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Abstract

In this article, we prove a general common fixed point theorem for two pairs of
weakly compatible self-mappings of a partial metric space satisfying a generalized
Meir-Keeler type contractive condition. The presented theorem extends several well
known results in literature.

1 Introduction
Partial metric spaces were introduced by Matthews [1] to study denotational semantics

of dataflow networks. In fact, (complete) partial metric spaces constitute a suitable fra-

mework to model several distinguished examples of the theory of computation and

also to model metric spaces via domain theory. For example, in the research area of

computer domains and semantics, partial metric spaces have serious applications

potentials (see for example, [2-5]). In 1994, Matthews [1] generalized the Banach con-

traction principle to the class of complete partial metric spaces: a self mapping T on a

complete partial metric space (X, p) has a unique fixed point if there exists 0 ≤ k < 1

such that p(Tx, Ty) ≤ kp(x, y) for all x, y Î X. After the remarkable contribution of

Matthews, many authors have studied on partial metric spaces and its topological

properties (see for example, [1-28]).

In the sequel we recall the notion of a partial metric space and some of its properties

which will be useful later on. A partial metric is a function p : X × X ® [0, ∞) satisfy-

ing the following conditions

(P1) p(x, y) = p(y, x),

(P2) If p(x, x) = p(x, y) = p(y, y), then x = y,

(P3) p(x, x) ≤ p(x, y),

(P4) p(x, z) + p(y, y) ≤ p(x, y) + p(y, z),

for all x, y, z Î X. Then (X, p) is called a partial metric space. If p is a partial metric

p on X, then the function dp : X × X ® [0, ∞) given by

dp(x, y) = 2p(x, y) − p(x, x) − p(y, y)

is a metric on X. Also, each partial metric p on X generates a T0 topology τp on X

with a base of the family of open p-balls {Bp(x, ε) : x Î X, ε > 0}, where Bp(x, ε) = {y Î
X : p(x, y) <p(x, x) + ε} for all x Î X and ε > 0. Similarly, closed p-ball is defined as Bp

[x, ε] = {y Î X : p(x, y) ≤ p(x, x) + ε}.

Aydi and Karapinar Fixed Point Theory and Applications 2012, 2012:26
http://www.fixedpointtheoryandapplications.com/content/2012/1/26

© 2012 Aydi and Karapinar; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

mailto:hassen.aydi@isima.rnu.tn
mailto:hassen.aydi@isima.rnu.tn
http://creativecommons.org/licenses/by/2.0


Definition 1.1. [1,7]Let (X, p) be a partial metric space.

(i) A sequence {xn} in X converges to x Î X whenever lim
n→∞ p(x, xn) = p(x, x),

(ii) A sequence {xn} in X is called Cauchy whenever lim
n,m→∞ p(xn, xm)exists (and

finite),

(iii) (X, p) is said to be complete if every Cauchy sequence {xn} in X converges, with

respect to τp, to a point x Î X, that is, lim
n,m→∞ p(xn, xm) = p(x, x).

(iv) A mapping f : X ® X is said to be continuous at x0 Î X if for each ε > 0 there

exists δ > 0 such that f(B(x0, δ)) ⊂ B(f(x0), ε).

Lemma 1.1. [1,7]Let (X, p) be a partial metric space.

(a) A sequence {xn} is Cauchy if and only if {xn} is a Cauchy sequence in the metric

space (X, dp),

(b) (X, p) is complete if and only if the metric space (X, dp) is complete. Moreover,

lim
n→∞ dp(x, xn) = 0 ⇔ lim

n→∞ p(x, xn) = lim
n,m→∞ p(xn, xm) = p(x, x). (1)

Definition 1.2. [29]Let X be a non empty set and f, g : X ® X. If w = fx = gx, for

some x Î X, then x is called a coincidence point of f and g, and w is called a point of

coincidence of f and g. If w = x, then x is a common fixed point of f and g.

Definition 1.3. [29]Let f and g be two self-maps defined on a non empty set X. Then f

and g are said to be weakly compatible if they commute at every coincidence point.

Recently, Ćirić et al. [17] established a common fixed point result for two pairs of weakly

compatible mappings satisfying generalized contractions on a partial metric space. For

this, denote by F the set of non-decreasing continuous functions � : ℝ ® ℝ satisfying:

(a) 0 <�(t) <t for all t > 0,

(b) the series ∑n≥1 �
n(t) converge for all t > 0.

The result [17] is the following.

Theorem 1.2. Suppose that A, B, S, andT are self-maps of a complete partial metric

space (X, p) such that AX ⊆ TX, BX ⊆ SX and

p(Ax,By) ≤ ϕ(M(x, y)) (2)

for all x, y Î X, where � Î F and

M(x, y) = max
{
p(Sx,Ty), p(Ax, Sx), p(By,Ty),

1
2
[p(Sx,By) + p(Ax,Ty)]

}
.

If one of the ranges AX, BX, TX and SX is a closed subset of (X, p), then

(i) A and S have a coincidence point,

(ii) B and T have a coincidence point.

Moreover, if the pairs {A, S} and {B, T} are weakly compatible, then A, B, T, and S

have a unique common fixed point.

In this manuscript, replacing (2) by some new weaker hypotheses we also establish a

common fixed point result for four self maps satisfying a generalized Meir-Keeler type

contraction on partial metric spaces. Our theorem generalizes several well known

results in the literature.
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2 Main results
The following lemmas will be frequently used in the proofs of the main results.

Lemma 2.1. [6,19]Let (X, p) be a partial metric space. Then

(a) If p(x, y) = 0, then x = y,

(b) If x ≠ y, then p(x, y) > 0.

Lemma 2.2. [6,19]Let (X, p) be a partial metric space and xn ® z with p(z, z) = 0.

Then lim
n→∞ p(xn, y) = p(z, y)for all y Î X.

Now, we are ready to state and prove our main result.

Theorem 2.3. Let A, B, S, and T be the self maps defined on a complete partial

metric space (X, p) satisfying the following conditions:

(C1) AX ⊆ TX and BX ⊆ SX,

(C2) for all ε > 0, there exists δ > 0 such that for all x, y Î X

ε < M(x, y) < ε + δ ⇒ p(Ax,By) ≤ ε, (3)

where M(x, y) = max{p(Sx,Ty), p(Ax, Sx), p(By,Ty), 12 [p(Sx,By) + p(Ax,Ty)]},
(C3) for all x, y Î X with M(x, y) > 0 ⇒ p(Ax, By) <M(x, y),

(C4) p(Ax, By) ≤ max{a[p(Sx, Ty) + p(Ax, Sx) + p(By, Ty)], b[p(Sx, By) + p(Ax, Ty]}

for all x, y Î X, 0 ≤ a < 1
2and 0 ≤ b < 1

2.

If one of the ranges AX, BX, TX, and SX is a closed subset of (X, p), then

(I) A and S have a coincidence point,

(II) B and T have a coincidence point.

Moreover, if A and S, as well as, B and T are weakly compatible, then A, B, S, and T

have a unique common fixed point.

Proof. Let x0 be an arbitrary point in X. Since AX ⊆ TX, there exists x1 Î X such that

Tx1 = Ax0. Since BX ⊆ SX, there exists x2 Î X such that Sx2 = Bx1. Continuing this

process, we can construct sequences {xn} and {yn} in X defined by

y2n = Tx2n+1 = Ax2n, y2n+1 = Sx2n+2 = Bx2n+1 ∀n ∈ N. (4)

Suppose p(y2n, y2n+1) = 0 for some n. Then y2n = y2n+1 implies that Ax2n = Tx2n+1 =

Bx2n+1 = Sx2n+2, so T and B have a coincidence point. Further, if p(y2n+1, y2n+2) = 0 for

some n then Ax2n+2 = Tx2n+3 = Bx2n+1 = Sx2n+2, so A and S have a coincidence point.

For the rest, assume that p(yn, yn+1) ≠ 0 for all n ≥ 0.

If for some x, y Î X, M(x, y) = 0, then we get that Ax = Sx and By = Ty, so we

proved (I) and (II).

If M(x, y) > 0 for all x, y Î X, then by (C3),

p(Ax,By) < M(x, y) for all, x, y ∈ X. (5)

Hence, we have

p(y2p, y2p+1) < M(x2p, x2p+1) =

max
{
p(Sx2p,Tx2p+1), p(Ax2p, Sx2p), p(Bx2p+1,Tx2p+1),

1
2
[p(Sx2p,Bx2p+1) + p(Ax2p,Tx2p+1)]

}

= max
{
p(y2p−1, y2p), p(y2p, y2p−1), p(y2p+1, y2p),

1
2
[p(y2p−1, y2p+1) + p(y2p, y2p)]

}

≤ max
{
p(y2p−1, y2p), p(y2p+1, y2p),

1
2
[p(y2p−1, y2p) + p(y2p, y2p+1)]

}

= max{p(y2p−1, y2p), p(y2p, y2p+1)}
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since

p(y2p−1, y2p+1) + p(y2p, y2p) ≤ p(y2p−1, y2p) + p(y2p, y2p+1).

It is easy that max {p(y2p-1, y2p), p(y2p, y2p+1)} = p(y2p, y2p+1) is excluded. It follows

that

p(y2p, y2p+1) < M(x2p, x2p+1) ≤ p(y2p−1, y2p) for all p ≥ 1. (6)

Similarly, one can find

p(y2p+2, y2p+1) < M(x2p+2x2p+1) ≤ p(y2p+1, y2p) for all p ≥ 0. (7)

We deduce that

p(yn, yn+1) < p(yn−1, yn) for all n ≥ 1.

Thus, {p(yn, yn+1)}∞n=0 is a decreasing sequence which is bounded below by 0. Hence,

it converges to some L Î [0, ∞), that is,

lim
n→∞ p(yn, yn+1) = L. (8)

We claim that L = 0. If L > 0, then from (8), there exist δ > 0 and a natural number

m ≥ 1 such that for each n ≥ m L <d(yn, yn+1) <L + δ. In particular, from this and (6)

L < M(x2m, x2m+1) < L + δ.

Now by using (3), we get that p(Ax2m, Bx2m+1) = p(y2m, y2m+1) ≤ L which is a contra-

diction. Thus, L = 0, that is,

lim
n→∞ p(yn, yn+1) = 0. (9)

We claim that {yn} is a Cauchy sequence in the partial metric space (X, p). From

Lemma 1.1, we need to prove that {yn} is Cauchy in the metric space (X, dp). We

argue by contradiction. Then there exist ε > 0 and a subsequence {yn(i)} of {yn} such

that dp(yn(i), yn(i+1)) > 4ε. Select δ in (C2) as 0 <δ ≤ ε. By definition of the metric dp,

dp(x, y) ≤ 2p(x, y) for all x, y ∈ X,

so p(yn(i), yn(i+1)) > 2ε. Since lim
n→∞ p(yn, yn+1) = 0, hence there exists N Î N such that

p(yn, yn+1) <
δ

6
whenever n ≥ N.

Let n(i) ≥ N. Then, there exist integers m(i) satisfying n(i) <m(i) <n(i + 1) such that

p(yn(i), ym(i)) ≥ ε +
δ

3
.

If not, then by triangle inequality (which holds even for partial metrics)

p(yn(i), yn(i+1)) ≤ p(yn(i), yn(i+1)−1) + p(yn(i+1)−1, yn(i+1))

< ε +
δ

3
+

δ

6
< 2ε,

it is a contradiction. Without loss of generality, we can assume n(i) to be odd. Let m

(i) be the smallest even integer such that
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p(yn(i), ym(i)) ≥ ε +
δ

3
. (10)

Then

p(yn(i), ym(i)−2) < ε +
δ

3
,

and

ε + δ
3 ≤ p(yn(i), ym(i)) ≤ p(yn(i), ym(i)−2) + p(ym(i)−2, ym(i)−1) + p(ym(i)−1, ym(i))

< ε + δ
3 + δ

6 + δ
6 = ε + 2 δ

3 .
(11)

Also, p(yn(i), ym(i)) ≤ M(xn(i)+1, xm(i)+1) < ε + 2 δ
3 + δ

6 < ε + δ, that is,

ε < ε +
δ

3
≤ M(xn(i)+1, xm(i)+1) < ε + δ.

In view of (C2), this yields that p(yn(i)+1, ym(i)+1) ≤ ε. But then

p(yn(i), ym(i)) ≤ p(yn(i), yn(i)+1) + p(yn(i)+1, ym(i)+1) + p(ym(i)+1, ym(i))

<
δ

6
+ ε +

δ

6
= ε +

δ

3
,

which contradicts (10). Hence {yn} is a Cauchy sequence in the metric space (X, dp),

so also in the partial metric (X, p) which is complete. Thus, there exists a point y in X

such that from Lemmas 1.1, 2.2, and (9)

p(y, y) = lim
n→∞ p(yn, y) = lim

n→∞ p(yn, yn) = 0. (12)

This implies that

lim
n→+∞ p(y2n, y) = lim

n→+∞ p(y2n−1, y) = 0. (13)

Thus from (13) we have

lim
n→+∞ p(Ax2n, y) = lim

n→+∞ p(Tx2n+1, y) = 0 (14)

and

lim
n→+∞ p(Bx2n−1, y) = lim

n→+∞ p(Sx2n, y) = 0. (15)

Now we can suppose, without loss of generality, that SX is a closed subset of the par-

tial metric space (X, p). From (15), there exists u Î X such that y = Su. We claim that

p(Au, y) = 0. Suppose, to the contrary, that p(Au, y) > 0.

By (P4) and (C4) we get

p(y,Au) ≤ p(y,Bx2n+1) + p(Au,Bx2n+1) − p(Bx2n+1,Bx2n+1)

≤ p(y,Bx2n+1) + p(Au,Bx2n+1)

≤ p(y,Bx2n+1) + max
{
a[p(y, y2n) + p(Au, y) + p(y2n+1, y2n)] ,

b[p(y, y2n+1) + p(Au, y2n)]
}

≤ p(y,Bx2n+1) + max
{
a[p(y, y2n) + p(Au, y) + p(y2n+1, y2n)] ,

b[p(y, y2n+1) + p(Au, y) + p(y, y2n) − p(y, y)]
}
.
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Letting n ® ∞ in the above inequality and using (12)-(15), we obtain

0 < p(y,Au) ≤ max{ap(Au, y), bp(Au, y)} < p(Au, y)

it is a contradiction since 0 ≤ a < 1
2 < 1 and 0 ≤ b < 1

2 < 1. Thus, by Lemma 2.1, we

deduce that

p(Au, y) = 0 and y = Au. (16)

Since y = Su, then Au = Su, that is, u is a coincidence point of A and S. So we

proved (I).

From AX ⊆ TX and (16), we have y Î TX. Hence we deduce that there exists v Î X

such that y = Tv. We claim that p(Bv, y) = 0. Suppose, to the contrary, that p(Bv, y) >

0. From (C4) and (16), we have

0 < p(y,Bv) = p(Au,Bv) ≤ max
{
a[p(Su,Tv) + p(Au, Su) + p(Bv,Tv)] ,

b[p(Su,Bv) + p(Au,Tv)]
}

= max
{
a[p(y, y) + p(y, y) + p(Bv, y)] ,

b[p(y,Bv) + p(y, y)]
}

= max{ap(Bv, y), bp(Bv, y)}

as y = Su = Au = Tv and p(y, y) = 0. Since 0 ≤ a < 1 and 0 ≤ b < 1, this implies that

p(Bv, y) < p(Bv, y),

which is a contradiction. Then, we deduce that

p(Bv, y) = 0 and y = Bv = Tv, (17)

that is, v is a coincidence point of B and T, then (II) holds.

Since the pair {A, S} is weakly compatible, from (16), we have Ay = ASu = SAu = Sy.

We claim that p(Ay, y) = 0. Suppose, to the contrary, that p(Ay, y) > 0. We have

p(Ay, y) ≤ p(Ay, y2n+1) + p(y2n+1, y)

= p(Ay,Bx2n+1) + p(y2n+1, y)

≤ p(y2n+1, y) + max
{
a[p(Sy,Tx2n+1) + p(Ay, Sy) + p(Bx2n+1,Tx2n+1)] ,

b[p(Sy,Bx2n+1) + p(Ay,Tx2n+1)]
}

= p(y2n+1, y) + max
{
a[p(Ay, y2n) + p(Ay,Ay) + p(y2n+1, y2n)] ,

b[p(Ay, y2n+1) + p(Ay, y2n)]
}
.

Using (12) and (p2), we get letting n ® +∞

0 < p(Ay, y) ≤ max
{
2ap(Ay, y), 2bp(Ay, y)

}
< p(Ay, y)

a contradiction. Then we deduce that

p(Ay, y) = 0 and Ay = Sy = y. (18)

Since the pair {B, T} is weakly compatible, from (17), we have By = BTv = TBv = Ty.

We claim that p(By, y) = 0. Suppose, to the contrary, that p(By, y) > 0, then by (C4)

and (18), we have
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0 < p(y,By) = p(Ay,By) ≤ max
{
a[p(Sy,Ty) + p(Ay, Sy) + p(By,Ty)] ,

b[p(Sy,By) + p(Ay,Ty)]
}

= max
{
a[p(y,By) + p(y, y) + p(By,By)], b[p(y,By) + p(y,By)]

}
≤ max{2a, 2b}p(By, y),

since p(y, y) = 0. Thus, we get

p(y,By) = 0 and By = Ty = y. (19)

Now, combining (18) and (19), we obtain

y = Ay = By = Sy = Ty,

that is, y is a common fixed point of A, B, S, and T with p(y, y) = 0.

Now we prove the uniqueness of a common fixed point. Let us suppose that z Î X is

a common fixed point of A, B, S, and T such that p(z, y) > 0. Using (iv), we get

p(y, z) = p(Ay,Bz)

≤ max
{
a[p(Ay,Bz) + p(Ay,Ay) + p(Bz,Bz)], b[p(Ay,Bz) + p(Az,By)]

}
= max

{
a[p(y, z) + p(y, y) + p(z, z)], 2bp(y, z)

}
≤ max{2a, 2b}p(y, z)) < p(y, z),

which is a contradiction. Then we deduce that z = y. Thus the uniqueness of the

common fixed point is proved. The proof is completed.

Repeating the proof of Theorem 2.3, we get easily the following.

Corollary 2.4. Let A, B, S, and T be the self maps defined on a partial metric space

(X, p) satisfying the following conditions:

(C1) AX ⊆ TX and BX ⊆ SX,

(C2) for all ε > 0, there exists δ > 0 such that for all x, y Î X

ε < M(x, y) < ε + δ ⇒ p(Ax,By) ≤ ε,

where M(x, y) = max{p(Sx,Ty), p(Ax, Sx), p(By,Ty), 12 [p(Sx,By) + p(Ax,Ty)]},
(C3) for all x, y Î X with M(x, y) > 0 ⇒ p(Ax, By) <M(x, y),

(C4) p(Ax, By) <k[p(Sx, Ty) + p(Ax, Sx) + p(By, Ty) + p(Sx, By) + p(Ax, Ty] for all x,

y Î X and 0 ≤ k < 1
3.

If one of AX, BX, SX, or TX is a complete subspace of X, then

(I) A and S have a coincidence point,

(II) B and T have a coincidence point.

Moreover, if A and S, as well as, B and T are weakly compatible, then A, B, S, and T

have a unique common fixed point.

3 Some equivalence statements of Meir-Keeler contraction
Jachymski [30] proved the following important lemma.

Lemma 3.1. Let Qbe a subset of [0, ∞) × [0, ∞). Then the following statements are

equivalent:

(J1) There exists a function δ : (0, ∞) ® (0, ∞) such that for any ε > 0, δ(ε) >ε and

(J1a) sup{δ(s) : s Î (0, ε)} ≥ δ(ε) and

(J1b) (s, t) ∈ Qand 0 ≤ s <δ(ε) imply t <ε.
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(J2) There exist functions b, h : (0, ∞) ® (0, ∞) such that, for any ε > 0, b(ε) >ε, h(ε)
<ε, and (s, t) ∈ Qand 0 ≤ s <b(ε) imply t <h(ε).
(J3) There exists an upper semi continuous function j : [0, ∞) ® [0, ∞) such that j is

non-decreasing, j(s) <s for s > 0, and (s, t) ∈ Qimplies t ≤ j(s).
(J4) There exists a lower-semi continuous function δ : (0, ∞) ® (0, ∞) such that for

any δ is non-decreasing, for any ε > 0, δ(ε) >ε, and (s, t) ∈ Qand 0 ≤ s <δ(ε) imply t <ε.

(J5) There exists a lower-semi continuous function ω : [0, ∞) ® [0, ∞) such that for

any ω is non-decreasing, ω(s) >s for s > 0 and (s, t) ∈ Qimplies w(t) ≤ s.

Theorem 3.2. Let (X, p) be a partial metric space, and S, T, Ai(i Î N) be self-map-

pings on X. For x, y Î X and for i, j Î N, we define

Mij(x, y) =
{
p(Sx,Ty), p(Sx,Aix), p(Ty,Ajy),

[p(Sx,Ajy) + p(Ty,Aix)]

2

}
.

Then the following statements are equivalent.

(JT1) There exists a lower-semi continuous function δ : (0, ∞) ® (0, ∞) such that, for

any ε > 0, δ(ε) >ε and for any x, y Î X and distinct i, j Î N

ε ≤ Mij(x, y) < δ(ε) implies p(Aix,Ajy) < ε.

(JT2) There exists an upper-semi continuous function j : [0, ∞) ® [0, ∞) such that, j
is non-decreasing, j(t) <t, and

p(Aix,Ajy) ≤ φ(Mij(x, y)).

for any x, y Î X and distinct i, j Î N.

(JT3) There exists a lower-semi continuous function ω : [0, ∞) ® [0, ∞) such that, ω

is non-decreasing, ω(s) >s for s > 0, and

ω(p(Aix,Ajy)) ≤ Mij(x, y)

for any x, y Î X and distinct i, j Î N.

Proof. It follows immediately from Lemma 3.1.

Remark 3.1. In Theorem 1.2, Ćirić et al. assumed that the hypothesis p(Ax, By) ≤ j
(M(x, y)) is satisfied for all x, y Î X with j Î F and obtained a common fixed point

result.

In particular from the assumptions on that j, (JT2) holds for A1 = A and A2 = B. So,

by Theorem 3.2, (JT1) holds, that is; for all ε > 0, there exists δ > 0 such that for all x,

y Î X

ε ≤ M(x, y) < ε + δ ⇒ p(Ax,By) < ε, (20)

By Lemma 3.1 of Jachymski [31], (20) implies (as in metric cases) that the conditions

(C2) and (C3) are satisfied, but nothing on the condition (C4). Conversely, in Theorem

2.3 we have assumed that (C2) and (C3) hold, but we added another condition which

is (C4) in order to get a common fixed point result.

Remark 3.2. Theorem 2.3 is the analogous of Theorem 1 of Rana et al. [32]on partial

metrics, except that the conditions (20) and the fact that a, b Î [0, 1], are replaced by

the weaker conditions (C2), (C3) and a, b ∈ [0, 12 ]. The condition on a and b is modified

due to the fact that p(x, x) may not equal to 0 for x Î X. Also, Corollary 2.4 extends

Theorem 2.1 of Bouhadjera and Djoudi [33]on partial metric cases. Note that Theorem
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2.1 in [33]was improved recently by Akkouchi [[34], Corollary 4.4]. Indeed, the Lipschitz

constant k is allowed to take values in the interval [0, 12 ]instead of the case studied in

[33], where the constant k belongs to the smaller interval [0, 13 ].
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