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Abstract
It is shown that if a mapping is a local radial contraction defined on a metric space
(X ,d) which takes values in a metric transform of (X ,d), then for many metric
transforms it is also a local radial contraction (with possibly different contraction
constant) relative to the original metric. Several specific examples are given. This in
turn implies that the mapping has a fixed point if the space is rectifiably pathwise
connected. Some results about set-valued contractions are also discussed.
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1 Introduction
In this paper, we study fixed points of mappings satisfying local contractive conditions,
with a special emphasis on the following concept due to L. M. Blumenthal.

Definition . A strictly increasing concave function φ : [,∞) → R for which φ() = 
is called a metric transform.

Blumenthal has observed (see Exercise  on p. of []) that if (X,d) is a metric space
and if ρ(x, y) = φ(d(x, y)) for each x, y ∈ X, where φ is a metric transform, then (X,ρ) is
also a metric space. He had introduced this concept earlier in [] to show that the metric
transform φ(M) of any metric space M by φ(t) = tα ,  < α ≤ 

 , has the Euclidean four
point property, i.e., each four points of φ(M) are isometric to a quadruple of points in
-dimensional Euclidean space.
A mapping g defined on a metric space X is said to be a local radial contraction [] if

there exists k ∈ (, ) such that for each x ∈ X there exists εx >  such that d(x,u) < εx ⇒
d(g(x), g(u)) ≤ kd(x,u) for all u ∈ X. We begin by showing that if a mapping is a local radial
contraction defined on a metric space (X,d) and taking values in a metric transform of
(X,d), then in many instances it is also a local radial contraction (with possibly different
contraction constant) relative to the original metric. Several specific examples are given.
This in turn implies that the mapping has a fixed point if the space is rectifiably path-
wise connected. In Section , we turn our attention to set-valued contractions and prove,
among other things, a set-valued analog to the main result of Section . Finally, because it
is also based on the idea of a metric transform, we revisit a counter-example given in []
in somewhat more detail.

© 2013 Kirk and Shahzad; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction
in any medium, provided the original work is properly cited.

http://www.fixedpointtheoryandapplications.com/content/2013/1/106
mailto:nshahzad@kau.edu.sa
http://creativecommons.org/licenses/by/2.0


Kirk and Shahzad Fixed Point Theory and Applications 2013, 2013:106 Page 2 of 11
http://www.fixedpointtheoryandapplications.com/content/2013/1/106

2 Local radial contractions
As noted above, a mapping g defined on a metric space X is a local radial contraction if
there exists k ∈ (, ) such that for each x ∈ X there exists εx >  such that d(x,u) < εx ⇒
d(g(x), g(u))≤ kd(x,u) for all u ∈ X. If this condition is satisfied for some ε >  independent
of x then g is said to be a uniform local contraction.
The following is the central result of []. Recall that a rectifiable path is a path of finite

length (see, e.g., [, p.]).

Theorem . ([]) Let (X,d) be a complete metric space, and suppose each two points of
X can be joined by a rectifiable path. Then if g : X → X is a local radial contraction, g has
a unique fixed point x ∈ X, and moreover limn→∞ gn(x) = x for each x ∈ X.

Rakotch proved the above theorem in [] under the stronger assumption that g is a
local contraction in the sense that there exists k ∈ (, ) such that each point of x ∈ X
has a neighborhood Nx such that d(g(u), g(v)) ≤ kd(u, v) for all u, v ∈ Nx. The proof of
Theorem . entails showing that the metric space (X,�) is complete, where � is the path
metric on X induced by d, and then observing that g is actually a global contraction on
(X,�). (An assertion in the proof of Theorem . given in [] was based on a Proposition
of Holmes [], which was later shown by Jungck [] to be false. However, as Jungck also
proved in [], the assertion itself is true. Hence, the proof given in [], withminor changes,
is true.)
We now give a simple condition in terms ofmetric transformswhich implies that amap-

ping g : X → X is a local radial contraction. Notice that if φ is taken to be the identity
mapping, the following result reduces to the definition of a local radial contraction.

Theorem . Let (X,d) be a metric space and g : X → X. Suppose there exists a metric
transform φ on X and a number k ∈ (, ) such that the following conditions hold:
(a) For each x ∈ X there exists εx >  such that d(x,u) < εx ⇒

φ
(
d
(
g(x), g(u)

)) ≤ kd(x,u).

(b) There exists c ∈ (, ) such that for all t >  sufficiently small

kt ≤ φ(ct).

Then g is a local radial contraction on (X,d).

In view of Theorem ., we now have the following.

Theorem . Suppose, in addition to the assumptions in Theorem ., X is complete and
rectifiably pathwise connected. Then g has a unique fixed point x, and limn→∞ gn(x) = x
for each x ∈ X.

Proof of Theorem . Let x ∈ X. Then if d(x,u) < εx,

φ
(
d
(
g(x), g(u)

)) ≤ kd(x,u).
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Now suppose there exists c ∈ (, ) such that for t sufficiently small,

kt ≤ φ(ct).

This implies there exists δx >  with δx ≤ εx such that d(x,u) < δx ⇒

φ
(
d
(
g(x), g(u)

)) ≤ kd(x,u)≤ φ
(
cd(x,u)

)
.

Since φ is strictly increasing, d(x,u) < δx ⇒

d
(
g(x), g(u)

) ≤ cd(x,u).

Therefore, g is a local radial contraction on (X,d). �

Remark . If condition (a) is changed to

φ
(
d
(
g(x), g(y)

)) ≤ kd(x, y) for all x, y ∈ X,

then g is a uniform local contraction on (X,d). This is because condition (b) now implies
that there exists δ >  such that d(x, y) < δ ⇒

φ
(
d
(
g(x), g(y)

)) ≤ kd(x, y)≤ φ
(
cd(x, y)

)
.

Remark. If g : X → X is onto and satisfies the following expansive type condition: there
exists k ∈ (, ) such that

d
(
g(x), g(y)

) ≥ k–φ
(
d(x, y)

)
for all x, y ∈ X,

then g– is a uniform local contraction on (X,d). This is because g– exists and satisfies

φ
(
d
(
g–(x), g–(y)

)) ≤ kd(x, y) for all x, y ∈ X.

Condition (b) might appear to be too restrictive. We now list several examples of non-
trivial metric transforms for which the condition holds.
(i) φ(t) = t

+t . Let k ∈ (, ) and select c ∈ (k, ). Then

kt ≤ φ(ct) ⇔ t ≤
ct

+ct
k

⇔ kt ≤ ct
 + ct

⇔ k ≤ c
 + ct

⇔ t ≤ c – k
ck

.

Since c > k, condition (b) follows.
(ii) φ(t) = tβ , for β ∈ (, ). Then for any c,k ∈ (, )

t ≤ φ(ct)
k

⇔ t ≤ (ct)β

k
,

and condition (b) holds for t ≤ .
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(iii) φ(t) = sin( t
+t ). Let k ∈ (, ), and set h(t) = t

+t .We know that if c ∈ (k, ) and if t ≤ c–k
ck

then

kt ≤ h(ct).

In particular, take k′ ∈ (k, ), then choose c ∈ (k′, ). The same argument as in (ii) shows
that if t ≤ c–k′

ck′ then

kt < k′t ≤ h(ct).

Thus, if t is sufficiently small,

kt ≤ sink′t ≤ sin
(
h(ct)

)
= φ(ct).

(iv) φ(t) = p tan– t for fixed p > . Let k ∈ (, ). Then kt ≤ φ(ct) ⇔ tan( ktp ) ≤ ct. Let f (t) =
ct– tan( ktp ). Then f () =  and f ′(t) = c– k

p sec
( ktp ) >  ⇔ sec( ktp ) <

pc
k . If c ∈ (, ) is chosen

so that pc
k > , then f ′(t) >  for t >  sufficiently small. This implies that f (t) >  for t > 

sufficiently small, and this in turn implies that condition (b) holds.
(v) φ(t) = ln( + t). Let k ∈ (, ) and select c ∈ (k, ). Then kt ≤ φ(ct) ⇔ ekt ≤  + ct. Let

f (t) =  + ct – ekt . Then f () =  and for t > , f ′(t) >  ⇔ ekt < c
k ⇔ t < k– ln( ck ). This is

clearly true for t >  sufficiently small because c ∈ (k, ).
Not every metric transform satisfies condition (b); φ(t) = tan– t provides an example.

On the other hand, Proposition . below shows that the collection of metric transforms
which do satisfy condition (b) are indeed numerous and complex.

Proposition . Let M denote the class of all metric transforms φ with the property that
φ is twice differentiable, and let M denote the subfamily of M consisting of those φ ∈ M

which satisfy the following condition: for any k ∈ (, ) there exists c ∈ (, ) such that for
t >  sufficiently small,

kt ≤ φ(ct).

Then bothM andM are closed under functional composition.

Proof Let φ,ψ ∈ M and let ϕ = φ ◦ ψ . Then ϕ() = φ ◦ ψ() = . Also for any t > ,

ϕ′(t) = φ′(ψ(t)
) · ψ ′(t) > 

and

ϕ′′(t) = φ′(ψ(t)
) · ψ ′′(t) + φ′′(ψ(t)

) · [ψ ′(t)
] < .

Therefore, ϕ ∈ M.
Now supposeφ,ψ ∈M. Then there exists c ∈ (, ) such that for t >  sufficiently small,

kt ≤ φ(ct).
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Also, there exists c ∈ (, ) such that for t >  sufficiently small

ct ≤ ψ(ct).

Since φ is strictly increasing,

ct ≤ ψ(ct) ⇔ φ(ct) ≤ φ
(
ψ(ct)

)
.

Therefore, kt ≤ ϕ(ct) for t >  sufficiently small, so it follows that ϕ ∈M. �

Finally, we observe that in Theorem . it needs only be assumed that some iterate of
the mapping g is a local radial contraction. Specifically, we have the following.

Theorem . Let X be a complete metric space for which each two points can be joined
by a rectifiable path, and suppose g : X → X is a mapping for which gN is a local radial
contraction for some N ∈N. Then g has a unique fixed point x, and limn→∞ gn(x) = x for
each x ∈ X.

Notice that g is not even assumed to be continuous. Similarly, we also have the following
extension of Theorem ..

Theorem. Let X be a completemetric space for which each two points can be joined by a
rectifiable path, and suppose g : X → X is amapping for which gN satisfies the assumptions
in Theorem . for some N ∈ N. Then g has a unique fixed point x, and limn→∞ gn(x) = x
for each x ∈ X.

These results are immediate consequences of Theorems . and ., and the following
proposition due to Tan [].

Theorem . Let X be a topological space, let x ∈ X, and let g : X → X be a mapping for
which f := gN satisfies limn→∞ f n(x) = x for each x ∈ X. Then limn→∞ gn(x) = x for each
x ∈ X. (Also if x is the unique fixed point of f , it is also the unique fixed point of g .)

Holmes makes the following claim in []. If (X,d) is a connected and locally connected
metric space and g : X → X is a uniformly continuous local radial contraction, then there
exists a metric δ on X, topologically equivalent to d, such that g is a global contraction on
(X, δ). If true, this claim would yield Theorem . for uniformly continuous local radial
contractions in a more general class of spaces. However, we append an example, taken
from [], which shows that this assertion is false. We do not know if it is true when (X,d)
is rectifiably pathwise connected.

3 Set valued contractions
Let (X,d) be a metric space and let CB(X) denote the family of nonempty, closed and
bounded subsets of X. For A,B ∈ CB(X) let ρ(A,B) = supx∈A dist(x,B) and ρ(B,A) =
supx∈B dist(x,A). The usual Hausdorff distance H(A,B) between A and B is defined as

H(A,B) =max
{
ρ(A,B),ρ(B,A)

}
.
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A mapping T : X → CB(X) is called a multivalued contraction mapping if there exists a
constant k ∈ (, ) such that

H(Tx,Ty) ≤ kd(x, y), x, y ∈ X.

A point x ∈ X is said to be a fixed point ofT if x ∈ Tx. Our point of departure in this section
is the following celebrated theorem of Nadler [].

Theorem . Let (X,d) be a complete metric space, and suppose T : X → CB(X) be a
multivalued contraction mapping. Then T has a fixed point.

Our purpose in this section is to extend Nadler’s theorem by replacing the Hausdorff
metric with other metrics on CB(X) which are either metrically or sequentially equivalent
to H .
One example of a metric on CB(X) which is metrically equivalent to the Hausdorff met-

ric H is the metric H+, which was introduced in []. H+ is defined by setting

H+(A,B) =


(
ρ(A,B) + ρ(B,A)

)
, A,B ∈ CB(X).

Clearly, H+ is metrically equivalent to the Hausdorff metric:



H(A,B)≤ H+(A,B)≤ H(A,B).

A multivalued mapping T : X → CB(X) is called an H+-contraction if
() there exists k ∈ (, ) such that

H+(Tx,Ty) ≤ kd(x, y) for every x, y ∈ X;

and
() for every x ∈ X and y ∈ Tx,

dist(y,Ty) ≤ H+(Tx,Ty).

It follows immediately from the definition of theHausdorffmetricH that ifA,B ∈ CB(X)
and if x ∈ X. Then for each ε >  there exists y ∈ Y such that

d(x, y) ≤ H(A,B) + ε.

Thus, condition () is always true if H+ is replaced with the usual Hausdorff metric H .
This is precisely the fact about the Hausdorff metric that Nadler used in his proof. In fact,
Nadler’s proof yields the following result. This theorem implies that everyH+-contraction
of a complete metric space X into CB(X) has a fixed point [].

Theorem . Let (X,d) be a complete metric space, and let D be any metric on CB(X)
which is sequentially equivalent to the Hausdorff metric H . Suppose T : X → CB(X) satis-
fies

http://www.fixedpointtheoryandapplications.com/content/2013/1/106
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() there exists k ∈ (, ) such that

D(Tx,Ty)≤ kd(x, y) for every x, y ∈ X;

and
() if x ∈ X and y ∈ Tx,

dist(y,Ty) ≤ D(Ty,Tx).

Then T has a fixed point, i.e., there exists x ∈ X such that x ∈ Tx.

Proof (cf. []) By sayingD is sequentially equivalent toH , wemean that forA ∈ CB(X) and
{An} ⊂ CB(X),

lim
n→∞D(An,A) =  ⇔ lim

n→∞H(An,A) = .

Suppose T : X → CB(X). Select x ∈ X and x ∈ Tx. By () and (), there exists x ∈ Tx
such that

d(x,x)≤ D(Tx,Tx) + k

≤ kd(x,x) + k.

Similarly, there exists x ∈ Tx such that

d(x,x)≤ D(Tx,Tx) + k

≤ kd(x,x) + k

≤ k
[
kd(x,x) + k

]
+ k

= kd(x,x) + k.

In general, for each i ∈N there exists xi+ ∈ Txi such that

d(xi,xi+) ≤ D(Txi–,xi) + ki

≤ kd(xi–,xi) + ki

≤ k
[
D(Txi–,Txi–) + ki–

]
+ ki

≤ kd(xi–,xi–) + ki

≤ · · ·
≤ kid(x,x) + iki.

Therefore,

∞∑
i=

d(xi,xi+) ≤ d(x,x)
∞∑
i=

ki +
∞∑
i=

iki < ∞.

http://www.fixedpointtheoryandapplications.com/content/2013/1/106
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Hence, {xn} is a Cauchy sequence, so there exists x ∈ X such that limn→∞ xn = x. It follows
from () that limn→∞ D(Txn,Tx) = . SinceD andH are equivalent, limn→∞ H(Txn,Tx) = .
Since xn+ ∈ Txn, it follows from the definition of Hausdorff metric that limn→∞ dist(xn,
Tx) = , and since Tx is closed, x ∈ Tx. �

Remark . The point valued analog of Theorem . is rather trivial. Let (X,d) be a com-
plete metric space, and let ρ be any metric on X which is sequentially equivalent to the d.
Suppose T : X → X satisfies
() there exists k ∈ (, ) such that

ρ(Tx,Ty)≤ kd(x, y) for every x, y ∈ X;

and
() if x ∈ X ,

d
(
Tx,Tx

) ≤ ρ
(
Tx,Tx

)
.

Then T has a fixed point.

Proof Combining () and (), we have

d
(
Tx,Tx

) ≤ kd(x,Tx), x ∈ X.

This implies that (Tnx) is a Cauchy sequence in (X,d), so limn→∞ Tnx = x exists. Since ()
implies T is continuous, Tx = x. �

As noted above, () alone is sufficient if D = H because () is redundant in this case.
However, the following example shows that () alone is not sufficient if D =H+.

Example Take X = [,∞) with the metric: d(x, y) = |x–y|
|x–y|+ ∀x, y ∈ X. Define T : X →

CB(X) by setting T(x) = [x + ,∞). Clearly, T has no fixed point. However, if x > y then
T(x)⊆ T(y), and

H+(T(x),T(y)) = 

d
(
T(x),T(y)

)

=



|x +  – (y + )|
|x +  – (y + )| + 

=



|x – y|
|x – y| + 

=


d(x, y).

We now turn to an analog of Theorem . for set-valued mappings.
A mapping T : X → CB(X) is said to be an (ε,k)-uniform local multi-valued contraction

(where ε >  and k ∈ (, )) if for x, y ∈ X, d(x, y) < ε ⇒ H(Tx,Ty) ≤ kd(x, y). This definition,
given in [], is modelled after a concept introduced by Edelstein in [].

http://www.fixedpointtheoryandapplications.com/content/2013/1/106
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Theorem . Let (X,d) be a metric space and T : X → CB(X). Suppose there exists a
metric transform φ and k ∈ (, ) such that the following conditions hold:
(a) For each x, y ∈ X ,

φ
(
H(Tx,Ty)

) ≤ kd(x, y).

(b) There exists c ∈ (, ) such that for t >  sufficiently small,

kt ≤ φ(ct). (**)

Then for ε >  sufficiently small, T is an (ε, c)-uniform local multivalued contraction on
(X,d).

Proof Let x, y ∈ X, and observe that

φ
(
H(Tx,Ty)

) ≤ kd(x, y).

Now suppose there exists c ∈ (, ) such that for t sufficiently small,

kt ≤ φ(ct).

Then for d(x, y) sufficiently small,

φ
(
H(Tx,Ty)

) ≤ kd(x, y)≤ φ
(
cd(x, y)

)

and since φ is strictly increasing this in turn implies

H(Tx,Ty) ≤ cd(x, y).

Thus, for ε >  sufficiently small, T is an (ε, c)-uniform local multivalued contraction on
(X,d). �

A metric space (X,d) is said to be ε-chainable (where ε >  is fixed) if given a,b ∈ X
there is an ε-chain joining a and b. This means there exists a finite set of points {xi}ni= in
X such that a = x, b = xn and d(xi,xi+) < ε for all i = , . . . ,n – . The following result is
also due to Nadler.

Theorem . ([, Theorem ]) Let (X,d) be a complete ε-chainable metric space. If T :
X → CB(X) is an (ε,k)- uniform local multivalued contraction, then T has a fixed point.

By combining the above result with Theorem . we obtain the following.

Theorem . If, in addition to the assumptions of Theorem ., X is complete and con-
nected, then T has a fixed point.

Proof A connected metric space is ε-chainable for any ε > . �

http://www.fixedpointtheoryandapplications.com/content/2013/1/106
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Appendix
The following example was given in []. It shows that Theorem . is false if the space
is merely assumed to be pathwise connected rather than rectifiably pathwise connected.
This illustrates another application of the idea of metric transforms.

Example Let (βn)∞n=–∞ be a strictly increasing doubly infinite sequence in (, ). For x, y ∈
[,∞), x≤ y, set

ρ(x, y) =

⎧⎪⎪⎨
⎪⎪⎩

|x – y|βn if x, y ∈ [n,n + ],

|x – (n + )|βn + (p – ) + |(n + p) – y|βn+p
if x ∈ [n,n + ], y ∈ [n + p,n + p + ],p ∈ N.

()

We first observe that (R,ρ) is a metric space (see Proposition . below).

Nowdefine g :R →R
 by setting g(x) = x+. Thismapping is a homeomorphismwhich

is a local contraction for any k ∈ (, ). To see this, suppose x, y ∈ [n,n + ]. Then

ρ
(
g(x), g(y)

)
= |x – y|βn+ ≤ k|x – y|βn = kρ(x, y)

if and only if |x– y|βn+–βn ≤ k. Since βn+ –βn > , this is always true if |x– y| is sufficiently
small; indeed

ρ(x, y) = |x – y|βn ≤ kβn/(βn+–βn) ⇔ |x – y|βn+–βn ≤ k.

To deal with the case x = n > , merely take a neighborhood of x with radius less than
min{kβn/(βn+–βn),kβn+/(βn+–βn+)}.
Notice that the mapping of the above example is even locally contractive in the sense

of Rakotch [], but it is fixed-point-free. We note also that the space (R,ρ) is topologi-
cally equivalent to R

 with its usual metric. In particular (R,ρ) is complete, connected,
and locally connected. (A space X is said to be locally connected if given any x ∈ X, each
neighborhood U of x contains a connected neighborhood V of x.)
The technique of the example is a special case of ‘gluing’ of metric spaces (see, e.g., [,

p.]). Specifically, we use the following fact, which is a special case of Lemma . of [].

Proposition . Suppose (M,d) and (M,d) are metric spaces with M ∩M = {u}. For
x, y ∈ X :=M ∪M set

ρ(x, y) = di(x, y) if x, y ∈Mi, i = , ;

ρ(x, y) = d(x,u) + d(u, y) if x ∈M, y ∈M.

Then (X,ρ) is a metric space.

We now observe that for each n ∈ Z and βn ∈ (, ), the metric transform φn(t) = tβn

induces a metric on the interval [n,n + ]. The metric space (R,ρ) is obtained by simply
‘gluing’ the consecutive intervals at their common endpoints and applying Proposition .
inductively. This results in the metric defined by ().
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