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Abstract

In this article, we utilize the notions of the property (E.A.) and common property (E.
A.) in the setting of modified intuitionistic fuzzy metric spaces to prove a result
interrelating the property (E.A.) with common property (E.A.). Also using the common
property (E.A.), we prove some common fixed point theorems in modified intuition-
istic fuzzy metric spaces satisfying an implicit relation. Some related results are also
derived besides furnishing an illustrative example.
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1 Introduction and preliminaries
The concept of fuzzy set was introduced in 1965 by Zadeh [1]. Since then, with a view

to utilize this concept in topology and analysis, many authors have extensively devel-

oped the theory of fuzzy sets along with their applications (e.g., [2-9], 39). In 1986,

with similar endeavor, Atanassov [10] introduced and studied the concept of intuitio-

nistic fuzzy sets. Using the idea of intuitionistic fuzzy set, a generalization of fuzzy

metric space was introduced by Park [11] which is now known as modified intuitionis-

tic fuzzy metric space wherein notions of continuous t-norm and continuous t-conorm

are employed.

Fixed point theory is one of the most fruitful and effective tools in mathematics

which has enormous applications in several branches of science especially in chaos the-

ory, game theory, theory of differential equations, etc. Intuitionistic fuzzy metric notion

is also useful in modeling some physical problems wherein it is necessary to study the

relationship between two probability functions as noticed in [12]. For instance, it has a

concrete physical visualization in the context of two-slit experiment as the foundation

of E-infinity theory of high energy physics whose details are available in El Naschie in

[13-15]. Since the topology induced by intuitionistic fuzzy metric coincides with the

topology induced by fuzzy metric (see [12]), Saadati et al. [16] reframed the idea of

intuitionistic fuzzy metric spaces and proposed a new notion under the name of modi-

fied intuitionistic fuzzy metric spaces by introducing the idea of continuous t-

representable.
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In 1986, Jungck [17] introduced the notion of compatible mappings in metric spaces

and utilized the same (as a tool) to improve commutativity conditions in common

fixed point theorems. This concept has frequently been employed to prove existence

theorems on common fixed points. In recent past, several authors (e.g., [18-31]) proved

various fixed point theorems employing relatively more general contractive conditions.

However, the study of common fixed points of non-compatible mappings is also

equally interesting which was initiated by Pant [32]. Recently, Aamri and Moutawakil

[33] and Liu et al. [34] respectively, defined the property (E.A.) and common property

(E.A.) and utilize the same to prove common fixed point theorems in metric spaces.

Most recently, Kubiaczyk and Sharma [35] defined the property (E.A.) in Menger PM

spaces and utilize the same to prove results on common fixed points wherein the

authors claim their results for strict contractions which are merely valid upto contrac-

tions. Similar results are also proved by Imdad et al. [23] via common property (E.A).

The aim of this article is to utilize the no tion of the property (E.A.) and common

property (E.A) to prove some common fixed point theorems in modified intuitionistic

fuzzy metric spaces. Our results generalize several previously known results in various

spaces which include results in intuitionistic fuzzy metric spaces and metric spaces.

Some related results are also derived besides furnishing an illustrative example.

Lemma 1.1. [36] Consider the set L* and operation ≤L∗ defined by

L∗ = {(x1, x2) : (x1, x2) ∈ [0, 1]2 and x1 + x2 ≤ 1}

(x1, x2)≤L∗(y1, y2) ⇔ x1 ≤ y1 and x2 ≥ y2, for every (x1, x2), (y1, y2) Î L*. Then

(L∗,≤L∗) is a complete lattice.

Definition 1.1. [10] An intuitionistic fuzzy set Aζ ,η in a universe U is an object

Aζ ,η = {(ζA(u), ηA(u) |u ∈ U)}, where, for all u ∈ U, ζA(u) ∈ [0, 1] and ηA(u) ∈ [0, 1]

are called the membership degree and the non-membership degree, respectively, of

u ∈ Aζ ,η, and furthermore they satisfy ζA(u) + ηA(u) ≤ 1.

For every zi = (xi, yi) Î L*, if ci Î [0,1] such that
∑n

j=1 cj = 1 then it is easy to see that

c1(x1, y1) + · · · + cn(xn, yn) =
n∑
j=1

cj(xj, yj) =

⎛
⎝ n∑

j=1

cjxj,
n∑
j=1

cjyj

⎞
⎠ ∈ L∗.

We denote its units by 0L∗ = (0, 1) and 1L∗ = (1, 0). Classically, a triangular norm * =

T on [0,1] is defined as an increasing, commutative, associative mapping T : [0,1]2 ®
[0,1] satisfying T(1, x) = 1 * x = x, for all x Î [0,1]. A triangular co-norm S = ⋄ is

defined as an increasing, commutative, associative mapping S : [0,1]2 ® [0,1] satisfying

S(0, x) = 0⋄x = x, for all x Î [0,1]. Using the lattice (L∗,≤L∗) these definitions can

straightforwardly be extended.

Definition 1.2. [37] A triangular norm (t-norm) on L* is a mapping T : (L∗)2 → L∗

satisfying the following conditions:

(I) (∀x ∈ L∗)(T (x, 1L∗) = x) (boundary condition),

(II) (∀(x, y) ∈ (L∗)2)(T (x, y) = T (y, x)) (commutativity),

(III) (∀(x, y, z, ) ∈ (L∗)3)(T (x,T (y, z)) = T (T (x, y), z)) (associativity),

(IV) (∀(x, x′, y, y′) ∈ (L∗)4)(x≤L∗x′) and (y≤L∗y′ → T (x, y)≤L∗T (x′, y′)) (monotonic-

ity).
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Definition 1.3. [36,37] A continuous t-norm T on L* is called continuous t-repre-

sentable if and only if there exist a continuous t-norm * and a continuous t-conorm ⋄
on [0,1] such that, for all x = (x1, x2), y = (y1, y2) Î L*,

T (x, y) = (x1 ∗ y1, x2♦y2).

Now, we define a sequence {T n} recursively by {T 1 = T } and
T n(x(1), ..., x(n+1)) = T (T n−1(x(1), ..., x(n)), x(n+1))

for n ≥ 2 and x(i) Î L*.

Definition 1.4. [36,37] A negator on L* is any decreasing mapping N : L∗ → L∗

satisfying N (0L∗) = 1L∗ and N (1L∗) = 0L∗. If N (N (x)) = x, for all x Î L*, then N is

called an involutive negator. A negator on [0,1] is a decreasing mapping N : [0,1] ®
[0,1] satisfying N(0) = 1 and N(1) = 0. Ns denotes the standard negator on [0,1] defined

as (for all x Î [0,1])Ns(x) = 1-x.

Definition 1.5. [16] Let M, N are fuzzy sets from X2 × (0, ∞) to [0,1] such that M(x, y,

t) + N(x, y, t) ≤ 1 for all x, y Î X and t > 0. The 3-tuple (X,MM,N ,T ) is said to be an

intuitionistic fuzzy metric space if X is an arbitrary (non-empty) set, T is a continuous t-

representable and MM,N is a mapping X2 × (0, ∞) ® L* (an intuitionistic fuzzy set, see

Definition 1.1) satisfying the following conditions for every x, y Î X and t, s > 0:

(I) MM,N(x, y, t)>L∗0L∗,

(II) MM,N(x, y, t) = 1L∗ if and only if x = y,

(III) MM,N(x, y, t) = MM,N(y, x, t),

(IV) MM,N(x, y, t + s)≥L∗T (MM,N(x, z, t),MM,N(z, y, s)),

(V) MM,N(x, y, .) : (0,∞, ) → L∗ is continuous.

In this case MM,N is called an intuitionistic fuzzy metric. Here,

MM,N(x, y, t) = (M(x, y, t),N(x, y, t)).

Remark 1.1. [38] In an intuitionistic fuzzy metric space (X,MM,N ,T ),M(x, y, .) is

non-decreasing and N(x, y,.) is non-increasing for all x, y Î X. Hence (X,MM,N ,T ) is

non-decreasing function for all x, y Î X.

Example 1.1. [16] Let (X, d) be a metric space. Denote

T (a, b) = (a1b1,min{a2 + b2, 1}) for all a = (a1, a2) and b = (b1, b2) Î L* and let M and

N be fuzzy sets on X2 × (0, ∞) defined as follows:

MM,N(x, y, t) = (M(x, y, t),N(x, y, t)) =
(

htn

htn +md(x, y)
,

md(x, y)
htn +md(x, y)

)

for all h, m, n, t Î R+. Then (X,MM,N ,T ) is an intuitionistic fuzzy metric space.

Example 1.2. [16] Let X = N. Denote T (a, b) = (max{0, a1 + b1 − 1}, a2 + b2 − a2b2)

for all a = (a1, a2) and b = (b1, b2) Î L* and let M and N be fuzzy sets on X2 × (0, ∞)

defined as follows:

MM,N(x, y, t) = (M(x, y, t),N(x, y, t)) =

⎧⎪⎪⎨
⎪⎪⎩

(
x
y
,
y − x
y

)
if x ≤ y(

y

x
,
x − y

x

)
if y ≤ x

,
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for all x, y Î X and t > 0. Then (X,MM,N ,T ) is an intuitionistic fuzzy metric space.

Definition 1.6. [16] Let (X,MM,N ,T ) be an intuitionistic fuzzy metric space. For t >

0, define the open ball B(x, r, t) with center x Î X and radius 0 <r < 1, as

B(x, r, t) = {y ∈ X : MM,N(x, y, t)>L∗(Ns(r), r)}.

A subset A ⊂ X is called open if for each x Î A, there exist t > 0 and 0 <r < 1 such

that B(x, r, t) ⊆ A. Let τMM,N denote the family of all open subsets of X. τMM,N is called

the topology induced by intuitionistic fuzzy metric.

Note that this topology is Hausdorff (see Remark 3.3 and Theorem 3.5 of [11]).

Definition 1.7. [16] A sequence {xn} in an intuitionistic fuzzy metric space

(X,MM,N ,T ) is called a Cauchy sequence if for each 0 < � < 1 and t > 0, there exists

n0 Î N such that

MM,N(xn, ym, t)>L∗(Ns(ε), ε)

and for each n, m ≥ n0 here Ns is the standard negator. The sequence {xn} is said to

be convergent to x Î X in the intuitionistic fuzzy metric space (X,MM,N ,T ) and

denoted by xn→MM,Nx if MM,N(xn, x, t) → 1L∗ whenever n ® ∞ for every t > 0. An

intuitionistic fuzzy metric space is said to be complete if and only if every Cauchy

sequence is convergent.

Lemma 1.2. [9] Let MM,N be an intuitionistic fuzzy metric. Then, for any

t > 0,MM,N(x, y, t) is non-decreasing with respect to t, in (L∗,≤L∗), for all x, y Î X.

Definition 1.8. [16] Let (X,MM,N ,T ) be an intuitionistic fuzzy metric space. ℳ is

said to be continuous on X × X × (0, ∞) if

lim
n→∞MM,N(xn, yn, tn) = MM,N(x, y, t),

whenever a sequence {(xn, yn, tn)} in X × X × (0, ∞) converges to a point (x, y, t) Î X

× X × (0, ∞), i.e.,

lim
n→∞MM,N(xn, x, t) = lim

n→∞MM,N(yn, y, t) = 1L∗

and lim
n→∞MM,N(x, y, tn) = MM,N(x, y, t).

Lemma 1.3. [16] Let (X,MM,N ,T ) be an intuitionistic fuzzy metric space. Then ℳ

is continuous function on X × X × (0, ∞).

Proof. The proof is similar to that of fuzzy metric space case (see Proposition 1 of

[39]).

Definition 1.9. [16] Let f and g be mappings from an intuitionistic fuzzy metric

space (X,MM,N ,T ) into itself. Then the pair of these mappings is said to be weakly

compatible if they commute at their coincidence point, that is, fx = gx implies that fgx

= gfx.

Definition 1.10. [16] Let f and g be mappings from an intuitionistic fuzzy metric

space (X,MM,N ,T ) into itself. Then the mappings are said to be compatible if

lim
n→∞MM,N(fgxn, gf xn, t) = 1L∗ , ∀t > 0

whenever {xn} is a sequence in X such that

lim
n→∞ f xn = lim

n→∞ gxn = x ∈ X.
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Definition 1.11. Let f and g be mappings from an intuitionistic fuzzy metric space

(X,MM,N ,T ) into itself. Then the mappings are said to be non-compatible if there

exists at least one sequence {xn} in X such that lim
n→∞ f xn = lim

n→∞ gxn = x ∈ X but

lim
n→∞MM,N(fgxn, gf xn, t) �= 1L∗ or non-existent for at least one t > 0.

Proposition 1.1. [16] If self-mappings f and g of an intuitionistic fuzzy metric space

(X,MM,N ,T ) are compatible, then they are weakly compatible.

The converse is not true as seen in following example.

Example 1.3. [16] Let (X,MM,N ,T ) be an intuitionistic fuzzy metric space, where X

= [0,2] and MM,N(x, y, t) =
(

1
t + d(x, y)

,
d(x, y)

t + d(x, y)

)
for all t > 0 and x, y Î X. Denote

T (a, b) = (a1b1,min{a2 + b2, 1}) for all a = (a1, a2) and b = (b1, b2) Î L*. Define self-

maps f and g on X as follows:

f (x) =

{
2 if 0 ≤ x ≤ 1
x
2
if 1 < x ≤ 2

, g(x) =

{
2 if x = 1
x + 3
5

if x �= 1
.

Then we have g1 = f1 = 2 and g2 = f2 = 1. Also gf1 = fg1 = 1 and gf2 = fg2 = 2. Thus

pair (f, g) is weakly compatible. Again, f xn = 1 − 1
4n

, gxn = 1 − 1
10n

. Thus fxn ® 1,

gxn ® 1. Further gf xn =
4
5

− 1
20n

, fgxn = 2. Now

lim
n→∞MM,N(fgxn, gf xn, t) = lim

n→∞MM,N(2,
4
5

− 1
20n

, t)

=

⎛
⎜⎝ t

t +
6
5

,

6
5

t +
6
5

⎞
⎟⎠<L∗1L∗ ∀t > 0.

Hence the pair (f, g) is not compatible.

Motivated by Aamri and Moutawakil [33], we have

Definition 1.12. [16] Let f and g be two self-mappings of an intuitionistic fuzzy

metric space (X,MM,N ,T ). We say that f and g satisfy the property (E.A.) if there

exists a sequence {xn} in X such that

lim
n→∞MM,N(f xn, u, t) = lim

n→∞MM,N(gxn, u, t) = 1L∗

for some u Î X and t > 0.

Example 1.4. [16] Let (X,MM,N ,T ) be an intuitionistic fuzzy metric space, where X

= ℝ and MM,N(x, y, t) =

(
1

t +
∣∣x − y

∣∣ ,
∣∣x − y

∣∣
t +

∣∣x − y
∣∣
)
for every x, y Î X and t > 0. Define

self-maps f and g on X as follows:

fx = 2x + 1, gx = x + 2.

Consider the sequence

{
xn = 1 +

1
n
, n = 1, 2, ....

}
Thus we have

lim
n→∞MM,N(f xn, 3, t) = lim

n→∞MM,N(gxn, 3, t) = 1L∗

for every t > 0. Then f and g satisfy the property (E.A.).
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In the next example, we show that there do exist pairs of mappings which do not

share the property (E.A.).

Example 1.5. [16] Let (X,MM,N ,T ) be an intuitionistic fuzzy metric space, where X

= ℝ and MM,N(x, y, t) =

(
1

t +
∣∣x − y

∣∣ ,
∣∣x − y

∣∣
t +

∣∣x − y
∣∣
)
for every x, y Î X and t > 0. Define

self-maps f and g on X as fx = x + 1, gx = x + 2. In case ∃ a sequence {xn} such that

lim
n→∞MM,N(f xn, u, t) = lim

n→∞MM,N(gxn, u, t) = 1L∗

for some u Î X, then

lim
n→∞MM,N(f xn, u, t) = lim

n→∞MM,N(xn + 1, u, t) = lim
n→∞MM,N(xn, u − 1, t) = 1L∗

and

lim
n→∞MM,N(gxn, u, t) = lim

n→∞MM,N(xn + 2, u, t) = lim
n→∞MM,N(xn, u − 2, t) = 1L∗ ,

so that xn ® u - 1 and xn ® u - 2 which is a contradiction. Hence f and g do not

satisfy the property (E.A.).

Motivated by Liu et al. [34] and Imdad et al. [23,24], we also have

Definition 1.13. Two pairs (f, S) and (g, T) of self-mappings of an intuitionistic fuzzy

metric space (X,MM,N ,T ) are said to satisfy the common property (E.A.) if there exist

two sequences {xn} and {yn} in X such that

lim
n→∞MM,N(f xn, u, t) = lim

n→∞MM,N(Sxn, u, t) = lim
n→∞MM,N(gyn, u, t)

= lim
n→∞MM,N(Tyn, u, t) = 1L∗

for some u Î X and t > 0.

Definition 1.14. [40] Two finite families of self-mappings {fi}mi=1 and {gk}ni=1 of a set X

are said to be pairwise commuting if:

(i) fi fj = fj fi i, j Î {1, 2,...,m},

(ii) gk gl = gl gk k, l Î {1,2,...,n},

(iii) fi gk = gk fi i Î {1,2,...,m} and k Î {1,2,...,n}.

2 Implicit relations
Let Ψ be the set of all continuous functions F(t1, t2,..., t6) : L∗6 → L∗, satisfying the fol-

lowing conditions (for all u, v, 1 Î L*, u = (u1, u2), v = (v1, v2) and 1 = 1L∗ = (1, 0)):

(F1) : for all u, v>L∗0L∗ , F(u, v, u, v, v, u)≥L∗0L∗, or F(u, v, v, u, u, v)≥L∗0L∗, implies that
u≥L∗v.

(F2) : F(u, u, 1, 1, u, u)≥L∗0L∗ implies that u≥L∗1.

Example 2.1. Define F(t1, t2, t3, t 4, t5, t6) = 15t1 - 13t2 + 5t3 - 7t4 + t5 - t6. Then F Î Ψ.

Example 2.2. Define F(t1, t2, t3, t4, t5, t6) = t1 − 1
2
t2 − 5

6
t3 +

1
3
t4 + t5 − t6. Then F Î Ψ.

3 Results
The following lemma is proved to interrelate the property (E.A.) with common prop-

erty (E.A.) in the setting of modified intuitionistic fuzzy metric spaces:

Tanveer et al. Fixed Point Theory and Applications 2012, 2012:36
http://www.fixedpointtheoryandapplications.com/content/2012/1/36

Page 6 of 12



Lemma 3.1. Let A, B, S and T be four self-mappings of a modified IFMS

(X,MM,N ,T ) satisfying the following conditions:

(I) the pair (A, S) (or (B, T)) satisfies the property (E.A.),

(II) A(X) ⊂ T(X) (or B(X) ⊂ S(X)),

(III) B(yn) converges for every sequence yn in X whenever T(yn) converges (or A(xn)

converges for every sequence xn in X whenever S(xn) converges),

(IV) for all x, y Î X, s > 0, F Î Ψ,

F
(
MM,N(Ax,By, s),MM,N(Sx,Ty, s),MM,N(Ty,By, s) ,

MM,N(Sx,Ax, s),MM,N(Ax,Ty, s),MM,N(By, Sx, s)
)≥L∗0L∗ .

(3:1)

Then the pairs (A, S) and (B, T) share the common property (E.A.).

Proof. Since the pair (A, S) enjoys the property (E.A.), there exists a sequence {xn} in

X such that

lim
n→∞Axn = lim

n→∞ Sxn = z, for some z ∈ X,

implying thereby lim
n→∞MM,N(Axn, Sxn, s) = 1L∗. Since A(X) ⊂ T(X), therefore for each

{xn } there exists {yn } in X such that Axn = Tyn. Therefore, lim
n→∞Axn = lim

n→∞ Tyn = z.

Thus, in all we have Axn ® z, Sxn ® z and Tyn ® z. Now, we show that

lim
n→∞MM,N(Byn, z, s) = 1L∗. On using inequality (3.1), we have

F
(
MM,N(Axn,Byn, s),MM,N(Sxn,Tyn, s),MM,N(Tyn,Byn, s),

MM,N(Sxn,Axn, s),MM,N(Axn,Tyn, s),MM,N(Byn, Sxn, s)
) ≥L∗0L∗

which on making n ® ∞, reduces to

F
(
MM,N(z, lim

n→∞ Byn, s), 1L∗ ,MM,N(z, lim
n→∞ Byn, s), 1L∗ ,MM,N( lim

n→∞ Byn, z, s)
)

≥L∗0L∗ .

Using (F1), we get MM,N( lim
n→∞ Byn, z, s) ≥ 1L∗, for all s > 0 so that

MM,N( lim
n→∞ Byn, z, s) = 1L∗, i.e., lim

n→∞ Byn = z which shows that the pairs (A, S) and (B,

T) share the common property (E.A.).

Our next result is a common fixed point theorem via the common property (E.A.).

Theorem 3.1. Let A, B, S and T be four self-mappings of a modified IFMS

(X,MM,N ,T ) satisfying the condition (3.1). Suppose that

(I) the pairs (A, S) and (B, T) share the common property (E.A.) and

(II) S(X) and T(X) are closed subsets of X.

Then the pair (A, S) as well as (B, T) have a coincidence point. Moreover, A, B, S

and T have a unique common fixed point in X provided both the pairs (A, S) and (B,

T) are weakly compatible.

Proof. Since the pairs (A, S) and (B, T) share the common property (E.A.), there exist

two sequences {xn} and {yn} in X such that

lim
n→∞ Axn = lim

n→∞ Sxn = lim
n→∞ Byn = lim

n→∞ Tyn = z, for some z ∈ X.
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Since S(X) is a closed subset of X, therefore lim
n→∞ Sxn = z ∈ S(X). Also, there exists a

point u Î X such that Su = z. Now, we show that MM,N(Au, z, s) = 1L∗. On using

inequality (3.1), we have

F
(
MM,N(Au,Byn, s),MM,N(Su,Tyn, s),MM,N(Tyn,Byn, s),

MM,N(Su,Au, s),MM,N(Au,Tyn, s),MM,N(Byn, Su, s)
)≥L∗0L∗

which on making n ® ∞, reduces to

F
(
MM,N(Au, z, s), 1L∗ , 1L∗ ,MM,N(z,Au, s),MM,N(Au, z, s), 1L∗

)≥L∗0L∗ .

Using (F1), we get MM,N(Au, z, s) ≥ 1L∗, for all s > 0 so that MM,N(Au, z, s) = 1L∗,

that is Au = z = Su. Thus, u is a coincidence point of the pair (A, S).

Since T(X) is a closed subset of X, therefore lim
n→∞ Tyn = z ∈ T(X). Also, there exists a

point w Î X such that Tw = z. Now, we show that MM,N(Bw, z, s) = 1L∗. On using

inequality (3.1), we have

F
(
MM,N(Axn,Bw, s),MM,N(Sxn,Tw, s),MM,N(Tw,Bw, s),

MM,N(Sxn,Axn, s),MM,N(Axn,Tw, s),MM,N(Bw, Sxn, s)
)≥L∗0L∗

which on making n ® ∞, reduces to

F
(
MM,N(z,Bw, s), 1L∗ ,MM,N(z,Bw, s), 1L∗ , 1L∗ ,MM,N(Bw, z, s)

)≥L∗0L∗ .

Using (F1), we get MM,N(z,Bw, s) ≥ 1L∗, for all s > 0 so that MM,N(Bw, z, s) = 1L∗,

that is Bw = z = Tw. Thus, w is a coincidence point of the pair (B, T).

Since Au = Su and the pair (A, S) is weakly compatible, therefore Az = ASu = SAu =

Sz. Now we need to show that z is a common fixed point of the pair (A, S). Now, we

show that MM,N(Az, z, s) = 1L∗. On using inequality (3.1), we have

F
(
MM,N(Az,Bw, s),MM,N(Sz,Tw, s),MM,N(Tw,Bw, s),

MM,N(Sz,Az, s),MM,N(Az,Tw, s),MM,N(Bw, Sz, s)
)≥L∗0L∗

implying thereby

F
(
MM,N(Az, z, s),MM,N(Az, z, s), 1L∗ , 1L∗ ,MM,N(Az, z, s),MM,N(Az, z, s)

) ≥L∗0L∗ .

Using (F2), we get MM,N(Az, z, s) ≥ 1L∗, for all s > 0 so that MM,N(Az, z, s) = 1L∗, that

is Az = z which shows that z is a common fixed point of the pair (A, S).

Also Bw = Tw and the pair (B, T) is weakly compatible, therefore Bz = BTw = TBw

= Tz. Next, we show that z is a common fixed point of the pair (B, T). To accomplish

this, we show that MM,N(Bz, z, s) = 1L∗. On using inequality (3.1), we have

F
(
MM,N(Au,Bz, s),MM,N(Su,Tz, s),MM,N(Tz,Bz, s),

MM,N(Su,Au, s),MM,N(Au,Tz, s),MM,N(Bz, Su, s)
)≥L∗0L∗

or

F
(
MM,N(z,Bz, s),MM,N(z,Bz, s), 1L∗ , 1L∗ ,MM,N(z,Bz, s),MM,N(Bz, z, s)

) ≥L∗0L∗ .

Using (F2), we get MM,N(Bz, z, s) ≥ 1L∗, for all s > 0 so that MM,N(Bz, z, s) = 1L∗, that

is Bz = z which showsthat z is a common fixed point of the pair (B, T). Uniqueness of
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the common fixed point is an easy consequence of the inequality (3.1) (in view of con-

dition (F2)).

Theorem 3.2. The conclusions of Theorem 3.1 remain true if the condition (II) of

Theorem 3.1 is replaced by the following.

(II’) A(X) ⊂ T(X) and B(X) ⊂ S(X).

As a corollary of Theorem 3.2, we can have the following result which is also a var-

iant of Theorem 3.1.

Corollary 3.1. The conclusions of Theorems 3.1 and 3.2 remain true if the condi-

tions (II) and (II’) are replaced by following.

(II”) A(X) and B(X) are closed subset of X provided A(X) ⊂ T(X) and B(X) ⊂ S(X).

Theorem 3.3. Let A, B, S and T be four self-mappings of a modified IFMS

(X,MM,N ,T ) satisfying the condition (3.1). Suppose that

(I) the pair (A, S) (or (B, T)) satisfies the property (E.A.),

(II) A(X) ⊂ T(X) (or B(X) ⊂ S(X)),

(III) B(yn) converges for every sequence yn in X whenever T(yn) converges (or A(xn)

converges for every sequence xn in X whenever S(xn) converges), and

(IV) S(X) (or T(X)) be closed subset of X.

Then the pair (A, S) as well as (B, T) have a coincidence point. Moreover, A, B, S

and T have a unique common fixed point in X provided that the pairs (A, S) and (B,

T) are weakly compatible.

Proof. In view of Lemma 3.1, the pairs (A, S) and (B, T) share the common property

(E.A.), i.e., there exist two sequences {xn} and {yn} in X such that

lim
n→∞ Axn = lim

n→∞ Sxn = lim
n→∞ Byn = lim

n→∞ Tyn = z, for some z ∈ X.

As S(X) is a closed subset of X, on the lines of Theorem 3.1, one can show that the

pair (A, S) has a point of coincidence, say u, i.e., Au = Su. Since A(X) ⊂ T(X) and Au

Î T(X), there exists w Î X such that Au = Tw. Now, we show that

MM,N(Bw, z, s) = 1L∗. On using inequality (3.1), we have

F
(
MM,N(Axn,Bw, s),MM,N(Sxn,Tw, s),MM,N(Tw,Bw, s),

MM,N(Sxn,Axn, s),M(Axn,Tw, s),MM,N(Bw, Sxn, s)
)≥L∗0L∗

which on making n ® ∞, reduces to

F
(
MM,N(z,Bw, s), 1L∗ ,MM,N(z,Bw, s), 1L∗ , 1L∗ ,MM,N(Bw, z, s)

)≥L∗0L∗ .

Using (F1), we get MM,N(z,Bw, s) ≥ 1L∗, for all s > 0, so that MM,N(Bw, z, s) = 1L∗,

that is Bw = z. Hence Bw = z = Tw. Therefore, w is a coincidence point of the pair (B,

T). The rest of the proof can be completed on the lines of Theorem 3.1.

By choosing A, B, S, and T suitably, one can deduce corollaries for a pair as well as

triod of mappings. As a simple we drive the following corollary for a pair of mappings.

Corollary 3.2. Let A and S be two self-mappings of a modified IFMS (X,MM,N ,T )

satisfying the following conditions:
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(I) the pair (A, S) satisfies the property (E.A.) and A(xn) converges for every

sequence {xn} in X whenever S(xn) converges,

(II) S(X) is closed subset of X and

(III) for all x, y Î X, s > 0, F Î Ψ,

F
(
MM,N(Ax,Ay, s),MM,N(Sx, Sy, s),MM,N(Sy,Ay, s),

MM,N(Sx,Ax, s),MM,N(Ax, Sy, s),MM,N(Ay, Sx, s)
) ≥L∗0L∗ .

Then the pair (A, S) has a coincidence point. Moreover, A and S have a unique com-

mon fixed point in X provided that the pair (A, S) is weakly compatible.

As an application of Theorem 3.1, we can have the following result for four finite

families of self-mappings. While proving this result, we utilize Definition 1.14 which is

a natural extension of commutativity condition to two finite families of mappings.

Theorem 3.4. Let {A1, A2,...,Am},{B1, B2,...,Bp},{S1, S2,...,Sn} and {T1, T2,...,Tq} be four

finite families of self-mappings of a modified IFMS (X,MM,N ,T ) with A = A1 A2... Am,

B = B1 B2...Bp, S = S1 S2...Sn and T = T1 T2...Tq satisfying inequality (3.1) and the pairs

(A, S) and (B, T) share the common property (E.A). If S(X) and T(X) are closed subsets

of X, then the pairs (A, S) and (B, T) have a coincidence point each.

Moreover, Ai, Sk, Br and Tt have a unique common fixed point provided the pairs of

families ({Ai}, {Sk}) and ({Br},{Tt}) commute pairwise, where i Î {1,..., m }, k Î {1,...,n },

r Î {1,...,p } and t Î {1,...,q }.

Proof. The proof follows on the lines of Theorem 4.1 due to Imdad and Ali [41] and

Theorem 3.1 due to Imdad et al. [40].

By setting A1 = A2 = ... = Am = A, B1 = B2 = ... = Bp = B, S1 = S2 = ... = Sn = S and

T1 = T2 = ... = Tq = T in Theorem 3.4, we deduce the following:

Corollary 3.3. Let A, B, S and T be four self-mappings of an intuitionistic fuzzy

metric space (X,MM,N ,T ) such that the pairs (Am, Sn) and (Bp, Tq) share the common

property (E.A.) and also satisfy the condition (for all x, y Î X, s > 0, F Î Ψ),

F(MM,N(Amx,Bpy, s),MM,N(Snx,Tqy, s),MM,N(Bpy,Tqy, s),

MM,N(Amx, Snx, s),MM,N(Amx,Tqy, s),MM,N(Snx,Bpy, s))≥L∗0L∗

where m, n, p and q are positive integers. If Sn(X) and Tq(X) are closed subsets of X,

then A, B, S and T have a unique common fixed point provided AS = SA and BT = TB.

Finally, we conclude this article with the following example.

Example 3.1. Let (X,MM,N ,T ) be a modified IFMS, where X = [0, 1],

T (a, b) = (a1b1,min{a2 + b2, 1}) for all a = (a1, a2) and b = (b1, b2) Î L* with

MM,N(x, y, t) =

(
t

t +
∣∣x − y

∣∣ ,
∣∣x − y

∣∣
t +

∣∣x − y
∣∣
)
, t > 0.

Define A, B, S and T by Ax = Bx = 1,

S(x) = T(x) =
{
1, if x ∈ [0, 1] ∩ Q
1
3 , if x /∈ [0, 1] ∩ Q.

Also define

F(t1, t2, t3, t4, t5, t6) = 15t1 − 13t2 + 5t3 − 7t4 + t5 − t6.
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Also, A2(X) = {1} = S2(X) whereas for all x, y Î X and s > 0

F(t1, t2, t3, t4, t5, t6) = 15(1, 0) − 13(1, 0) + 5(1, 0) − 7(1, 0) + (1, 0) − (1, 0)

= (0, 0)≥L∗0L∗ = (0, 1)

or

0 ≥ 0 and 0 ≤ 1 which is always a reality.

This demonstrates the verification of the esteemed implicit function. The remaining

requirements of Corollary 3.3 can be easily verified. Notice that 1 is the unique com-

mon fixed point of A, B, S, and T.

However, this implicit function does not hold for the maps A, B, S, and T in respect

of Theorem 3.1. Otherwise, with x = 0 and y = 1√
2, we get

F(t1, t2, t3, t4, t5, t6) = 15(1, 0)−13

(
t

t + 2
3

,
2
3

t + 2
3

)
+5

(
t

t + 2
3

,
2
3

t + 2
3

)
−7(1, 0)

(
t

t + 2
3

,
2
3

t + 2
3

)
−(1, 0)

which contradicts the definition of L*. Thus Corollary 3.3 is a partial generalization

of Theorem 3.1 and can be situationally useful.
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