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Abstract

In this article, we introduce the notions of cyclic weaker ϕ ○ �-contractions and
cyclic weaker (ϕ, �)-contractions in complete metric spaces and prove two theorems
which assure the existence and uniqueness of a fixed point for these two types of
contractions. Our results generalize or improve many recent fixed point theorems in
the literature.
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1 Introduction and preliminaries
Throughout this article, by ℝ+, ℝ we denote the sets of all nonnegative real numbers

and all real numbers, respectively, while N is the set of all natural numbers. Let (X, d)

be a metric space, D be a subset of X and f: D ® X be a map. We say f is contractive

if there exists a Î [0,1) such that for all x, y Î D,

d(fx, fy) ≤ α · d(x, y).

The well-known Banach’s fixed point theorem asserts that if D = X, f is contractive

and (X, d) is complete, then f has a unique fixed point in X. It is well known that the

Banach contraction principle [1] is a very useful and classical tool in nonlinear analysis.

In 1969, Boyd and Wong [2] introduced the notion of F-contraction. A mapping f:

X ® X on a metric space is called F-contraction if there exists an upper semi-continu-

ous function F: [0, ∞) ® [0, ∞) such that

d(fx, fy) ≤ �(d(x, y)) for all x, y ∈ X.

Generalization of the above Banach contraction principle has been a heavily investi-

gated branch research. (see, e.g., [3,4]). In 2003, Kirk et al. [5] introduced the following

notion of cyclic representation.

Definition 1 [5]Let X be a nonempty set, m Î N and f: X ® X an operator. Then

X = ∪m
i=1Aiis called a cyclic representation of X with respect to f if

(1) Ai, i = 1, 2,..., m are nonempty subsets of X;

(2) f (A1) ⊂ A2, f (A2) ⊂ A3,..., f (Am-1) ⊂ Am, f (Am) ⊂ A1.
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Kirk et al. [5] also proved the below theorem.

Theorem 1 [5]Let (X, d) be a complete metric space, m Î N, A1, A2,..., Am, closed

nonempty subsets of X and X = ∪m
i=1Ai. Suppose that f satisfies the following condition.

d(fx, fy) ≤ ψ(d(x, y)), for all x ∈ Ai, y ∈ Ai+1, i ∈ {1, 2, ...,m},

where ψ: [0, ∞) ® [0, ∞) is upper semi-continuous from the right and 0 ≤ ψ(t) <t for

t > 0. Then, f has a fixed point z ∈ ∩n
i=1Ai.

Recently, the fixed theorems for an operator f: X ® X that defined on a metric space

X with a cyclic representation of X with respect to f had appeared in the literature.

(see, e.g., [6-10]). In 2010, Pǎcurar and Rus [7] introduced the following notion of cyc-

lic weaker �-contraction.

Definition 2 [7]Let (X, d) be a metric space, m Î N, A1, A2,...,Am closed nonempty

subsets of X and X = ∪m
i=1Ai. An operator f: X ® X is called a cyclic weaker �-contrac-

tion if

(1) X = ∪m
i=1Aiis a cyclic representation of X with respect to f;

(2) there exists a continuous, non-decreasing function �: [0, ∞) ® [0, ∞) with �(t) > 0

for t Î (0, ∞) and �(0) = 0 such that

d(fx, fy) ≤ d(x, y) − ϕ(d(x, y)),

for any x Î Ai, y Î Ai+1, i = 1,2,...,m where Am+1 = A1.

And, Pǎcurar and Rus [7] proved the below theorem.

Theorem 2 [7]Let (X, d) be a complete metric space, m Î N, A1, A2,..., Am closed

nonempty subsets of X and X = ∪m
i=1Ai. Suppose that f is a cyclic weaker �-contraction.

Then, f has a fixed point z ∈ ∩n
i=1Ai.

In this article, we also recall the notion of Meir-Keeler function (see [11]). A function

ϕ: [0, ∞) ® [0, ∞) is said to be a Meir-Keeler function if for each h > 0, there exists δ

> 0 such that for t Î [0, ∞) with h ≤ t <h + δ, we have ϕ (t) <h. We now introduce

the notion of weaker Meir-Keeler function ϕ: [0, ∞) ® [0,∞), as follows:

Definition 3 We call ϕ: [0, ∞) ® [0, ∞) a weaker Meir-Keeler function if for each

h > 0, there exists δ > 0 such that for t Î [0, ∞) with h ≤ t <h + δ, there exists n0 Î N

such that φn0(t) < η.

2 Fixed point theory for the cyclic weaker ϕ ○ �-contractions
The main purpose of this section is to present a generalization of Theorem 1. In the

section, we let ϕ: [0, ∞) ® [0, ∞) be a weaker Meir-Keeler function satisfying the fol-

lowing conditions:

(ϕ1) ϕ(t) > 0 for t > 0 and ϕ (0) = 0;

(ϕ2) for all t Î (0, ∞), {ϕn(t)}nÎN is decreasing;

(ϕ3) for tn Î [0, ∞), we have that

(a) if limn®∞ tn = g > 0, then limn®∞ ϕ (tn) <g, and
(b) if limn®∞ tn = 0, then limn®∞ ϕ (tn) = 0.

And, let �: [0, ∞) ® [0, ∞) be a non-decreasing and continuous function satisfying
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(�1) �(t) > 0 for t > 0 and �(0) = 0;

(�2) � is subadditive, that is, for every μ1, μ2 Î [0, ∞), �( μ1 + μ2) ≤ �(μ1) + �(μ2);

(�3) for all t Î (0, ∞), limn®∞ tn = 0 if and only if limn®∞ �(tn) = 0.

We state the notion of cyclic weaker ϕ ○ �-contraction, as follows:

Definition 4 Let (X, d) be a metric space, m Î N, A1, A2,..., Am nonempty subsets of

X and X = ∪m
i=1Ai. An operator f: X ® X is called a cyclic weaker ϕ ○ �-contraction if

(i) X = ∪m
i=1Aiis a cyclic representation of X with respect to f;

(ii) for any x Î Ai, y Î Ai+1, i = 1, 2,..., m,

ϕ(d(fx, fy)) ≤ φ(ϕ(d(x, y))),

where Am+1 = A1.

Theorem 3 Let (X, d) be a complete metric space, m Î N, A1, A2, ..., Am nonempty

subsets of X and X = ∪m
i=1Ai. Let f: X ® X be a cyclic weaker ϕ ○ �-contraction. Then, f

has a unique fixed point z ∈ ∩m
i=1Ai.

Proof. Given x0 and let xn+1 = fxn = fn+1x0, for n Î N∪{0}. If there exists n0 Î N ∪ {0}

such that xn0+1 = xn0, then we finished the proof. Suppose that xn+1 ≠ xn for any n Î N

∪ {0}. Notice that, for any n > 0, there exists in Î {1,2,...,m} such that xn−1 ∈ Ain and

xn ∈ Ain+1. Since f: X ® X is a cyclic weaker ϕ ○ �-contraction, we have that for all

n Î N

ϕ(d(xn, xn+1)) = ϕ(d(f xn−1, f xn))

≤ φ(ϕ(d(xn−1, xn))),

and so

ϕ(d(xn, xn+1)) ≤ φ(ϕ(d(xn−1, xn)))

≤ φ(φ(ϕ(d(xn−2, xn−1))) = φ2(ϕ((d(xn−2, xn−1)))

≤ . . . . . .

≤ φn(ϕ(d(x0, x1))).

Since {ϕn(�(d(x0, x1)))}nÎN is decreasing, it must converge to some h ≥ 0. We claim

that h = 0. On the contrary, assume that h > 0. Then by the definition of weaker

Meir-Keeler function ϕ, there exists δ > 0 such that for x0, x1 Î X with h ≤ �(d(x0,

x1)) <δ + h, there exists n0 Î N such that φn0(ϕ(d(x0, x1))) < η. Since limn®∞ ϕn (�(d

(x0, x1))) = h, there exists p0 Î N such that h ≤ ϕp (�(d(x0, x1)) <δ + h, for all p ≥ p0.

Thus, we conclude that φp0+n0 (ϕ(d(x0, x1))) < η. So we get a contradiction. Therefore

limn®∞ ϕn (�(d(x0, x1))) = 0, that is,

lim
n→∞ ϕ(d(xn, xn+1)) = 0.

Next, we claim that {xn} is a Cauchy sequence. We claim that the following result

holds:

Claim: for each ε > 0, there is n0(ε) Î N such that for all p, q ≥ n0(ε),

ϕ(d(xp, xq)) < ε, (∗)
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We shall prove (*) by contradiction. Suppose that (*) is false. Then there exists some

ε > 0 such that for all n Î N , there are pn, qn Î N with pn >qn ≥ n satisfying:

(i) ϕ(d(xpn , xqn)) ≥ ε, and

(ii) pn is the smallest number greater than qn such that the condition (i) holds.

Since

ε ≤ ϕ(d(xpn , xqn))

≤ ϕ(d(xpn , xpn−1) + d(xpn−1, xqn))

≤ ϕ(d(xpn , xpn−1)) + ϕ(d(xpn−1, xqn))

≤ ϕ(d(xpn , xpn−1)) + ε,

hence we conclude limp→∞ϕ(d(xpn , xqn)) = ε. Since � is subadditive and nondecreas-

ing, we conclude

ϕ(d(xpn , xqn)) ≤ ϕ(d(xpn , xqn+1) + d(xpn+1, xqn))

≤ ϕ(d(xpn , xqn+1)) + ϕ(d(xpn+1, xqn)),

and so

ϕ(d(xpn , xqn)) − ϕ(d(xpn , xpn+1)) ≤ ϕ(d(xpn+1, xqn))

≤ ϕ(d(xpn , xpn+1) + d(xpn , xqn))

≤ ϕ(d(xpn , xpn+1)) + ϕ(d(xpn , xqn)).

Letting n ® ∞, we also have

lim
n→∞ ϕ(d(xpn+1, xqn)) = ε.

Thus, there exists i, 0 ≤ i ≤ m - 1 such that pn - qn + i = 1 mod m for infinitely

many n. If i = 0, then we have that for such n,

ε ≤ ϕ(d(xpn , xqn))

≤ ϕ(d(xpn , xpn+1) + d(xpn+1, xqn+1) + d(xqn+1, xqn))

≤ ϕ(d(xpn , xpn+1)) + ϕ(d(xpn+1, xqn+1)) + ϕ(d(xqn+1, xqn))

= ϕ(d(xpn , xpn+1)) + ϕ(d(f xpn , f xqn)) + ϕ(d(xqn+1, xqn))

≤ ϕ(d(xpn , xpn+1)) + φ(ϕ(d(xpn , xqn))) + ϕ(d(xqn+1, xqn)).

Letting n ® ∞. Then by, we have

ε ≤ 0 + lim
n→∞ φ(ϕ(d(xpn , xqn))) + 0 < ε,

a contradiction. Therefore limn→∞ϕ(d(xpn , xqn)) = 0, by the condition (�3), we also

have limn→∞d(xpn , xqn) = 0. The case i ≠ 0 is similar. Thus, {xn} is a Cauchy sequence.

Since X is complete, there exists ν ∈ ∪m
i=1Ai such that limn®∞ xn = ν. Now for all i = 0, 1,

2,..., m - 1, {fxmn-i} is a sequence in Ai and also all converge to ν. Since Ai is clsoed for all

i = 1, 2,..., m, we conclude ν ∈ ∪m
i=1Ai, and also we conclude that ∩m

i=1Ai 
= φ. Since

ϕ(d(ν, fν)) = lim
n→∞ ϕ(d(f xmn, fν))

≤ lim
n→∞ φ(ϕ(d(f xmn−1, ν))) = 0,

Chen Fixed Point Theory and Applications 2012, 2012:17
http://www.fixedpointtheoryandapplications.com/content/2012/1/17

Page 4 of 9



hence �(d(ν, fν)) = 0, that is, d(ν, fν) = 0, ν is a fixed point of f.

Finally, to prove the uniqueness of the fixed point, let μ be another fixed point of f.

By the cyclic character of f, we have μ, ν ∈ ∩n
i=1Ai. Since f is a cyclic weaker ϕ ○ �-con-

traction, we have

ϕ(d(ν,μ)) = ϕ(d(ν, fμ)) = lim
n→∞ ϕ(d(f xmn, fμ))

≤ lim
n→∞ φ(ϕ(d(f xmn−1,μ)))

< ϕ(d(ν,μ)),

and this is a contradiction unless �(d(ν, μ)) = 0, that is, μ = ν. Thus ν is a unique

fixed point of f.

Example 1 Let X = ℝ3 and we define d: X × X ® [0,∞) byd(x,y) = |x1-y1 |+| x2-y2 |+|

x3-y3|, for x = (x1, x2, x3), y = (y1, y2, y3) Î X, and let A = {(x, 0,0):x Î ℝ}, B = {(0,y,0):y

Î ℝ},C = {(0,0, z): z Î ℝ} be three subsets of X. Define f: A ∪ B ∪ C ® A ∪ B ∪ C by

f ((x, 0, 0)) =
(
0,

1
4
x, 0

)
; for all x ∈ R;

f ((0, y, 0)) =
(
0, 0,

1
4
y
)
; for all y ∈ R;

f ((0, 0, z)) =
(
1
4
z, 0, 0

)
; for all z ∈ R.

We define �: [0, ∞) ® [0, ∞) by

φ(t) =
1
3
t for t ∈ [0,∞),

and �: [0, ∞) ® [0, ∞) by

ϕ(t) =
1
2
t for t ∈ [0,∞).

Then f is a cyclic weaker ϕ ○ �-contraction and (0, 0, 0) is the unique fixed point.

3 Fixed point theory for the cyclic weaker (ϕ, �-contractions
The main purpose of this section is to present a generalization of Theorem 2. In the

section, we let ϕ: [0, ∞) ® [0, ∞) be a weaker Meir-Keeler function satisfying the fol-

lowing conditions:

(ϕ1) ϕ (t) > 0 for t > 0 and ϕ(0) = 0;

(ϕ2) for all t Î (0, ∞), {ϕn (t)}nÎN is decreasing;

(ϕ3) for tn Î [0, ∞), if limn®∞ tn = g, then limn®∞ ϕ(tn) ≤ g.

And, let �: [0, ∞) ® [0, ∞) be a non-decreasing and continuous function satisfying

�(t) > 0 for t > 0 and �(0) = 0.

We now state the notion of cyclic weaker (ϕ, �)-contraction, as follows:
Definition 5 Let (X, d) be a metric space, m Î N, A1, A2,..., Am nonempty subsets of

X and X = ∪m
i=1Ai. An operator f: X ® X is called a cyclic weaker (ϕ,�)-contraction if

(i) X = ∪m
i=1Aiis a cyclic representation of X with respect to f;
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(ii) for any x Î Ai, y Î Ai+1, i = 1, 2,..., m,

d(fx, fy) ≤ φ(d(x, y)) − ϕ(d(x, y)),

where Am+1 = A1.

Theorem 4 Let (X, d) be a complete metric space, m Î N, A1, A2,..., Am nonempty

subsets of X and X = ∪m
i=1Ai. Let f: X ® X be a cyclic weaker (ϕ, �)-contraction. Then f

has a unique fixed point z ∈ ∩m
i=1Ai.

Proof. Given x0 and let xn+1 = fxn = fn+1 x0, for n Î N ∪{0}. If there exists n Î N ∪{0}
such that xn0+1 = xn0, then we finished the proof. Suppose that xn+1 ≠ xn for any n Î N

∪ {0}. Notice that, for any n > 0, there exists in Î {1,2,...,m} such that xn−1 ∈ Ain and

xn ∈ Ain+1. Since f: X ® X is a cyclic weaker (ϕ, �)-contraction, we have that n ÎN

d(xn, xn+1) = d(f xn−1, f xn)

≤ φ(d(xn−1, xn)) − ϕ(d(xn−1, xn))

≤ φ(d(xn−1, xn)),

and so

d(xn, xn+1) ≤ φ(d(xn−1, xn))

≤ φ(φ(d(xn−2, xn−1)) = φ2(d(xn−2, xn−1))

≤ . . . . . .

≤ φn(d(x0, x1)).

Since {ϕn (d(x0, x1))}nÎN is decreasing, it must converge to some h ≥ 0. We claim that h =

0. On the contrary, assume that h > 0. Then by the definition of weaker Meir-Keeler func-

tion ϕ, there exists δ > 0 such that for x0, x1 Î X with h ≤ d(x0, x1) <δ + h, there exists n0
Î N such that φn0 (d(x0, x1)) < η. Since limn®∞, ϕ

n (d(x0, x1)) = h, there exists p0 Î N

such that h ≤ ϕp (d(x0, x1)) <δ + h, for all p ≥ p0. Thus, we conclude that

φp0+n0 (d(x0, x1)) < η. So we get a contradiction. Therefore limn®∞ ϕn(d(x0, x1)) = 0, that is,

lim
n→∞ d(xn, xn+1) = 0.

Next, we claim that {xn} is a Cauchy sequence. We claim that the following result holds:

Claim: For every ε > 0, there exists n Î N such that if p, q ≥ n with p-q = 1 mod m,

then d(xp, xq) <ε.

Suppose the above statement is false. Then there exists � > 0 such that for any n ÎN,

there are pn, qn Î N with pn >qn ≥ n with pn - qn = 1 mod m satisfying

d(xqn , xpn) ≥ ε.

Now, we let n > 2m. Then corresponding to qn ≥ n use, we can choose pn in such a

way, that it is the smallest integer with pn >qn ≥ n satisfying pn - qn = 1 mod m and

d(xqn , xpn) ≥ ε. Therefore d(xqn , xpn−m) ≤ ε and

ε ≤ d(xqn , xpn)

≤ d(xqn , xpn−m) +
m∑
i=1

d(xpn−i , xpn−i+1 )

< ε +
m∑
i=1

d(xpn−i , xpn−i+1 ).
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Letting n ® ∞ , we obtain that

lim
n→∞ d(xqn , xpn) = ε.

On the other hand, we can conclude that

ε ≤ d(xqn , xpn)

≤ d(xqn , xqn+1 ) + d(xqn+1 , xpn+1 ) + d(xxpn+1 ,pn)

≤ d(xqn , xqn+1 ) + d(xqn+1 , xqn) + d(xqn , xpn) + d(xpn , xpn+1 ) + d(xxpn+1 ,pn).

Letting n ® ∞, we obtain that

lim
n→∞ d(xqn+1 , xpn+1 ) = ε.

Since xqn and xpn lie in different adjacently labeled sets Ai and Ai+1 for certain 1 ≤ i ≤

m, by using the fact that f is a cyclic weaker (ϕ, �)-contraction, we have

d(xqn+1 , xpn+1 ) = d(f xqn , f xpn) ≤ φ(d(xqn , xpn)) − ϕ(d(xqn , xpn)).

Letting n ® ∞, by using the condition ϕ3 of the function ϕ, we obtain that

ε ≤ ε − ϕ(ε),

and consequently, � (�) = 0. By the definition of the function �, we get � = 0 which

is contraction. Therefore, our claim is proved.

In the sequel, we shall show that {xn} is a Cauchy sequence. Let ε > 0 be given. By

our claim, there exists n1 Î N such that if p, q ≥ n1 with p - q = 1 mod m, then

d(xp, xq) ≤ ε

2
.

Since limn®∞ d(xn, xn+1) = 0, there exists n2 Î Nsuch that

d(xn, xn+1) ≤ ε

2m
,

for any n ≥ n2.

Let p, q ≥ max{n 1, n2} and p > q. Then there exists k Î {1, 2,..., m} such that p -q =

k mod m. Therefore, p - q + j = 1 mod m for j = m - k + 1, and so we have

d(xq, xp) ≤ d(xq, xp+j) + d(xp+j, xp+j−1) + · · · + d(xp+1, xp)

≤ ε

2
+ j × ε

2m

≤ ε

2
+m × ε

2m
= ε.

Thus, {xn} is a Cauchy sequence. Since X is complete, there exists ν ∈ ∪m
i=1Ai such

that limn®∞ xn = ν. Since X = ∪m
i=1Ai is a cyclic representation of X with respect to f,

the sequence {xn} has infinite terms in each Ai for i Î {1,2,...,m}. Now for all i = 1,2,...,

m, we may take a subsequence {xnk} of {xn} with xnk ∈ Ai−1 and also all converge to ν.

Since

d(xnk+1 , fν) = d(f xnk , fν)

≤ φ(d(xnk , ν)) − ϕ(d(xnk , ν))

≤ φ(d(xnk , ν)).
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Letting k ® ∞ , we have

d(ν, fν) ≤ 0,

and so ν = fν.

Finally, to prove the uniqueness of the fixed point, let μ be the another fixed point of

f. By the cyclic character of f, we have μ, ν ∈ ∩n
i=1Ai. Since f is a cyclic weaker (ϕ,

�)-contraction, we have

d(ν,μ) = d(ν, fμ)

= lim
n→∞ d(xnk+1 , fμ)

= lim
n→∞ d(f xnk , fμ)

≤ lim
n→∞[φ(d(xnk ,μ)) − ϕ(d(xnk ,μ))]

≤ d(ν,μ) − ϕ(d(ν,μ)),

and we can conclude that

ϕ(d(ν,μ)) = 0.

So we have μ = ν. We complete the proof.

Example 2 Let X = [-1,1] with the usual metric. Suppose that A1 = [-1,0] = A3 and

A2 = [0,1] = A4. Define f: X ® X by f (x) =
−x

6
for all x Î X, and let ϕ, �: [0,∞) ® [0,

∞) be φ(t) =
1
2
,ϕ(t) =

t
4
. Then f is a cyclic weaker (ϕ, �)-contraction and 0 is the

unique fixed point.

Example 3 Let X = ℝ+ with the metric d:X × X ® ℝ+ given by

d(x, y) = max{x, y}, for x, y ∈ X.

Let A1 = A2 = ... = Am = ℝ+. Define f: X ® X by

f (x) =
x2

77
for x ∈ X,

and let ϕ, �: [0, ∞) ® [0,∞) be ϕ(t) =
t3

2(t + 2)
and

φ(t) =

⎧⎪⎨
⎪⎩

2t3

3t + 8
, if t ≥ 1;

t2

2
, if t < 1.

Then f is a cyclic weaker (ϕ, �)-contraction and 0 is the unique fixed point.

Example 4 Let X = ℝ3 and we define d: X × X ® [0, ∞) by

d(x, y) = max
{∣∣x1 − y1

∣∣ , ∣∣x2 − y2
∣∣ , ∣∣x3 − y3

∣∣ ,}

for x = (x1,x2,x3), y = (y1, y2, y3) Î X, and let A = {(x,0,0): x Î [0,1]}, B = {(0,y,0): y Î
[0,1]}, C = {(0,0, z): z Î [0,1]} be three subsets of X.
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Define f: A ∪ B ∪ C ® A ∪ B ∪ C by

f ((x, 0, 0)) =
(
0,

1
8
x2, 0

)
; for all x ∈ [0, 1];

f ((0, y, 0)) =
(
0, 0,

1
8
y2

)
; for all y ∈ [0, 1];

f ((0, 0, z)) =
(
1
8
z2, 0, 0

)
; for all z ∈ [0, 1].

We define �: [0, ∞) ® [0,∞) by

φ(t) =
t2

t + 1
for t ∈ [0,∞),

and �: [0, ∞) ® [0,∞) by

ϕ(t) =
t2

t + 2
for t ∈ [0,∞).

Then f is a cyclic weaker (ϕ, �)-contraction and (0,0,0) is the unique fixed point.
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