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Abstract

In this article, we give a fixed point theorem for set-valued quasi-contraction maps in
b-metric spaces. This theorem extends, unifies and generalizes several well known
comparable results in the existing literature.

1 Introduction
The Banach contraction principle [1] is a very popular tool in solving existence pro-

blems in many branches of mathematical analysis. This famous theorem can be stated

as follows.

Theorem 1.1. Let (X, d) be a complete metric space and T be a mapping of X into

itself satisfying:

d(Tx,Ty) ≤ kd(x, y), ∀x, y ∈ X, (1:1)

where k is a constant in [0, 1). Then, T has a unique fixed point x* Î X.

A mapping T : X ® X is said to be a quasi-contraction if there exists 0 ≤ q <1 such

that for any x, y Î X,

d(Tx,Ty) ≤ qmax{d(x, y), d(x,Tx), d(y,Ty), d(x,Ty), d(y,Tx)},

In 1974, Ćirić [2] introduced these maps and proved an existence and uniqueness

fixed point theorem.

The study of fixed points for multi-valued contraction maps using the Hausdorff

metric was initiated by Nadler [3] in 1969, who extended the Banach contraction prin-

ciple to set-valued mappings. Since then many authors have studied fixed points for

set-valued maps. The theory of set-valued maps has many applications in control the-

ory, convex optimization, differential equations and economics.

Definition 1.1. Let X be any nonempty set. An element x in X is said to be a a fixed

point of a multi-valued mapping T : X ® 2X if x Î Tx, where 2X denotes the collection

of all nonempty subsets of X.

Let (X, d) be a metric space. Let CB(X) be the collection of all nonempty closed

bounded subsets of X. For A,B ∈ CB(X), define

H(A, B) = max{δ(A, B), δ(B, A)}, (1:2)
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where

δ(A,B) = sup{d(a,B), a ∈ A}, δ(B,A) = sup{d(b,A), b ∈ B} (1:3)

with

d(a,C) = inf{d(a, x), x ∈ C}, C ∈ CB(X). (1:4)

Note that H is called the Hausdorff metric induced by the metric d.

Definition 1.2. Let (X, d) be a metric space. The set-valued map T : X → CB(X) is

said to be a q-set-valued quasi-contraction if there exists 0 ≤ q <1 such that for any x,

y Î X,

H(Tx, Ty) ≤ qmax{d(x, y), d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)}.

Recently, Amini-Harandi [4] proved a set-valued version of the above mentioned

Ćirić’s theorem [2] as follows:

Theorem 1.2. Let (X, d) be a complete metric space. Suppose that T : X → CB(X) is

said to be a q-set-valued quasi-contraction. Assume that q < 1
2, then T has a fixed

point in X, that is, there exists u Î X such that u Î Tu.

In the sequel, the letters R+,N and N
∗ will denote the set of all nonnegative real

numbers, the set of all natural numbers and the set of all positive natural numbers,

respectively.

Some problems, particularly the problem of the convergence of measurable functions

with respect to a measure, lead to a generalization of notion of a metric. Using this

idea, Czerwik [5] presented a generalization of the well known Banachs’s fixed point

theorem [1] in so-called b-metric spaces. Consistent with [5,6], we use the following

notations and definitions.

Definition 1.3. [6]Let X be a nonempty set and s ≥ 1 a given real number. A func-

tion d : X × X → R+ is called a b-metric provided that, for all x, y, z Î X,

(bm-1) d(x, x) = 0,

(bm-2) d(x, y) = d(y, x),

(bm-3) d(x, y) ≤ s(d(x, z) + d(z, y)).

Note that a (usual) metric space is evidently a b-metric space. However, Czerwik

[5,6] has shown that a b-metric on X need not be a metric on X (see also [7-11]. The

following example of Singh and Prasad [12] shows that a b-metric on X need not be a

metric on X.

Example 1.4. Let X = {0, 1, 2} and d(2, 0) = d(0, 2) = m ≥ 2, d(0, 1) = d(1, 2) = d(0,

1) = d(2, 1) = 1 and d(0, 0) = d(1, 1) = d(2, 2) = 0. Then,

d(x, y) ≤ m
2
[d(x, z) + d(z, y)],

for all x, y, z Î X. If m >2, the ordinary triangle inequality does not hold.

An example of a b-metric space was given in [13].

Example 1.5. Let E be a Banach space and 0E be the zero vector of E. Let P be a cone

in E with int(P) ≠ ∅ and ≤ be a partial ordering with respect to P. A mapping d : X ×

X ® E is called a cone metric on the nonempty set X if the following axioms are

satisfied:

(1) 0E ≤ d(x, y) for all x, y Î X and d(x, y) = 0E if and only if x = y;
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(2) d(x, y) = d(y, x), for all x, y Î X;

(3) d(x, y) ≤ d(x, z) + d(z, y), for all x, y, z Î X.

The pair (X, d), where X is a nonempty set and d is a cone metric, is called a cone

metric space.

Notice that in [[14], Lemma 5], if the cone P is normal with a constant K, then the

cone metric d : X × X ® E is continuous, i.e. if {xn}, {yn} are sequences in X with xn ®
x and yn ® y as n ® ∞, then d(xn, yn) ® d(x, y), as n ® ∞.

Let E be a Banach space and P be a normal cone in E with the coefficient of normality

denoted by K. Let D : X × X → R be defined by D(x, y) = ||d(x, y)||, where d : X × X ® E

is a cone metric space. Then (X, D) is a b-metric space with constant s := K ≥ 1.

Moreover, since the topology τd generated by the cone metric d coincides with the topology

τD generated by the b-metric D, (see [[15], Theorem 2.4]), the b-metric D is continuous.

Let (X, d) be a b-metric space. From now on, we keep the same notations given by

(1.2)-(1.4), except that d is a b-metric on X. We cite the following lemmas from Czer-

wik [5,6,9] and Singh et al. [11].

Lemma 1.3. Let (X, d) be a b-metric space. For any A,B,C ∈ CB(X) and any x, y Î
X, we have the following:

(i) d(x, B) ≤ d(x, b) for any b Î B,

(ii) δ(A, B) ≤ H(A, B),

(iii) d(x, B) ≤ H(A, B) for any x Î A,

(iv) H(A, A) = 0,

(v) H(A, B) = H(B, A),

(vi) H(A, C) ≤ s(H(A, B) + H(B, C)),

(vii) d(x, A) ≤ s(d(x, y) + d(y, A)).

Lemma 1.4. Let (X, d) be a b-metric space. Let A and B be in CB(X). Then for each

a >0 and for all b Î B there exists a Î A such that d(a, b) ≤ H(A, B) + a.
Lemma 1.5. Let (X, d) be a b-metric space. For A ∈ CB(X) and x Î X, we have

d(x, A) = 0 ⇔ x ∈ Ā = A.

In this article, we establish the analogous of Theorem 1.2 on a complete b-metric

space. The main theorem extends several well known comparable results in the exist-

ing literature.

2 Main results
We start with the following preliminary lemma which we need in the sequel.

Lemma 2.1. [16]Let (X, d) be a b-metric space and {yn} a sequence in X such that

d(yn+1, yn+2) ≤ γ d(yn, yn+1), n = 0, 1, . . . ,

where 0 ≤ g <1. Then, {yn} is a Cauchy sequence in X provided that sg <1.
Let (X, d) be a b-metric space. Again as in [4], the set-valued map T : X → CB(X) is

said to be a q-set-valued quasi-contraction if for any x, y Î X,

H(Tx, Ty) ≤ qM(x, y), (2:1)

where 0 ≤ q < 1 and

M(x, y) = max
{
d(x, y), d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)

}
.
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Our main result is the following.

Theorem 2.2. Let (X, d) be a complete b−metric space. Suppose that T is a q-set-

valued quasi-contraction. Assume that q < 1
s2+s, then T has a fixed point in X, that is,

there exists u Î X such that u Î Tu.

Proof. Obviously, M(x, y) = 0 if and only if x = y is a fixed point of T. For the rest,

assume that M(x, y) >0 for all x, y Î X.

Take

ε =
1
2

(
1

s2 + s
− q

)
and β = q + ε =

1
2

(
1

s2 + s
+ q

)
.

Since we assumed that q < 1
s2+s, so ε > 0 and 0 < b <1.

Let x0 Î X and x1 Î Tx0. By Lemma 1.4, there must exist x2 Î Tx1 such that

d(x1, x2) ≤ H(Tx0, Tx1) + εM(x0, x1) ≤ qM(x0, x1) + εM(x0, x1) = βM(x0, x1).

Similarly, there exists x3 Î Tx2 such that

d(x2, x3) ≤ H(Tx1, Tx2) + εM(x1, x2) ≤ qM(x1, x2) + εM(x1, x2) = βM(x1, x2).

Thus, by induction there exists a sequence {xn} in X such that xn+1 Î Txn and

d(xn, xn+1) ≤ H(Txn−1,Txn) + εM(xn−1, xn) ≤ βM(xn−1, xn) foralln ∈ N
∗.

Set dn = d(xn, xn+1). We have

dn = d(xn, xn+1) ≤ βM(xn−1, xn). (2:3)

Assume for some n ∈ N, xn = xn+1, then xn Î Txn, so the proof is completed. For the

rest, for each n assume that dn ≠ 0.

On the other hand, for any n ∈ N
∗

M(xn−1, xn) = max {d (xn−1, xn) , d (xn−1, Txn−1) , d (xn, Txn) , d (xn−1, Txn) , d (xn, Txn−1)}
≤ max {d (xn−1, xn) , d (xn−1, xn) , d (xn, xn+1) , d (xn−1, xn+1) , d (xn, xn)}
= max {dn−1, dn−1, dn, d (xn−1, xn+1) , 0}
≤ max {dn−1, dn, s (dn−1 + dn)} .

If for some n ∈ N
∗, max{dn-1, dn, s(dn-1 + dn)} = dn, then from (2.3) we find that 0 <

dn ≤ bdn, which is a contradiction with respect to 0 < b <1. We deduce

max {dn−1, dn, s (dn−1 + dn)} = max{dn−1, s(dn−1 + dn)}.

Therefore, (2.3) becomes

dn ≤ β max
{
dn−1, s(dn−1 + dn)

}
.

Put

γ = max
{
β ,

sβ
1 − sβ

}
.

Thus

dn ≤ γ dn−1, ∀n ∈ N
∗. (2:4)
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Having in mind s ≥ 1, β = 1
2

( 1
s2+s + q

)
and q < 1

s2+s, so it is easy that

γ s < 1. (2:5)

Therefore, by (2.4), (2.5) and Lemma 2.1, the sequence {xn} is Cauchy in (X, d). Since

the b-metric space (X, d) is complete, so there exists u Î X such that

lim
n→+∞ d(xn, u) = 0. (2:6)

We claim that u Î Tu, that is, u is a fixed point of T. From (2.1), we have

H(Txn, Tu ) ≤ qM(xn, u),

where

M(xn, u) = max
{
d(xn, u), d(xn,Tu), d(u,Tu), d(xn,Tu), d(u,Txn)

}
≤ max

{
d(xn, u), d(xn,Tu), d(u,Tu), d(xn,Tu), d(u, xn+1)

}
.

From (2.4), we may write dn ≤ gnd0 for each n. Since g <1, we have

lim
n→+∞ dn =: d(xn, xn+1) = 0.

The condition (rm-3) yields d(xn+1, u) ≤ s(d(xn+1, xn) + d(xn, u)), so

lim
n→+∞ d(xn+1, u) = 0. (2:7)

Again, by Lemma 1.3, d(xn, Tu) ≤ s(d(xn, u) + d(u, Tu), then letting n ® +∞ and

using (2.4), we get

lim sup
n→+∞

d(xn, Tu) ≤ s d(u, Tu). (2:8)

By (2.6)-(2.8), letting n ® +∞, we get

lim sup
n→+∞

M(xn, u) ≤ s d(u, Tu), (2:9)

Moreover, since xn+1 Î Txn, hence d(xn+1, Tu) ≤ H(Txn, Tu). Again, because d(u, Tu)

≤ s(d(u, xn+1) + d(xn+1, Tu), so

1
s d(u,Tu) ≤ d(xn+1, u) + d(xn+1,Tu)

≤ d(xn+1, u) +H(Txn,Tu)

≤ d(xn+1, u) + qM(xn, u).

Letting n ® +∞ and using (2.4) and (2.9), we find

1
s
d(u, Tu) ≤ qsd(u, Tu).

This leads to

d(u, Tu) ≤ qs2d(u, Tu). (2:10)

But, since q < 1
s2+s, so qs2 <1, hence (2.10) is true unless d(u, Tu) = 0. From Lemma

1.5, we deduce that u Î Tu because that Tu is a closed subset in X. This completes

the proof of Theorem 2.2.

Remark 2.1. Taking s = 1 in Theorem 2.2 (it corresponds to the case of metric

spaces), the condition on q becomes q < 1
2, so we find Theorem 1.2 of Amini-Harandi.
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Hence, Theorem 2.2 is an extension of the result of Amini-Harandi [4], which itself

improves Theorem 3.3 of Daffer and Kaneko [17]and Corollary 3.3 of Rouhani and

Moradi [18].

In 2008, Singh et al. [16] obtained the following result.

Theorem 2.3. Let (X, d) be a complete b-metric space. Take 0 < q <1 and 0 < k <1

with α = max
{
q1−k, sq1−k

2−sq1−k

}
. Suppose that T : X → CB(X) such that

H(Tx, Ty) ≤ qmax
{
d(x, y), d(x, Tx), d(y, Ty),

1
2
[d(x, Ty) + d(y, Tx)]

}
(2:11)

for all x, y Î X. Assume that sq1-k <1 and as <1. Then, T has a fixed point in X, that

is, there exists u Î X such that u Î Tu.

Remark 2.2. Note that

1
2
[d(x, Ty) + d(y, Tx)] ≤ max{d(x, Ty), d(y, Tx)},

so each mapping satisfying (2.11) is also a q-set-valued quasi-contraction. Note that

Ćirić [19]was the first who studied the contraction (2.11) for single-valued mappings in

a metric space. If we take the parameters 0 < k <1 and 0 < q <1 such that

k <
ln 2

ln(s2 + s)
and q <

1
s2 + s

,

it is easy to get sq1-k <1 and as <1 where a is given by Theorem 2.3. Therefore, in this

case Theorem 2.2 improves Theorem 2.3.

Remark 2.3. Theorem 2.2 is a partial reply to a question proposed by Singh et al.

[[16], p. 412].

In the case where T : X ® X is a q-single-valued quasi-contraction on a b-metric

space, we have the following corollary (it is a consequence of Theorem 2.2).

Corollary 2.4. Let (X, d) be a b-metric space and T : X ® X. Suppose there exists 0 ≤

q <1 such that

d(Tx, Ty) ≤ qmax{d(x, y), d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)}.

Assume that q < 1
s2+s, then T has a fixed point, that is, there exists u Î X such that u

= Tu.

Proof. It follows by applying Theorem 2.2 and the fact that H(Tx, Ty) = d(Tx, Ty) for

each x, y Î X. □
Remark 2.4. Taking s = 1 in Corollary 2.4, we find the result of Ćirić [2].

Now, we give some examples illustrating our results.

Example 2.1. Let X = 0[1]and d(x, y) = |x − y|2 for all x, y Î X. It is obvious that d

is a b-metric on X with s = 2 and (X, d) is complete. Also, d is not a metric on X.

Define T : X → CB(X) by

Tx =
{ { 12 , 13 } if0 ≤ x < 1

{ 13 } if x = 1.

We shall check that (2.1) is satisfied for all x, y Î X. Without loss of generality, take x

≤ y. If x = y Î X or x, y Î [0, 1), then Tx = Ty, so H(Tx, Ty) = 0, that is (2.1) holds.

Otherwise for all x < y, (that is 0 ≤ x <1 and y = 1), standard calculations yield that
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H(Tx, Ty) =
1
36

≤ 4
63

=
1
7
.
4
9
= qd(y, Ty) ≤ qM(x, y),

where q = 1
7 < 1

6 = 1
s2+s and M(x, y) is given by (2.2).

We deduce that (2.1) holds for all x, y Î X. All hypotheses of Theorem 2.2 are satis-

fied. Here, 12 are 1
3 are the two fixed points of T.

On the other hand, Nadler’s Theorem [3]is not applicable for Euclidian metric d0(x,

y) = |x − y|. Indeed, let H0 be the Hausdoff metric induced by the metric d0. For x = 5
6

and y = 1, we have

H0(Tx, Ty) =
1
6

>
k
6
= kd0(x, y) for all k ∈ [0, 1).

Also, we couldn’t apply Theorem 1.2 (the main result of Amini-Harandi [4]). Indeed,

take the metric D : X × X ® [0, ∞) given by

D(x, y) =
{
1 if x 	= y
0 if x = y.

Let HD be the Hausdorff metric induced by the metric D. Again, for x = 2
3 and y = 1,

we get that

HD(Tx, Ty) = 1 > λ = λmax{D(x, y), D(x, Tx), D(y, Ty), D(x, Ty), D(y, Tx)} for all λ ∈
[
0,

1
2

)
.

Example 2.2. Let X = [[1], ∞) be equipped with the complete b-metric d(x, y) = |x −

y|2 for all x, y Î X, (s = 2). Define T : X → CB(X) by Tx =
[
1, 1 + x

3

]
for all x Î X.

Also, take q = 1
9. We have

H(Tx, Ty) =
1
9
(x − y)2 = qd(x, y) ≤ qM(x, y),

for all x, y Î X, that is (2.1) holds. All hypotheses of Theorem 2.2 are satisfied and u

= 1 is a fixed point of T .
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