uα(t) = u(t;α) =
∞∑
n=

t(n+)q–

�(q(n + ))
( + α) –

∞∑
n=

t(n+)q–

�(q(n + ))
( – α),

uα(t) = u(t;α) =
∞∑
n=

t(n+)q–

�(q(n + ))
( – α) –

∞∑
n=

t(n+)q–

�(q(n + ))
( + α).

It easy to see that [uα(t),uα(t)] define the α-level intervals of a fuzzy number. So, [u(t)]α

are the α-level intervals of the fuzzy solution of ()-(), [].
To apply the VIM, first we rewrite Eq. () in the form

L
[
u(t)

]
+N

[
u(t)

]
= , L

[
u(t)

]
+N

[
u(t)

]
= , ()
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where the notations L[u(t)] = ∂qu
∂tq , L[u(t)] =

∂qu
∂tq and N[u(t)] = u(t), N[u(t)] = u(t) symbol-

ize the linear and nonlinear terms, [], respectively. The correction functionals for Eqs. ()
read

un+(t;α) = un(t;α)t
q–

+


�(q)

∫ t


(t – ξ )q–λ(ξ ;α)

(
∂qun
∂ξ q (ξ ;α) +N

[̃
un(ξ ;α)

])
dξ ,

un+(t;α) = un(t;α)tq–

+


�(q)

∫ t


(t – ξ )q–λ(ξ ;α)

(
∂qun
∂ξ q (ξ ;α) +N

[̃
un(ξ ;α)

])
dξ .

()

Taking the variation with respect to the independent variables un and un, and noticing
that δN [̃u()] = , δN [̃u()] = ,

δun+(t;α) = δun(t;α)t
q– +


�(q)

δ

∫ t


(t – ξ )q–λ(ξ ;α)

(
∂qun
∂ξ q (ξ ;α)

)
dξ ,

δun+(t;α) = δun(t;α)tq– +


�(q)
δ

∫ t


(t – ξ )q–λ(ξ ;α)

(
∂qun
∂ξ q (ξ ;α)

)
dξ ,

()

for q ∈ (, ], we obtain for Eq. () the following stationary conditions:

 + λ(ξ ;α)|t=ξ = ,  + λ(ξ ;α)|t=ξ = ,

∂qλ(ξ ;α)
∂ξ q

∣∣∣∣
t=ξ

= ,
∂qλ(ξ ;α)

∂ξ q

∣∣∣∣
t=ξ

= .
()

The general Lagrange multipliers, therefore, can be identified

λ(ξ ;α) = –, λ(ξ ;α) = –. ()

As a result, we obtain the following iteration formula:

un+(t;α) = un(t;α)t
q– –


�(q)

∫ t


(t – ξ )q–

(
∂qun
∂ξ q (ξ ;α) + un(ξ ;α)

)
dξ ,

un+(t;α) = un(t;α)tq– –


�(q)

∫ t


(t – ξ )q–

(
∂qun
∂ξ q (ξ ;α) + un(ξ ;α)

)
dξ .

()

As a result, we obtain the following iterative formula:

u(t;α) = �(q)tq–Eq,q
(
–tq

)
( + α),

u(t;α) = �(q)tq–Eq,q
(
–tq

)
( – α),

u(t;α) = �(q)
[
tq–Eq,q

(
–tq

)
– tq–Eq,q

(
–tq

)
+ tq–Eq,q

(
–tq

)]
( + α),

u(t;α) = �(q)
[
tq–Eq,q

(
–tq

)
– tq–Eq,q

(
–tq

)
+ tq–Eq,q

(
–tq

)]
( – α),

u(t;α) = �(q)

[
tq–Eq,q

(
–tq

)
– tq–Eq,q

(
–tq

)
Eq,q–

(
–tq

)
+ tq–Eq,q

(
–tq

)
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+ (q – )
∞∑


(–)k

�((k + )q)
t(k+)q–

((k + )q – )
– tq–Eq,q

(
–tq

)]
( + α),

u(t;α) = �(q)

[
tq–Eq,q

(
–tq

)
– tq–Eq,q

(
–tq

)
Eq,q–

(
–tq

)
+ tq–Eq,q

(
–tq

)
+ (q – )

∞∑


(–)k

�((k + )q)
t(k+)q–

((k + )q – )
– tq–Eq,q

(
–tq

)]
( – α),

...

and so on. The nth approximate solution of the variational iteration method converges to
the exact series solution []. So, we approximate the solutions u(t;α) = limn→∞ un(t;α),
u(t;α) = limn→∞ un(t;α).

5 Conclusion
The results of the study reveal that the proposed method with fractional Riemann-
Liouville derivatives is efficient, accurate, and convenient for solving the fuzzy fractional
differential equations.
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