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Abstract

Recently, Colao et al. (J Math Anal Appl 344:340-352, 2008) introduced a hybrid
viscosity approximation method for finding a common element of the set of
solutions of an equilibrium problem and the set of fixed points of a finite family of
nonexpansive mappings in a real Hilbert space. In this paper, by combining Colao,
Marino and Xu's hybrid viscosity approximation method and Yamada's hybrid
steepest-descent method, we propose a hybrid iterative method for finding a
common element of the set GMEP of solutions of a generalized mixed equilibrium

problem and the set ﬂNl Fix (S;) of fixed points of a finite family of nonexpansive
1=
mappings {Si}f\:’1 in a real Hilbert space. We prove the strong convergence of the

N
proposed iterative algorithm to an element of ﬂ ) Fix (S;) N GMEP, which is the
1=

unique solution of a variational inequality.
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1 Introduction
The theory of equilibrium problems has played an important role in the study of a
wide class of problems arising in economics, finance, transportation, network and
structural analysis, elasticity and optimization, and has numerous applications, includ-
ing but not limited to problems in economics, game theory, finance, traffic analysis,
circuit network analysis and mechanics. The ideas and techniques of this theory are
being used in a variety of diverse areas and proved to be productive and innovative. It
is remarkable that the variational inequalities and mathematical programming pro-
blems can be viewed as a special realization of the abstract equilibrium problems [1,2].
Let H be a real Hilbert space. Throughout this paper, we write x,—~ x to indicate that
the sequence {x,} converges weakly to x. The x,, > «x indicates that {x,} converges
strongly to x. Let C be a nonempty closed convex subset of H and @ be a bifunction
of C x C into R, where R is the set of real numbers. The equilibrium problem for ©:
C x C— Ris to find x € C such that
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Ok y)>0, VyeC. (1.1)

The set of solutions of problem (1.1) is denoted by EP(®). Given a mapping T: C — H,
let @ (x, y) = (Tx, y - x) for all x, ye C. Then, ze EP(O) if and only if (7%, y - z) > 0 for
all y e C. Numerous problems in physics, optimization, and economics reduce to finding
a solution of problem (1.1). Equilibrium problems have been studied extensively [2-18].
Combettes and Hirstoaga [3] introduced an iterative scheme for finding the best approx-
imation to the initial data when EP(®) is nonempty and derived a strong convergence
theorem. Very recently, Peng and Yao [4] introduced the following generalized mixed
equilibrium problem of finding x € C such that

Ox, y) +o(y) —¢(x) +(Ax,y —X) = 0, VyeC, (1.2)

where A: H — H is a nonlinear mapping, ¢: C — R is a function and ®: C x C - R
is a bifunction. The set of solutions of problem (1.2) is denoted by GMEP.

In particular, whenever A = 0, problem (1.2) reduces to the following mixed equili-
brium problem of finding x € C such that

O y)+o(y) —¢(x) >0, VyeC,

which was considered by Ceng and Yao [5]. The set of solutions of this problem is
denoted by MEP.

Whenever ¢ = 0, problem (1.2) reduces to the following generalized equilibrium pro-
blem of finding x € C such that

O, y)+ (Ax,y —X) >0, WyeC, (1.3)

which was introduced and studied by Takahashi and Takahashi [13]. The set of solu-
tions of problem (1.3) is denoted by GEP. Obviously, the generalized equilibrium problem
covers the equilibrium problem as a special case. It is assumed in [4] that @: C xC — R is
a bifunction satisfying conditions (H1)-(H4) and ¢: C — R is a lower semicontinuous and
convex function with restriction (A1) or (A2), where

(H1) © (x, x) = 0, Vx e C;

(H2) @ is monotone, i.e., @ (x, y) + O (y, x) <0, Vx, ye C;

(H3) for each y e C, x ~ O (%, y) is weakly upper semicontinuous;

(H4) for each x € C, y » O (%, y) is convex and lower semicontinuous;

(A1) for each x € H and r > 0, there exist a bounded subset D, € C and y, € C such
that for any ze C\ D,

1
Oz 1) +9(r) 9@ + {re—2z-%)<0;

(A2) Cis a bounded set.

It is worth pointing out that, related iterative methods for solving fixed point pro-
blems, variational inequalities and optimization problems can be found in [19-35].

Recall that a p-Lipschitzian mapping T C — H is a mapping on C such that

[Tx=Tyll<pllx=yll. Vx yeC

where p > 0 is a constant. In particular, if p € [0, 1) then T is called a contraction on
C; if p = 1 then T is called a nonexpansive mapping on C. Denote the set of fixed
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points of T by Fix(7). It is well known that if C is a nonempty bounded closed convex
subset of H and S: C — C is nonexpansive, then Fix(S) = . Let Pc be the metric pro-
jection of H onto C, that is, for every point x € H, there exists a unique nearest point
of C, denoted by Pcx, such that Il x - Pcx Il < Il x - y Il for all y € C. Recall also that a
mapping A of C into H is called

(i) monotone if
(Ax — Ay, x—y) >0, Vx, ye G
(i) n-strongly monotone if there exists a constant 11 > 0 such that

2, Vx, y e C

(Ax—Ay, x—y) = n|x—y
(iii) J-inverse strongly monotone if there exists a constant J >0 such that

(Ax — Ay, x —y) Z6||Ax—Ay 2, Vx, y e C.

Furthermore, let A be a strongly positive bounded linear operator on H, that is, there

exists a constant y > 0 such that

(Ax,x) = 7>, VxeH. (1.4)

1.1 The W-mappings
The concept of W-mappings was introduced in Atsushiba and Takahashi [22]. It is
very useful in establishing the convergence of iterative methods for computing a com-
mon fixed point of nonlinear mappings (see, for instance, [23,25,27]).

Let A, 1, Aup oo Ay, v € (0, 1], m > 1. Given the nonexpansive mappings Sy, Sa,..., Sn
on H, Atsushiba and Takahashi defines, for each n > 1, mappings U, 1, U,,»,.... U, n by

Upi = Ap1S1+ (1 — Ap1)L,
Un,2 = knlezLI,,,l + (1 — )‘«n,Z)L

(1.5)

Upn-1 = Apn—1Sn—1Upn—2 + (1 = Apn-1)],
Wy i=UyN = )\n,NSNUn,N—l + (1 - )bn,N)I-

The W, is called the W-mapping generated by Si,..., Sy and A,,1, 4,2, A,,, - Note
that Nonexpansivity of S; implies the nonexpansivity of W,

Colao et al. [14] introduced an iterative method for finding a common element of
the set of solutions of an equilibrium problem and the set of fixed points of a finite
family of nonexpansive mappings in a real Hilbert space H. Moreover, they proved the
strong convergence of the proposed iterative algorithm.

1.2 Theorem CMX
(See [[14], Theorem 3.1]). Let C be a nonempty closed convex subset of a real Hilbert

space H. Let {S;}¥ be a finite family of nonexpansive mappings on H, A a strongly
positive bounded linear operator on H with coefficient y and f an o-contraction on H
for some o € (0, 1). Moreover, let {¢,} be a sequence in (0, 1), {An,i}ﬁl a sequence in

[a, b] with 0 < a < b <1, {r,} a sequence in (0, ©) and ¥ and B two real numbers such
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that 0 < f<land 0 <y < y/a. Let @: C x C — R be a bifunction satisfying assump-
tions (H1)-(H4) and ﬂﬁlFix(Si) NEP(®) #@. For every n > 1, let W, be the W-map-
ping generated by Si,..., Sy and 4,1, 4,2, Ay, n- Given x; € H arbitrarily, suppose the
sequences {x,; and {u,} are generated iteratively by

O (un, y) + ,IHQ/— U, Un —Xp) >0, VyeC,

Xne1 = Ay f (%) + Bxy + (1 — B — €yA)Wyuy,, VYn>1, (1.6)

where the sequences {e,}, {r,; and the finite family of sequences {)»n,i}f:] , satisfy the
conditions:

(i) lim,, e 0, = 0 and Y o) 0oty =00;

(ii) lim inf,_,., 7, > 0 and lim,_,., 7,,/7,,,1 = 1 (or lim,,_,.. 17, - | = 0);

(iii) lim,, e 1A, ; - A1, 1 = O for every i € {1,.., N}.

Then both {x,} and {u,} converge strongly to x* € ﬂﬁ 1 Fix(S;) N EP(®), which is the

unique fixed point of the composite mapping Pry rix(s)nepe)(l — A + vf), ie.,
X" = Py pi(snep(e) (I — A+ yf)x™

Very recently, Yao et al. [10] relaxed the § in Colao, Marino and Xu's iterative
scheme (1.6) by a sequence of {§8,}. They showed that if with additional condition 0
<lim inf, .. B,, < lim sup,,_,.. B, < 1 holds, then the sequences {x,} and {,} generated
by (1.6) (but now with f, in the place of B) still converge strongly to

x* e NY,Fix(S;) N EP(®), which is the unique fixed point of the composite mapping
Py pix(synepe) (I = A+ ¥f), ie.,

X" = Py pi(snep(e) (I — A+ yf)x™

1.3 Hybrid steepest-descent method

Let F: H — H be a x-Lipschitzian and n-strongly monotone operator with constants &,
n > 0, and let T: H — H be nonexpansive such that Fix(7) = (. Yamada [20] intro-
duced the so-called hybrid steepest-descent method for solving the variational inequal-

ity problem: finding X € Fix(T) such that
(Fx,x — X) > 0, Vx € Fix(T).
This method generates a sequence {x,} via the following iterative scheme:
Xns1 = Txn — A uF(Txy), ¥n =0, (1.7)

where 0 < y <2n/k? the initial guess xo € H is arbitrary and the sequence {4,} in (0,
1) satisfies the conditions:

[e.¢] o0
A — O, Z)‘" = oo and Z [Ape1 — An| < 00.
n=0 n=0
A key fact in Yamada’s argument is that, for small enough A >0, the mapping

T'x :=Tx — AuF(Tx), Vx € H
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is a contraction, due to the x-Lipschitz continuity and n-strong monotonicity of F.

1.4 Our hybrid model
In this paper, assume @: C x C — R is a bifunction satisfying assumptions (H1)-(H4)

and ¢: C — R is a lower semicontinuous and convex function with restriction (A1) or

(A2). Let the mapping A: H — H be d-inverse strongly monotone, and {S;}¥¥, be a

finite family of nonexpansive mappings on H such that N Fix(S;) N GMEP # @. Let F:
H — H be a k-Lipschitzian and 7-strongly monotone operator with constants s, 7 > 0
and f H — H a p-Lipschitzian mapping with constant p > 0. Let 0 < x <21/x* and 0
< ¥ < 7, where 7 = 1 — /1 — (25 — ux?). By combining Yamada’s hybrid steepest-
descent method [20] and Colao, Marino and Xu’s hybrid viscosity approximation
method [14] (see also [10]), we propose the following hybrid iterative method for find-

ing a common element of the set of solutions of generalized mixed equilibrium pro-

N

blem (1.2) and the set of fixed points of finitely many nonexpansive mappings {S;}.;,

that is, for given x; € H arbitrarily, let {x,} and {u,} be generated iteratively by

{ @(un/ }/) + (P(Y) - (p(un) + (AXxp, Y —up) + ,ln()/— Up, Uy — Xu) >0, Vy e C, (1 8)
Xne1 = AnYf(%n) + Buxn + (1 — Bn)] — atnt F)Wyuy, vn>1,

where {a,}, {8,} < (0, 1), {r,} < (0, 2], {An;}Y, C [a,b] With 0 < a < b <1, and W,, is
the W-mapping generated by Sy,.., Sy and 4,1, 4,,2,..., 4, n- We shall prove that under
quite mild hypotheses, both sequences {x,} and {u,} converge strongly to
x* € NN Fix(S;) N GMEP, where X* = Py gix(s,)nomep(I — #F + yf)x* is a unique solu-
tion of the variational inequality:
N

((uF = yf)x*, x* —x) < 0,Vx € [ | Fix(Si) N GMEP. (1.9)
i=1

Compared with Theorem 3.2 of Yao et al. [10], our Theorem 3.1 improves and
extends their Theorem 3.2 [10] in the following aspects:

(i) The contraction f H — H with coefficient p € (0, 1) in [[10], Theorem 3.2] is
extended to the case of general Lipschitzian mapping f on H with constant p = 0.

(ii) The strongly positive bounded linear operator A: H — H with coefficient y > 0
in [[10], Theorem 3.2] is extended to the case of general k-Lipschitzian and 7n-strongly
monotone operator F: H — H with constants s, 1 >0.

(iii) The equilibrium problem in [[10], Theorem 3.2] is extended to the case of gen-
eralized mixed equilibrium problem (1.2). Obviously, the problem (1.2) is more compli-
cated than their problem (1.1).

(iv) The hybrid viscosity approximation method in [[10], Theorem 3.2] (see also
[[14], Theorem 3.1]) is extended to develop our iterative method by virtue of Yamada’s
hybrid steepest-descent method [20].

2 Preliminaries
Let H be a real Hilbert space with inner product {--), and norm Il - Il. Let C be a none-
mpty closed convex subset of H. Recall that the metric (or nearest point) projection
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from H onto C is the mapping Pc: H — C which assigns to each point x € H the
unique point Pcx € C satisfying the property

I x—Pex || = inf || x —y || = d(x, C).
yeC

In order to prove our main results in the next section, we need the following lemmas
and propositions.

Lemma 2.1 (See [36]). Let C be a nonempty closed convex subset of a real Hilbert
space H. Given x € H and z € C, we then have

(i) z=Pxifand onlyif(x -2z y-2z) <0, Vye C

(ii) z = Pex if and only if Il x - z 1> < 1l x - y 11> - ||y—z||2,vye C.

(iii) (Pcx - Pcy, x -y )y 2 Il Pex - Py 112, Vx, ye H.

Consequently, P¢ is nonexpansive and monotone.

Lemma 2.2 (See [5]). Let C be a nonempty closed convex subset of H. Let ©: CxC
— R be a bifunction satisfying conditions (H1)-(H4) and let ¢: C — R be a lower
semicontinuous and convex function. For r >0 and x € H, define a mapping

T . H _ C as follows:
. 1
T ) =ze C: 0@ y) +9(y) —¢(&) + (y—2 2—x) >0, ¥y e C)
T

for all x € H. Assume that either (A1) or (A2) holds. Then the following assertions
hold:

(i)TT(@"")(x) # @ for each x € H and T(®%) is single-valued;

(ii) TT(@"”) is firmly nonexpansive, i.e., for any x, y € H,
(~) 2 (~)
H Ty — Tr(@"’))yn < (T = 1Oy, x —y);

(iii) Fix(T9*)) = MEP(O, )5

(iv) MEP(®, ¢)is closed and convex.

Remark 2.1. If ¢ = 0, then TT(@'W) is rewritten as T?; if ® = 0 additionally, then
T? = Pc.

Lemma 2.3 (See [21]). Let {x,} and {y,} be bounded sequences in a Banach space X
and let {8,} be a sequence in [0, 1] with 0 <lim inf,_,.. B, < lim sup,_,.. 8, < 1. Sup-
pose x,.,1 = (1 - B,)y, +B,x, for all integers n > 0 and lim sup,_,o.(Ily,..1 - ¥l - llx,,1
- %, 1) £ 0. Then, lim,, ., lly, - x, 1l = 0.

Proposition 2.1 (See [[6], Proposition 2.1]). Let C, H, 6, ¢ and Tr((')"/’) be as in

Lemma 2.2. Then the following inequality holds:
® 2 2 -t (6 o ®
HTS((),w)x _ Tt((W)xH < N (Ts((),w)x _ Tt((),q))xl Ts(()"p)x —x)
s

forall s, £ >0 and x € H.
Lemma 2.4 (See [19]). Let {a,} be a sequence of nonnegative numbers satisfying the

condition

apy1 = (1 - (Sn)an + 8,04, Yn > 1,
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where {0,}, {0,} are sequences of real numbers such that

o0
(1) {0,} € [0, 1] and anl 8n = 00, or equivalently,

o0 n
[T(1 =6,):=lim JJ(1—6) =0;
n=1 n—o00,_ 3

(ii) lim sup,_se 6, < 0, or

(ii)” 3,2, 8nou is convergent.

Then lim,,_,.. a,, = 0.

We will need the following result concerning the W-mapping W, generated by S;,...,
Snvand 4,1, A2 Ay, & in (L.5).

Proposition 2.2 (See [23]). Let C be a nonempty closed convex subset of a Banach

space X. Let Sy, S,,..., Sy be a finite family of nonexpansive mappings of C into itself
such that ﬂﬁlFiX(Si) # ¢, and let 4,1, A2, A, n be real numbers such that 0 < 4,, ;
<b<lfori=1,2,.. N. Foranyn > 1,let W, be the W-mapping of C into itself gen-
erated by Sy,..., Sy and 4,,1,..., 4, n . If X is strictly convex, then Fix(W,) = ﬂﬁlFix(Si).

Proposition 2.3 (See [[14], Lemma 2.8]). Let C be a nonempty convex subset of a
Banach space. Let {S;}¥, be a finite family of nonexpansive mappings of C into itself
and {A,}Y, be sequences in [0, 1] such that A, ; —> A; (i = 1,..., N). Moreover for
every integer n > 1, let W and W,, be the W-mappings generated by Si,..., Sy and A,...,

An and Si,..., Sy and A, 1,..., A, n respectively. Then for every x € C, it follows that

lim || W,x — Wx || = 0.

n—oo

The following two lemmas are the immediate consequences of the inner product on
H.
Lemma 2.5. For all x, y € H, there holds the inequality

lx+y]® < %1% + 20, x+).

Lemma 2.6 (See [36]). Forallw, 3, ze Hand o, B, ye [0, 1] witho + B + y =1,
there holds the equality

|ox+ By + vz||* = allxl® + By + vzl — aB|x —y|* = By |y — 2| = yalle — xI%.

The following lemma plays a crucial role in proving strong convergence of our itera-
tive schemes.

Lemma 2.7 (See [[19], Lemma 3.1]). Let A be a number in (0, 1] and let y# > 0. Let F:
H — H be an operator on H such that, for some constants s, n > 0, F is k-Lipschitzian
and 1-strongly monotone. Associating with a nonexpansive mapping 7: H — H, define
the mapping 7" H — H by

T*x := Tx — AuF(Tx), Vx € H.
Then T" is a contraction provided y <21/ that is,

| T =Ty || < (1—At) [x—yl, Vx, y€ H,

where 7 =1 — /1 — u(2n — pk?) € (0, 1].

Page 7 of 19
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Remark 2.2. Put F = %I , where I is the identity operator of H. Then we have y <21/

k% = 4. Also, put 4 = 2. Then it is easy to see that x =5 = ; and

1 1.2
T=1-1—u2n—pm?) = 1—\/1—2(2.2 -2(,))=1
In particular, whenever A >0, we have T"x: = Tx - A\uF(Tx) = (1 - 1) Tx.

3 Iterative scheme and strong convergence
In this section, based on Yamada’s hybrid steepest-descent method [20] and Colao,
Marino and Xu’s hybrid viscosity approximation method [14] (see also [10]), we intro-
duce a hybrid iterative method for finding a common element of the set of solutions of
generalized mixed equilibrium problem (1.2) and the set of fixed points of finitely
many nonexpansive mappings in a real Hilbert space. Moreover, we derive the strong
convergence of the proposed iterative algorithm to a common solution of problem
(1.2) and the fixed point problem of finitely many nonexpansive mappings.

Theorem 3.1. Let C be a nonempty closed convex subset of a real Hilbert space H.
Let ©®: C x C — R be a bifunction satisfying assumptions (H1)-(H4) and ¢: C — R be
a lower semicontinuous and convex function with restriction (A1) or (A2). Let the

mapping A: H — H be d-inverse strongly monotone, and {S;}¥, be a finite family of

nonexpansive mappings on H such that ﬂﬁlFix(Si) NGMEP #@. Let F: H— H be a

k-Lipschitzian and 7n-strongly monotone operator with constants s, 7 >0 and f H —
H a p-Lipschitzian mapping with constant p > 0. Let 0 < u <2n/s> and 0 < Jp < 1,

where 7 =1 — \/1 — u(2n — pk?). Suppose {a,} and {B,} are two sequences in (0, 1),
{r,} is a sequence in (0, 2J] and {kn,i}ﬁl is a sequence in [a, b] with 0 < a < b <1. For
every n > 1, let W,, be the W-mapping generated by Si,..., Sy and A1, Aposeesr Ay, -

Given x; € H arbitrarily, suppose the sequences {x,} and {u,} are generated iteratively
by

{@(un, V) +0(y) — @(un) + (Axn, ¥ — tn) + (Y — Un, Up —x,) >0, vy e C, (3.1)

Xn+1 = a"yf(x") + BXn + ((1 - ﬂn)I - an/'LF)Wnun/ vn>1,

where the sequences {a,}, {B,}, {r,} and the finite family of sequences {An,i}ﬁ | satisfy
the conditions:

(i) lim,, s @, = 0 and Y 2, o = 00;

(i) 0 <lim inf,_,.. B, < lim sup,_,.. B, <1;

(iii) 0 <lim inf, ... r, < lim sup,,_,.. r, <20 and lim,_,.. (1,41 - 1) = 0;

(iv) lim,, yeo Ayy1, i - Ay, ;) =0foralli=1,2,., N.

Then both {x,} and {u,} converge strongly to x* ﬂzl Fix(S;) N GMEP , where

Xt =Py rixsynemer (I — #E +vf)x" is a unique solution of the variational inequality:

N
((uF — yf)x*, x* —x) < 0, Vx € [ | Fix(Si) N GMEP. (3.2)

i=1
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Proof. Let Q= Pﬂfil Fix(s)nGmep - Note that F: H — H is a s-Lipschitzian and 7-

strongly monotone operator with constants s, 1 >0 and f* H — H is a p-Lipschitzian
mapping with constant p > 0. Then, we have

| = uF)x = (1= uF)y|* = [x—y|" = 20—y, Fx—Fy) + i’ Fx = Fy|”
< (1= 2un +p2c?)|x—y|?
(-1 x—y|?

’

where 7 = 1 — /1 — u(2n — jk?), and hence

I QU— uF+yf)(x) = QU —pF+yf)¥) Il <l (I — uF + yf)(x) — (I — uF +yf)(y) I
S U= puFx—=I=pFyl+y I f(x)=f) I
<(A=-7)llx=yl+ypllx—yl
=(1-=(—yp)lx=yl

for all x, y € H. Since 0 < yp < 7 < 1, it is known that 1 - (z - yp) € [0, 1). Therefore,
Q(I - uF + 7f) is a contraction of H into itself, which implies that there exists a unique

element x*e H such that " = Q(I — uF + yf)x" = Py pix(s)nemep(I — wF + yf)x*.
From the definition of T(®#), we know that y, = Tr(f"p)(xn — 1,Ax,). Take
pe le Fix(S;) N GMEP arbitrarily. Since p= Tr(f)"/’)(p — 1Ap) = Sip > A is 0-inverse
1=

strongly monotone and 0 < r, < 29, we deduce that, for any n > 1,

|ua—p|* = ‘ T3 (= rAAxn) — T (p — ruAAp) Hz
< (% = %) = (0 = map)|®
= ||xn — p — ru(Ax, — Ap) ”2 (3.3)
= |n = p|* = 25t — b, Axy — Ap) + 12| Ax, — Ap|?
< ||x,, - p“2 +Tn(rn — 28)||Axn —Ap“2
< = ol

First we will prove that both {x,} and {u,} are bounded.

Indeed, taking into account the control conditions (i) and (ii), we may assume, with-
out loss of generality, that ¢, < 1 - 8, for all # > 1. Now, by Proposition 2.2 we have p
e Fix(W,,).

Then utilizing Lemma 2.7, from (3.1) and (3.3) we obtain

[ %1 —p |l

=l en(vf(xn) — wEp) + Bu(xn — p) + (1 = Bu)I — ctnpt F) Wity — ((1 = Bu)l — ctnt F)Woip ||

<an | vf(oxn) = mFp Il +Bn | %0 —p | + I (1 = Bu)] — €nptF)Wytty — (1 — Bn)] — ctnt FYWnp ||

= | vfn) = wFp | +Bn | X0 = p Il +(1 = Bu) | (I — & wF)Wattw — (I — % wF)Wop |

<=8 = ) Nun —p Il +Bu |l X0 — p Il +orm [ ¥f(xa) — Fp

< (1= B —ont) e —p | +Ba Il 50— p | 4t | 1/ (50) — B | (3.4)
< (X —ont) %0 = p Il +ony I f(en) = f(P) || +an || ¥f(p) — Fp |l

S(T—ant) %0 —p Il +enyp | X0 —p || +an | vf(p) — nFp |

=(1—(z—vyp)an) l xn —p |l +au | f(p) — uFp ||

= (1= (z = yp)an) 30— p Il +(z — yp)a, /O 17

< max{|x, —p |, O

Page 9 of 19
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It follows from (3.4) and induction that

I vf(p) — uFp | L Vi 1

| % —p Il < max{|| xo—p I,
T—yp

Therefore {x,} is bounded. We also obtain that {u,}, {Ax,}, {W,u,} and {f (x,)} are all
bounded. We shall use M to denote the possible different constants appearing in the
following reasoning.

Next, we show that Il x,,; - x,, || = 0.

Indeed, set x,,.,1 = B,x, + (1 - B,)z, for all n > 1. Then from the definition of z, we

obtain
_ _ X2 —Bni1Xne1 _ Xpe1—BpXn
Zn+1 Zn - l_ﬁml 1_,5n
— ns1 yf(xnﬂ )+((1=Bue1 ) [—an1 uF) Wiy 1ty _ anyf(xn)+((1flgn)17anﬂF) Wty
1_,5n+1 1_,5n

12};311 vf(xn) = 13‘3,1 vf (xn) + Wit tinia

= Waitty + %y WEWnty — 550 uFWoertina

b v (o) — mFWaiatina ] + % [WFWaun — yf (xn)]
+ Whaitlne1 — Wty + Wty — Wiy,

It follows that

I Zner = 2n = 1 xner =% I < 550 (v 1 f (%na1) |+ | FWiattina )
+ % (0 I FWaun (| +y 1L f () 1D+ | Wit
— Wttty |+ | Wherttn = Watty || = || %ner — 2 | 3.5)
=250 1 Genen) T+ | FWiatine 1)
+ 0 () FWyun | +y 1 () 1)+ 1 Wasathy — Wty |
+ | sy —tn || = | Xne1 — Xn |l -
From (1.5), since S; and U, ; for all i = 1, 2,.., N are nonexpansive,
” Wn+1un - Wnun ”
= || Apet, NSNUns1,N—1Un + (1 - )\n+l,N)un — An,NSNUpN—1Un — (1 - )\n,N)un Il
< AN — ANt [+ 1| A, NSNUne1,N—1Un — A NSNUn,N—1Un || (3.6)
< AN = A NL It |+ 1 At N(SNUnir N—1Un — SNUnN—1Un) || .

+|)Vn+1,N - )Vn,N| l SNUn,N—lun I

IA

M1, N — AN+ AN | Uner,N—1tn — U n—1up || -

Again, from (1.5),

” UYH»],N*lu"Vl - Un,Nflun ”

= | Anst,N=1SN—1Unst,N—2Un + (1 — Apei,n—1)tn — AaN—1SN-1UnN—2tn — (1 = Apn—1)tn ||

< [neiN=1 = AnN—1] I thn | + | Ans1,N—1SN-1Uns1,N—2Un — An,N—1SN—1UnN—-21n |

< AnsN—1 = AgNat] g [ +Ape,n—1 | SNo1Uns,n—2tn — SN—1UpNn—2uy || (3.7)
+Ans1,N-1 — AnN-1|M

< 2M|Aps1,N-1 = AnN—1l + AnpiN—1 || Unsr,N—2un — U N—2ln ||

=< 2M|)"ﬂ+1,N—1 - )\n,N—ll"' ” UYL+1,N—2un - UVL,N—Zun ” .
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Therefore, we have

” Un+1,N71un — UpN-1Up ”
< 2M|ApsaN—1 — ApN—1| + 2M[Ap N2 — ApN—2 |+ || Unsr,N—3tn — Uy n—3ly ||

<2M Y Dhneri = Anil+ | Uner 1ty — U, 1ty |

N-1
= )Ln+1,lslun + (1 - )\n+1,l)un - )\n,lslun - (1 - )\n,l)un | +2M Z |)\n+1,i - )\n,i|/
i=2
and then
| Upsi,N—1un — Upn_1uy ||
N-1
S A1 — Al un |+ 1 Apsr,1S1un — A1 Sty || +2M Z [Ane1,i — An,il
=2 (3.8)
< 2M Z |}‘n+1,i - }\n,i|-
Substituting (3.8) into (3.6), we have
N-1
| Wattin = Watty | < 2MIAnea N = ANl + 22 NM Y At = Al
i=1

(3.9)
N
=< 2M Z |}‘n+1/i - )Ln,il-

i=1
On the other hand, utilizing the J-inverse strongly monotonicity of A we have

” (xml - TVHleVHl) - (xn - TnAxn) ” = ” Xnse1l — Xn — Thsl (Aan - Axn) + (Tn — Tnsl )Axn ”
< et = X0 = Tar (A =A%) | +fwes = 1l | Axa || (3.10)

< M Xne1 = Xn || +1ner — Tl | Axn I,

Since Uy = Tr(n@/(p) (xn - TnAxn) and Uni1 = rml/(p) (xn+1 - Tn+1Axn+1) we get
I thnsr — un |l
=1 ﬂfﬁ“’ (o1 = Tae1 Axnar) — T (% — 1uAx,) |
= T (ont = Tun1 Axer) = TS (0 — 1aAx) + T (0 — 1aAx) — T (0 — 1Ay |
< T (onet = Te1 A%in) = T (= 1) |+ | Tt (6 — 1) — TS (2 — 1) | (310)
< Fet = Tre1 A1) — (% — 1aAxa) |+ | T (0 — 10AR,) = T (3, — 10AR,) |l
< 1 wer = % [ +rer = 1l 11 A% [+ 1 TS0 (0 — 10An) = T (0 — aAa) I,
Using (3.9) and (3.11) in (3.5), we get
| Zne1 —2n | — Il Xpe1 — %0 |l
< 0 1 Gonen) |+ | FWaattnar 1)+, (0 ) EWatty || +7 1| f(x0) 1)
N
+2M Z [Anet,i — Anil+ | Xne1 — X || +1Tne1 — 1l || Axp ||
i=1
| T (0 — 10Ax) = TS (30 — rnAxn) [ (3.12)
= 1 Conen) | EWnattnn 1)+, () EWatty || 47 1 £(xa) 1)
N
F2M Y et = Rl + s — Tl 1| Axy ||
i=1

+ Tr(,i)l,w(xn TnAxn) (OI(D) (xn - TnAxn) Il .



Ceng et al. Fixed Point Theory and Applications 2012, 2012:92 Page 12 of 19
http://www.fixedpointtheoryandapplications.com/content/2012/1/92

Note that 0 <lim inf,_,., r, < lim sup,,_,. r, <2J and lim,_,., (r,,;1 - 7,) = 0. Then
utilizing Proposition 2.1 we have

Tim | T (6 = raAxa) = T (6 = raAa) I = 0. (3.13)
Consequently, it follows from (3.13) and conditions (i), (iii), (iv) that

limsup (|l zpe1 — 20 | = || Xna1 — Xn 1)
n—00

. Unil
< lim sup{ *
n

o
(I f(xml) |+ | FWyiatine 1) + ! (1 | FWytn || +y |l f(xn) )
— 00 1-— ,Bn+1 1- ﬁn

N
e, o,
F2M Y i = il + et = Tl Ay [+ 1 T (n — rAAx) = T (= rnAAxy) 1}
i=1
= 0.

Hence by Lemma 2.3 we have

lim ||z, —x, || = 0.
n—oo
Consequently
lim || xp1 — % || = lim (1 = B,) [l 20 — xa || = 0. (3.14)
n—o0 n—oo

From (3.11), (3.13), (3.14) and condition (iii) we have

lim | Uns1 — uy [I= 0.
n—0o0

Since x,,,1 = a, Yfix,) + B, + (1 - B - a,uF)W,u,, we have
| — Wity | <l %0 — Xne1 | + || Xpa1 — Watdy ||

<N %0 — o1 | +an | vf (%) — WFWotin || +Bn || X0 — Wati |,
that is
D= Wottn 1= =t [+ " () — e F Wt |
1—Bn 1— B
It follows that

lim || x, — Wyu, ||= 0. (3.15)

n—oo

On the other hand, from (3.3) and (3.4) we get

[ —PII2 <[ = Bo—ant) Nt —p Il +Bn || X0 = p || +an | ¥ (xa) — Fp ||
< (1= Bu— ) [un = p|* + Bullxa — 0> + @ |vf (xn) — eFp)”
<(1-8,— oz,,r)[”xn — p”2 + (1t — 28)||Axn —Ap”2] +/Sonn — pH2
vf(xa) — uFp|’
= (1= ant) %0 = p||* + ralra — 28)(1 = Bu — an7) | Axy — Ap|
+ %0 || yf(xa) — uFpll?
< [otw = p||* + rulra — 28)(1 = Bu — at) || Axy — Ap||* + @ |y () — uFp

a,
4 9n
T

2
’

and hence

(28 — 1) (1 — B — anr)HAxn —Ap||2
vf(xn) — MFp”z
yf(n) — uFp|”.

IA

Joon = oI = s = pl* +

(IFxn =P I+l Xpsr = 1) | X0 — Xnen [+
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Obviously, conditions (i), (ii), (iii) guarantee that o, — 0, 0 <lim inf,_,.. 8, < lim
Sup, e B, < 1 and 0 < lim inf,_,.. r, < lim sup,_,.. , < 26. Thus from Il x,, - x,,., |l

— 0 we conclude that

lim | Ax, —Ap | =0. (3.16)
n—oo
Note that TT(@"” is firmly nonexpansive. Hence we have

J1n = p]?

Tin@lw(xn — TnAxy) — Tr(,.@/w)(P — 1aAp) H2

< ((xn - rnAxn) - (P - TnAP)r Up — P)

L Gon = rAxa) = (0 — raAp) | + [t — £ — | Gon = TuAxa) — (p = 1aAP) — (un — p)|’]
Sl = ol + = 1 = 60 =t — 1 (A — Ap) ]

Ll = o+ un = pI* = I — unll® + 200 (A%, — Ap, x5 — ) — 12| Az — Ap|*],

IA ]

which implies that
2 2
lun =™ < llxn = pI" = llaw — unll® + 270 || Ax — Ap Il Il 2 — ttn | - (3.17)
Therefore, utilizing Lammas 2.5 and 2.7 we deduce from (3.17) that

01 —p]1®

= Jom(yf(xn) = 1EP) + Bu(tn — Wirttn) + (I = @t F)Watty — (I — auptF)Wyp *

|1 = cnst FYWott — (I = ctuttFYWop + Bn (5 — Wat) |* + 20y f (42) = 1P, X1 = p)

(I = et FYWostt — (I — atapt FYWp + B 0 — Wontt| > + 20 |7 () — sFp]| |01 — ]|
[(1 = o) [un = p]| + Bu It = Wt I]* + 20 [ 7 (i) — Fp]| [ 51 —

(= p]| + % = Wit l)* + 20 | () — eFp|| %001 — 1|

= Jun =] + Wxn = Wattall? + 2 [utn = p|| 160 — Wattall + 20 |7 () — wFp|| |01 — ]|

IN TN IA

IA

2 2 2
= ||xn _p” - ”xn - un” +2r ” Axn _Ap ” ” Xn — Un ” +”xn - WnunH

+2 Lty = p | | X0 — Wattn | #2000 | yf(n) — wFp | | Xne1 —p | -
Then we have

2 2
lon — unll® < Joon —pl|” = [%ner = P+ 2 | Axu — Ap I 1l %0 — ||+l — Wittall?
+2 L up—p Il %0 — Wattn || +20 || Vf(xn) —uEp Il Xpe1 —p |l
< xn=p I+ 1 xer =PI I 0 — X (| 427 | Ay — AP || 1| 20—ty |

+ |lxn — "vnun”2 + 2 [l ug = p I Il %0 — Witk || +200 | ¥f(x0) — wFp || || X1 —p |l -
So, from (3.14)-(3.16) and «,, — 0, we have

lim || x, —u, || =0.
n— o0

Since
| Wotiy — i || < | Watky —xn || + |l X0 — un Il
we also have

lim || W,u, —u, | =0.

n—0o0
Next, let us show that

limsup{(uF — yf)x*, x* — x,) <0,

n—oo

Page 13 of 19
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where X* =Py rixsynamep (I — F + vf)x"is a unique solution of the variational

inequality (3.2). To show this, we can choose a subsequence {uy,} of {u,} such that

limsup ((uF — yf)x*, x* — up) = lim ((uF — yf)a", " — uy,).
n—oo 1— 00

Since {uy} is bounded, there exists a subsequence {u;} of {u,} which converges
weakly to w. Without loss of generality, we may assume that U, = w. From ||1W,u,, -
u, Il > 0, we obtain Wyu,, — w. Now we show that w € GMEP. From

Uy = T,(n@’“))(xn — 1,Axy,), we know that

1
@(un/ Y) + QD()/) - (p(un) + (Axn/ V— un) + r ()’ — Up, Up — xn> = 0, Vy eC.

n

From (H2) it follows that

1
(ﬂ(}/) - (p(un) +(Axy, ¥y — Up) + r (Y — Un, Up —Xp) > @(V, un)/ vy e C.

n
Replacing # by n;, we have

Up, — Xn,
"17 "y > O(y, up,), Yy € C. (3.18)

n;

() — @(un,) + (Axn, ¥y — Up,) + (Y — Un,,

Putu, =ty + (1 - )w for all t € (0, 1] and y € C. Then, we have u, € C. So, from
(3.18) we have

(ur — up, Aug) > (U — up, Aug) — o(ug) + @(n,) — (U — Uy, Axy,)
— (e =y, Y + O, up,)

= (U — U, Aty — Aup) + (U — Uy, Aty — Axy) — @(ur) + @ (up,)
)+ O(uy, up,).

(w —u U, X
t e,

Since || un, — Xy, || = 0, we have || Au,, — Axy, [|[— 0. Further, from the monotoni-

city of A, we have (u; — uy,, Au; — Auy,) > 0. So, from (H4), the weakly lower semicon-

n.

—Xn.
. " — 0 and Un, — W, we have
1

tinuity of ¢, !
(u —w, Aug) > —o(u) + o(w) + O(u, w), (3.19)
as i —> o, From (H1), (H4) and (3.19), we also have

0 =0O(uy ue) +@(ur) — o(ue)
<tO(uy, y) + (1 = )O(u, w)+1e(y) + (1 - t)e(w) — ¢(u)
= O (uy, y) + o) — @)l + (1 = 0[O (u, w) + ¢(w) — ¢(u;)]
<tO(u, y) +o(y) — e(u)] + (1 — 1) {u —w, Au)
=[O (ur, y) +o(y) — e(u)] + (1 — )ty —w, Auy),

and hence
0 =<0 (uy, y)+o(y) — @(u) + (1 — )y —w, Auy).
Letting t — 0, we have, for each y € C,

0<0Ow, y)+9) —ew) +(y —w, Aw).

Page 14 of 19
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This implies that w e GMEP.
We shall show w e N, Fix(S;). To see this, we observe that we may assume (by pas-
sing to a further subsequence if necessary)
A = A €(0,1) (k=1,2, ..., N).
Let W be the W-mapping generated by Si,..., Sy and Ay,..., Ay . Then by Proposition
2.3, we have, for every x € H,

Wy, x = Wx. (3.20)

Moreover, from Proposition 2.2 it follows that Fix(W) = N, Fix(S;). Assume that
we ﬂﬁlFix(S,'); then w = Ww. Since w € GMEP, in terms of Il x,, - W,u,, I| - 0 and
Opial’s property of a Hilbert space, we conclude from (3.20) that

liminf || x,, —w || <liminf | x,, — Ww ||
m—o0 m—00
= llmrrllogf(“ Xn, — Wi ti,, | + | Wi, tt, — Wa,w || + | Wy, w — Ww [|)
= liminf || W, u,, — Wy, w ||
m— 00
<liminf || u,, —w ||
m— o0
= liminf | T (x,, — 1y A, ) = T (w = 13, Aw) ||
m— 00
< liminf || (xy, — 7, Axn,) = (W = 1, Aw) ||
= liminf || x,, — w — 1y, (Axn, — Aw) ||
m— 00
<liminf || x,, —w ||,
due to the J-inverse strong monotonicity of A. This is a contradiction. So,
N, N .
we get we ﬂizl Fix(S;). Therefore we ﬂi:l Fix(S;) NGMEP.  Since
x* = Pﬂit’l Fix(Si)ﬂGMEP(I — UF +yf)x", we have
limsup((uF — yf)x*, x* — x,) = limsup{(uF — yf)x*, &* — up)

n—o0 n—oo

lim ((uF — yf)x™*, x* — up,) (3.21)

= {(WF = yf)x",x* —w) < 0.

Finally, we prove that {x,} and {u,} converge strongly to x*. From (3.1), utilizing

Lemmas 2.5 and 2.7 we have

Jnn =]
= Jom(rf(xn) = 1Fx*) + Bu(a — x%) + ((1 = B)] — @it F) Wity — (1 = B)] — anitF) Wox*|)?
[Buen = 2%) + (1 = Bl = et FYWatty — (1 = i)l — et F)Wyec"|
+ 20 (yf(%n) — HEX", xpe1 — x7)
< [Bo o =" 11+ 1| ((1 = B) I — anptF) Wity — ((1 = )l — anuF) W™ ||
+ 200 (yf (%) — LFX", X1 — x7)
< 1Bl =" 11+ 1 (1= Ba) I =, uF)Wotty — (1= % uF)Wox" ||
+20ny (f (%n) — F(&*), Xpa1 — %) + 20 (Y f(6*) — Fx*, X0y — X%)
< [Bu llxn = x* 1 +(1 = Bu) (1= % 7) Il ow =" (I
+ 20y || %0 — & || || Xner — X || +20 (yf(x*) — wFx", X1 — %)

%)

IA

<(1- Oln-[)zwxn _x*”2 + ‘XnJ/P(Hxn e ”2 . ||xn+1 _ x*'
+ 20 (yf(x") — uFx", xpp1 — x7)
- (1 antl - + aayolon = I anyplinn - [

+ 20 (Yf(x*) — wFx™, Xpy1 — x7).
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This implies that

(1- anr)2 +anYp Hxn o ”2 N

2,
||xn+1 —x" ||2 = on (yf(x*) — uFx*, xps1 — x*)

1—anyp T—anyp
2(t — yp)a 2 (o)’ 2
S T e 0 e
n¥YP Anyp
2o
+ " (yf(x*) — uFx*, xpp1 — x*)
1 —onyp
2(r — o 2(r — o
S[l_ ( Vp) n]||Xn_x*||2+ ( )/p) n
1 —anyp 1 —anyp
s (@M £ — uFR®, X — X))
2z-yp) ¥ -y HEX s X1

=(1- SH)Hxn —x* ||2 + 8,00,

where M, = sup{lly, - p”2: n 2 1}, Oy = 2(11:;:,’[;/)/(’1” and
Op = (f‘("fj)f,f; + r,lyp vf(x*) — wFx*, xy,1 —x*). It is easy to see that

o0
8y — 0, anl 8, =00 and limsup,_, 0, < 0. Hence, by Lemma 2.4, the sequence

{x,} converges strongly to x*. Consequently, we can obtain from llx, - u,Il — 0 that
{u,} also converges strongly to x*. This completes the proof. O

Remark 3.1.

(i) The new technique of argument is applied to derive our Theorem 3.1. For
instance, Lemma 2.7 for deriving the convergence of hybrid steepest-descent method
plays an important role in proving the strong convergence of the sequences {x,}, {u,}
in our Theorem 3.1. In addition, utilizing Proposition 2.1 and r,,; - r, = 0 we can

obtain lim || T8 (x, — ruAxs) — TS (x, — raAx,) || = 0.
n—o0

(ii) In order to show w e ﬂﬁlFix(Si), the proof of Theorem 3.2 [10] directly asserts
that lu, - W, u,ll— 0 (n — ) implies || un; — Watin, | > 0 (j = 00) for all n. Actu-
ally, this assertion seems impossible under their assumptions imposed on {An,i}ﬁl.
However, following Colao, Marino and Xu’s Step 7 of the proof in [[14], Theorem 3.1]
and utilizing Proposition 2.3 (i.e., Lemma 2.8 in [14]), we successively derive
w € NY,Fix(S;) by the condition {A,}Y, C [a,b] with 0 < a < b <.

Theorem 3.2. Let C be a nonempty closed convex subset of a real Hilbert space H.
Let A: H — H be J-inverse strongly monotone, @: C x C — R be a bifunction satisfy-
ing assumptions (H1)-(H4) and ¢: C — R be a lower semicontinuous and convex func-
tion with restriction (A1) or (A2) such that GMEP = @. Let F: H —» H be a
r-Lipschitzian and 7n-strongly monotone operator with constants s, 7 >0 and f H —
H a p-Lipschitzian mapping with constant p > 0. Let 0 <  <21/k* and 0 < yp <z,
where 7 =1 — \/1 — n(2n — uk?). Suppose {e,} and {B,} are two sequences in (0, 1)
and {r,} is a sequence in (0, 2J]. Given x; € H arbitrarily, suppose the sequences {x,}
and {u,} are generated iteratively by

O (un, ¥) +9(y) = @(un) + (Axn, ¥ —tp) + (Y = thy, Uy —%a) 20, VyeC,

(3.22)
Xne1 = UV f(%n) + Bnxn + (1 — Bp)] — enuF)u,, VYn>1,

where the sequences {a,,}, {8,}, {r,} satisfy the conditions:
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[e¢]
(i) lim,, . 04,= O'and )~ oy = 00;
(i) 0 <lim inf, _,.. B, < lim sup, _,.. B, <1;
(iii) 0 <lim inf, _,.. r, < lim sup, .. 1, <20 and lim,,_,..(r,,;1 - 1) = 0.

Then both {x,} and {u,} converge strongly to x* € GMEP, where x* = Pgpep(l - uF +

v
Proof. Put Sx = x for all i = 1, 2,..., N and x € H and take the finite family of

sequences {An,i}ﬁl in [a, b] with 0 < a < b <1 such that lim,, ,..(A,,1, ; - 4,, ;) = 0 for
all i = 1, 2,..., N. In this case, the W-mapping W,, generated by Si,..., Sy and 4,, 1,

An2seer A, N » 18 the identity mapping I of H. It is easy to see that all conditions of The-
orem 3.1 are satisfied. Thus, the desired result follows from Theorem 3.1. O

Theorem 3.3. Let H be a real Hilbert space. Let {S;}Y, be a finite family of nonex-

pansive mappings on H such that ﬂﬁlFix(S,—) #@. Let F: H — H be a s-Lipschitzian
and 7-strongly monotone operator with constants x, > 0 and f H — H a p-Lipschit-
zian mapping with constant p > 0. Let 0 < x <2n/x* and 0 < yp < 7, where
T=1-— \/1 — u(2n — puk?). Suppose {a,} and {B,} are two sequences in (0, 1) and
{Ani}Y, is a sequence in [a, b] with 0 < @ < b <1. For every n > 1, let W,, be the W-

mapping generated by Si,..., Sy and 4,1, 4,25, 4, x - Given x; € H arbitrarily, let {x,}
be a sequence generated by

Xn+l = Oln)’f(xn) +Bnxn + (1= Bu)] — aguF)Wixy, Vn=>1,

where the sequences {o,,}, {8,} and the finite family of sequences {An,i}ﬁ , satisfy the
conditions:

(i) lim,,_,., 0t,= 0 and Z:zl oy = 00;

(ii) 0 <lim inf, _,.. B, < lim sup,, .. B, <1;

(ii) lim, yee(Ayyi1, i - Ay, ) = 0 foralli =1, 2,., N.

Then {x,.) converges strongly to x* e NN Fix(S;), where
X" = Py pix(s) (I = wF + yf)x".

Proof. Put C = H and r,, = 1, and take O(x, y) = 0, Ax = 0 and ¢(x) = 0 for all x, y €
H. Then ©: H x H — R is a bifunction satisfying assumptions (H1)-(H4) and ¢: H —
R is a lower semicontinuous and convex function with restriction (A1l). Moreover the
mapping A: H — H is J-inverse strongly monotone for any § > ; In this case, from
Theorem 3.1 we deduce that u,, = x,, 0 <lim inf,_,.. r, < lim sup,_,. r, <20 and

lim, ,.(r,+1 -7,) = 0. Beyond question, all conditions of Theorem 3.1 are satisfied.
Therefore the conclusion follows. O
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