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Abstract
We propose a new class of nonlinear mappings, called (a,b)-monotone mappings,
and show that this class of nonlinear mappings contains nonspreading mappings,
hybrid mappings, firmly nonexpansive mappings, and (a1,a2,a3, k1, k2)-generalized
hybrid mappings with a1 < 1. We also give an example to show that a
(a,b)-monotone mapping is not necessary to be a quasi-nonexpansive mapping. We
establish an existence theorem of fixed points and the demiclosed principle for the
class of (a,b)-monotone mappings. As a special case of our result, we give an
existence theorem of fixed points for (a1,a2,a3, k1, k2)-generalized hybrid mappings
with a1 < 1. We also consider Mann’s type weak convergence theorem and CQ type
strong convergence theorem for (a,b)-monotone mappings. We give an example of
(a,b)-monotone mappings which assures the Mann’s type weak convergence.
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1 Introduction
LetH be a real Hilbert space with a nonempty closed convex subset C. Let T : C → C be a
self-mapping defined on C. We denote by F(T) the set of fixed points of T . The mapping
T is called quasi-nonexpansive if F(T) �= ∅ and

‖Tx – Ty‖ ≤ ‖x – y‖ for all x ∈ C and y ∈ F(T).

Takahashi et al. [–] gave the following definitions of nonlinear mappings and studied
the existence and convergence theorems of fixed points for these mappings.

Definition . A mapping T : C → C is called
(i) nonspreading [] if for every x, y ∈ C,

‖Tx – Ty‖ ≤ ‖Tx – y‖ + ‖Ty – x‖,

(ii) TY [] if for every x, y ∈ C,

‖Tx – Ty‖ ≤ ‖x – y‖ + ‖Tx – y‖,
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(iii) hybrid [] if for every x, y ∈ C,

‖Tx – Ty‖ ≤ ‖x – y‖ + ‖Tx – y‖ + ‖Ty – x‖,

(iv) λ-hybrid (λ ∈R) [] if for every x, y ∈ C,

‖Tx – Ty‖ ≤ ‖x – y‖ + λ〈x – Tx, y – Ty〉,

(v) (α,β)-generalized hybrid (α,β ∈R) [] if for every x, y ∈ C,

α‖Tx – Ty‖ + ( – α)‖Ty – x‖ ≤ β‖Tx – y‖ + ( – β)‖x – y‖,

(vi) α-nonexpansive (α ∈ (–∞, )) [] if for every x, y ∈ C,

‖Tx – Ty‖ ≤ α‖Tx – y‖ + α‖Ty – x‖ + ( – α)‖x – y‖.

It is obvious that the mappings mentioned in Definition . are quasi-nonexpansive. Re-
cently, Lin et al. [] gave the following definition of a new class of nonlinear mappings.

Definition . [] Let a ∈ [, ], a,a ∈ [, ), k,k ∈ [,  –a)∩ [,  –a) and a +a +
a = . A mapping T : C → C is called a (a,a,a,k,k)-generalized hybrid mapping if
for every x, y ∈ C,

‖Tx – Ty‖ ≤ a‖x – y‖ + a‖Tx – y‖ + a‖Ty – x‖ + k‖x – Tx‖ + k‖y – Ty‖.

This class of mappings are not necessary to be quasi-nonexpansive and contains non-
expansive mappings, nonspreading mappings, hybrid mappings, and TY mappings. Lin
et al. [] studied weak and strong convergence theorems of (a,a,a,k,k)-generalized
hybrid mappings, but existence theorems of fixed points for (a,a,a,k,k)-generalized
hybridmapping are not discussed in [].On the other hand,Aoyama andKohsaka [] char-
acterized the existence of fixed points of α-nonexpansive mappings in uniformly convex
Banach spaces.
Motivated by the literatures above, we study existence theorems of fixed points for the

mappingsmentioned inDefinitions . and . in an unifiedmethod. Precisely, we propose
a new class of nonlinear mappings in Hilbert spaces.

Definition . Let a ∈ (  ,∞) and b ∈ (–∞,a). A mapping T : C → C is called an (a,b)-
monotone mapping if for every x, y ∈ C,

〈x – y,Tx – Ty〉 ≥ a‖Tx – Ty‖ + ( – a)‖x – y‖ – b‖x – Tx‖ – b‖y – Ty‖

or equivalently,

a‖Tx – Ty‖ + ( – a)‖x – y‖

≤ 

‖x – Ty‖ + 


‖y – Tx‖ +

(
b –




)(‖x – Tx‖ + ‖y – Ty‖).
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Remark . Let C be a nonempty, closed, and convex subset of a Hilbert space, and let
α > . Recall that a mapping T : C → C is called α-inverse strongly monotone if

〈x – y,Tx – Ty〉 ≥ α‖Tx – Ty‖ for all x, y ∈ C.

A firmly nonexpansive mapping is an α-inverse strongly monotone mapping with α = .
Note that a firmly nonexpansive mapping (-inverse strongly monotone mapping with
α = ) is a (,)-monotone mapping.

Next, we give an example to show that a (a,b)-monotone mapping is not necessary to
be a quasi-nonexpansive mapping.

Example . Let H =R
. Let φ :R×H →H and T :H →H be defined by

φ(α,x) =
(
r cos(θ + α), r sin(θ + α)

)
,

Tx =



φ

(



π ,x
)
=



(
r cos

(
θ +




π

)
, r sin

(
θ +




π

))

for all α ∈R and for all x = (r cos θ , r sin θ ) ∈H . Then the following statements hold:
(i) T is a (, )-monotone mapping;
(ii) T is not a quasi-nonexpansive mapping.

Proof It’s obvious that F(T) = {}. We first prove part (i). For each x ∈ H ,

Tx =



φ

(



π ,x
)
=

√



φ(π ,x) +


√



φ

(
π


,x

)
.

Then for each x, y ∈H , we have
() 〈x – y,Tx – Ty〉 = –

√


 ‖x – y‖,
() ‖Tx – Ty‖ = 

 ‖x – y‖,
()

‖x – Tx‖ = ‖x‖ + ‖Tx‖ – ‖x‖‖Tx‖ cos 


π =
(



+

√




)
‖x‖.

Then

〈x – y,Tx – Ty〉 – a‖Tx – Ty‖ – ( – a)‖x – y‖ + b‖x – Tx‖ + b‖y – Ty‖

= –

√



‖x – y‖ – 


a‖x – y‖ – ( – a)‖x – y‖ + b‖x – Tx‖ + b‖y – Ty‖

=
(



+

√




)
b
(‖x‖ + ‖y‖) –

(



a +

√



+  – a

)
‖x – y‖.

By parallelogram law, we have

〈x – y,Tx – Ty〉 – a‖Tx – Ty‖ – ( – a)‖x – y‖ + b‖x – Tx‖ + b‖y – Ty‖

≥
[(




+

√




)
b –

(



a +

√



+  – a

)]
‖x – y‖.
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Take a =  and b = . Then

〈x – y,Tx – Ty〉 – a‖Tx – Ty‖ – ( – a)‖x – y‖ + b‖x – Tx‖ + b‖y – Ty‖

≥
[

(



+

√




)
–

(
 · 


+

√



+  – 

)]
‖x – y‖

=
(



+


√




)
‖x – y‖ ≥ .

Then T is a (, )-monotone mapping. Next we want to prove part (ii). Since ‖Tx–T‖ =

‖x – ‖, T is not a quasi-nonexpansive mapping. The proof of part (ii) is complete. �

Remark . Since T in Example . is not a quasi-nonexpansive mapping, T is not non-
spreading, TY , hybrid, λ-hybrid, (α,β)-generalized hybrid, and α-nonexpansive. This ex-
ample shows that an (a,b)-monotonemapping is not necessary to be a quasi-nonexpansive
mapping, TY mapping, hybrid mapping, λ-hybrid mapping, (α,β)-generalized hybrid
mapping, and α-nonexpansive mapping.

In this paper, we first show that the class of (a,b)-monotone mappings contains non-
spreadingmappings, hybridmappings,TY mappings, firmly nonexpansivemappings, and
(a,a,a,k,k)-generalized hybrid mappings with a < . We also give an example to
show that this class ofmappings are not necessary to be quasi-nonexpansivemappings.We
establish an existence theorem of fixed points and the demiclosed principle for the class of
(a,b)-monotone mappings. As a special case of our result, we give an existence theorem
of fixed points for (a,a,a,k,k)-generalized hybrid mappings with a < . We also con-
sider Mann’s type weak convergence theorem and CQ type strong convergence theorem
for (a,b)-monotone mappings. An example of (a,b)-monotone mappings is given to show
the Mann’s type weak convergence.

2 Preliminaries
In this paper, we use the following notations:

(i) ⇀ for weak convergence and → for strong convergence.
(ii) ωw(xn) = {x : ∃xnj ⇀ x} denotes the weak ω-limit set of {xn}.
Let us recall some known results, which will be used later.

Proposition . [] Let C be a nonempty, closed, and convex subset of a Hilbert space H.
A mapping T : C → C be a mapping.

(i) If T is a nonexpansive mapping, then T is a (, , , , )-generalized hybrid
mapping;

(ii) If T is a nonspreading mapping, then T is a (,  ,

 , , )-generalized hybrid

mapping;
(iii) If T is a hybrid mapping, then T is a (  ,


 ,


 , , )-generalized hybrid mapping;

(iv) If T is a TY mapping, then T is a (  ,

 , , , )-generalized hybrid mapping;

(v) If T is an (α,β)-generalized hybrid mapping with α ≥  ≥ β ≥  and α > β , then T
is a ( –β

α
, β

α
,  – 

α
, , )-generalized hybrid mapping.

Lemma . [] Let C be a nonempty, closed and convex subset of a Hilbert space H. Let
T : C → C be a mapping. Suppose that there exist x ∈ C and a Banach limit μ such that
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{Tnx} is bounded and

μn
∥∥Tnx – Ty

∥∥ ≤ μn
∥∥Tnx – y

∥∥ for all y ∈ C.

Then T has a fixed point.

Lemma . [] Let H be a real Hilbert space. Let C be a closed convex subset of H, let
w,x, y ∈H and let a be a real number. The set

D :=
{
v ∈ C : ‖y – v‖ ≤ ‖x – v‖ + 〈w, v〉 + a

}

is closed and convex.

Lemma . Let K be a closed convex subset of a real Hilbert space H and let PK be the
metric projection from H onto K. Let x ∈H and z ∈ K. Then z = PKx if and only if

〈x – z, y – z〉 ≤  for all y ∈ K .

Lemma . [] Let K be a closed convex subset of a real Hilbert space H. Let {xn} be a
sequence in H and u ∈H. Let q = PKu. Suppose that ωw(xn)⊆ K and

‖xn – u‖ ≤ ‖u – q‖ for all n ∈N.

Then xn → q.

Lemma . Let H be a real Hilbert space. Then

‖u – v‖ = ‖u‖ – ‖v‖ – 〈u – v, v〉, for all u, v ∈H .

Theorem . [] Let H be a Hilbert space and let {xn} be a bounded sequence in H. Then
{xn} is weakly convergent if and only if each weakly convergent subsequence of {xn} has the
same weak limit, that is, for x ∈H,

xn ⇀ x ⇔ (xni ⇀ y ⇒ x = y).

3 Fixed point theorem of (a,b)-monotonemappings
Proposition . Let C be a nonempty, closed, and convex subset of a Hilbert space H.
If T : C → C is a (a,a,a,k,k)-generalized hybrid mapping with a < , then T is a
( 
–a

, k
–a

+ 
 )-monotone mapping, where k =max{k,k}.

Proof If T is an (a,a,a,k,k)-generalized hybrid mapping with a < , then for every
x, y ∈ C,


 – a

‖Tx – Ty‖ + –a
 – a

‖x – y‖

≤ a
 – a

‖Tx – y‖ + a
 – a

‖Ty – x‖ + k
 – a

‖x – Tx‖ + k
 – a

‖y – Ty‖
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and


 – a

‖Tx – Ty‖ + –a
 – a

‖x – y‖

≤ a
 – a

‖Ty – x‖ + a
 – a

‖Tx – y‖ + k
 – a

‖x – Tx‖ + k
 – a

‖y – Ty‖,

where k =max{k,k}.
Note that

(
a

 – a
‖y – Tx‖ + a

 – a
‖x – Ty‖

)
+

(
a

 – a
‖x – Ty‖ + a

 – a
‖y – Tx‖

)

=
a + a
 – a

‖x – Ty‖ + a + a
 – a

‖y – Tx‖ = ‖y – Tx‖ + ‖x – Ty‖.

We have


 – a

‖Tx – Ty‖ + –a
 – a

‖x – y‖

≤ 

‖Tx – y‖ + 


‖Ty – x‖ + k

 – a
‖x – Tx‖ + k

 – a
‖y – Ty‖.

Without loss of generality, we may assume that a ≥ a.
Since k <min{ – a,  – a}, we have that

k
 – a

+


–


 – a

=


( – a)
(
k + ( – a) – 

)

<


( – a)
(
( – a) + ( – a) – 

)
=


( – a)

( – a – a)

≤ 
( – a)

( – a – a – a) = ,

that is, k
–a

+ 
 < 

–a
. Take a = 

–a
≥  > 

 and b = k
–a

+ 
 < a, we see that T is an

(a,b)-monotone mapping. �

The following proposition follows immediately from Propositions . and ..

Proposition . Let C be a nonempty, closed, and convex subset of a Hilbert space H.
A mapping T : C → C be a mapping.

(i) If T is a nonspreading mapping, then T is a (,  )-monotone mapping;
(ii) If T is a hybrid mapping, then T is a (  ,


 )-monotone mapping;

(iii) If T is a TY mapping, then T is a (,  )-monotone mapping;
(vi) If T is an (α,β)-generalized hybrid mapping with α ≥  ≥ β ≥ , α > β and

α + β > , then T is an ( α
α+β– ,


 )-monotone mapping.

Proposition . Let C be a closed convex subset of a Hilbert space. Let T be a (a,b)-
monotone mapping defined on C. Then

‖x – p‖ ≥ ‖Tx – p‖ +  – b
a – 

‖x – Tx‖ for all x ∈ C and p ∈ F(T).
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Lin and Wang Fixed Point Theory and Applications 2012, 2012:131 Page 7 of 14
http://www.fixedpointtheoryandapplications.com/content/2012/1/131

Proof Since T is a (a,b)-monotone mapping, we have that for each x ∈ C and p ∈ F(T),

〈x – p,Tx – p〉 ≥ a‖Tx – p‖ + ( – a)‖x – p‖ – b‖x – Tx‖,

that is,



(‖x – p‖ + ‖p – Tx‖ – ‖x – Tx‖)

≥ a‖Tx – p‖ + ( – a)‖x – p‖ – b‖x – Tx‖.

Then

(a – )‖x – p‖ ≥ (a – )‖Tx – p‖ + ( – b)‖x – Tx‖,

that is,

‖x – p‖ ≥ ‖Tx – p‖ +  – b
a – 

‖x – Tx‖. �

Now we give a demiclosed principle of (a,b)-monotone mappings:

Theorem. Let C be a closed convex subset of a Hilbert space. Let T be a (a,b)-monotone
mapping defined on C. If a sequence {xn} ⊆ C with xn ⇀ x* and ‖xn – Txn‖ → . Then
x* = Tx*.

Proof Since T is a (a,b)-monotone mapping, we have that

〈
xn – x*,Txn – Tx*

〉
≥ a

∥∥Txn – Tx*
∥∥ + ( – a)

∥∥xn – x*
∥∥ – b‖xn – Txn‖ – b

∥∥x* – Tx*
∥∥,

that is,

b‖xn – Txn‖ + b
∥∥x* – Tx*

∥∥

≥ a
〈
Txn – Tx*,Txn – Tx* – xn + x*

〉
+ ( – a)

〈
xn – x*,xn – x* – Txn + Tx*

〉
= a

〈
Txn – Tx*,Txn – xn

〉
+ a

〈
Txn – Tx*,x* – Tx*

〉
+ ( – a)

〈
xn – x*,xn – Txn

〉
+ ( – a)

〈
xn – x*,Tx* – x*

〉
= a

〈
Txn – Tx*,Txn – xn

〉
+ a

〈
Txn – xn,x* – Tx*

〉
+ a

〈
xn – x*,x* – Tx*

〉
+ a

〈
x* – Tx*,x* – Tx*

〉
+ ( – a)

〈
xn – x*,xn – Txn

〉
+ ( – a)

〈
xn – x*,Tx* – x*

〉
.

Since xn ⇀ x* and ‖xn – Txn‖ → , {xn} and {Txn} are bounded. Taking limit on the in-
equality above, we have

b
∥∥x* – Tx*

∥∥ ≥ a
∥∥x* – Tx*

∥∥.

Since b < a, we have that ‖x* – Tx*‖ = , that is, x* = Tx*. �
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Corollary . [–] Let C be a closed convex subset of a Hilbert space. Let T be a self-
mapping defined on C and satisfies one of the following:

(i) T is a nonspreading mapping;
(ii) T is a hybrid mapping;
(iii) T is a TY mapping.

If a sequence {xn} ⊆ C with xn ⇀ x* and ‖xn – Txn‖ → , then x* = Tx*.

Theorem. Let C be a closed convex subset of aHilbert space. Let T be a (a,b)-monotone
mapping defined on C. If F(T) is nonempty, then F(T) is closed and convex.

Proof First, we show that F(T) is closed. For each x ∈ F(T), there exists a sequence
{xn}n∈N ⊆ F(T) with xn → x. Since xn → x and xn ∈ F(T) for all n ∈N, we have that xn ⇀ x
and ‖xn –Txn‖ =  for all n ∈N. By Theorem ., x = Tx. Next, we want to show that F(T)
is a convex subset of C. Take any u, v ∈ F(T) and t ∈ [, ]. Let zt := tu+ ( – t)v. By Propo-
sition ., we have

‖Tzt – zt‖

= t‖Tzt – u‖ + ( – t)‖Tzt – v‖ – t( – t)‖u – v‖

≤ t
(

‖zt – u‖ + b – 
a – 

‖Tzt – zt‖
)

+ ( – t)
(

‖zt – v‖ + b – 
a – 

‖Tzt – zt‖
)
– t( – t)‖u – v‖

= t( – t)‖u – v‖ + ( – t)t‖u – v‖

+
b – 
a – 

‖Tzt – zt‖ – t( – t)‖u – v‖

=
b – 
a – 

‖Tzt – zt‖.

Since b–
a– < , we have that zt = Tzt . �

Theorem . Let C be a nonempty subset of a Hilbert space H. Let T : C → C be a (a,b)-
monotone mapping with b ∈ (–∞,  ]. Suppose that {Tnx} is bounded for some x ∈ C. Then
μn‖Tnx – Ty‖ ≤ μn‖Tnx – y‖ for all Banach limits μ and for all y ∈ C.

Proof Letμ be a Banach limit and let y ∈ C be given. SinceT is a (a,b)-monotonemapping
with b ∈ (–∞,  ], we have that

〈
Tnx – y,Tn+x – Ty

〉

≥ a
∥∥Tn+x – Ty

∥∥ + ( – a)
∥∥Tnx – y

∥∥ –


∥∥Tnx – Tn+x

∥∥ –


‖y – Ty‖,

that is,



∥∥Tnx – Ty

∥∥ +


∥∥y – Tn+x

∥∥ ≥ a
∥∥Tn+x – Ty

∥∥ + ( – a)
∥∥Tnx – y

∥∥.

http://www.fixedpointtheoryandapplications.com/content/2012/1/131
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Then

μn
∥∥Ty – Tnx

∥∥ +μn
∥∥y – Tnx

∥∥ ≥ aμn
∥∥Ty – Tnx

∥∥ + ( – a)μn
∥∥y – Tnx

∥∥.

Hence (a – )μn‖y – Tnx‖ ≥ (a – )μn‖Ty – Tnx‖. Since a > 
 , we have that

μn
∥∥y – Tnx

∥∥ ≥ μn
∥∥Ty – Tnx

∥∥. �

As a direct consequence of Theorem . and Lemma ., we have the following existence
theorem of fixed points for (a,b)-monotone mappings.

Theorem . Let C be a nonempty, closed, and convex subset of a Hilbert space H. Let
T : C → C be a (a,b)-monotone mapping with b ∈ (–∞,  ]. Then F(T) �= ∅ if and only if
there exists x ∈ C such that {Tnx} is bounded.

Corollary . [, , ] Let C be a closed convex subset of a Hilbert space. Let T be a self-
mapping defined on C and satisfies one of the following:

(i) T is a nonspreading mapping;
(ii) T is a hybrid mapping;
(iii) T is a TY mapping.

Then F(T) �= ∅ if and only if there exists x ∈ C such that {Tnx} is bounded.

4 Convergence theorems
In this section, we first prove a weak convergence theorem of Mann’s type for (a,b)-
monotone mappings in a Hilbert space.

Theorem. Let C be a nonempty, closed, and convex subset of a real Hilbert space H. Let
T : C → C be a (a,b)-monotone mapping satisfies F(T) �= ∅. If a sequence {αn}n∈N ⊆ (, )
with αn > b–

a– and lim infn→∞(–αn)(αn + –b
a– ) > , then for each x ∈ C, the sequence {xn}

with xn+ = αnxn + ( – αn)Txn for all n ∈N weakly converges to some fixed point of T.

Proof Wefirst show that there exists a sequence {αn} satisfies our assumptions. Since b < a,
a > , we have b–

a– < , there exists a constant α ∈R such that b–
a– < α < . If we take αn =

α for all n ∈ N, then {αn} ⊆ (, ) such that αn > b–
a– and lim infn→∞( – αn)(αn + –b

a– ) > .
Since T is a (a,b)-monotone mapping, by Proposition ., we have that for each p ∈ F(T)
and x ∈ C,

‖x – p‖ ≥ ‖Tx – p‖ +  – b
a – 

‖x – Tx‖.

Since αn > b–
a– , we have that

‖xn+ – p‖

= αn‖xn – p‖ + ( – αn)‖Txn – p‖ – αn( – αn)‖xn – Txn‖

≤ αn‖xn – p‖ + ( – αn)‖xn – p‖ – ( – αn)
 – b
a – 

‖xn – Txn‖

– αn( – αn)‖xn – Txn‖

http://www.fixedpointtheoryandapplications.com/content/2012/1/131
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= ‖xn – p‖ – ( – αn)
(

αn +
 – b
a – 

)
‖xn – Txn‖

≤ ‖xn – p‖.

Then limn→∞ ‖xn –p‖ exists and sequence {xn} is bounded. Further, from the inequality
above, we have that

( – αn)
(

αn +
 – b
a – 

)
‖xn – Txn‖ ≤ ‖xn – p‖ – ‖xn+ – p‖.

Since lim infn→∞( – αn)(αn + –b
a– ) > , we have limn→∞ ‖xn – Txn‖ = .

Therefore, limn→∞ ‖xn+ – xn‖ = limn→∞( – αn)‖xn – Txn‖ = . Since {xn} is bounded,
there exist a subsequence {xnj} of {xn} and a point x* ∈ C such that xnj ⇀ x*. Since T is a
(a,b)-monotone mapping, by Theorem ., we have x* = Tx*.
For each subsequence {xnk } of {xn} with xnk ⇀ u for some u ∈ C, we follow the same

argument as above, we see that u = Tu. We have to show that u = x*. Otherwise, if u �= x*,
then by Optial condition,

lim inf
j→∞

∥∥xnj – x*
∥∥ < lim inf

j→∞ ‖xnj – u‖
= lim

n→∞‖xn – u‖
= lim inf

k→∞
‖xnk – u‖

< lim inf
k→∞

∥∥xnk – x*
∥∥

= lim
n→∞

∥∥xn – x*
∥∥ = lim inf

j→∞
∥∥xnj – x*

∥∥.

This leads to a contradiction. Therefore u = x*. By Theorem ., we have that xn ⇀ x*. �

Example . Let H , φ, T be the same as in Example .. For any fixed x ∈ H , take a
sequence {xn} as in Theorem . with αn = 

 for all n ∈N, that is,

xn+ =


xn +



Txn.

Then

xn+ =


xn +




(√



φ(π ,xn) +
√



φ

(
π


,xn

))
=

(


–

√




)
xn +


√



φ

(
π


,xn

)

and hence

‖xn+‖ ≤
(


–

√




)
‖xn‖ + 

√



‖xn‖ ≤ 


‖xn‖.

Therefore, xn →  ∈ F(T), and hence xn ⇀ .

Corollary . Let C be a nonempty closed convex subset of a real Hilbert space H. Let
T : C → C be a mapping with F(T) �= ∅ and satisfies one of the following:

http://www.fixedpointtheoryandapplications.com/content/2012/1/131
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(i) T is a nonspreading mapping;
(ii) T is a hybrid mapping;
(iii) T is a TY mapping.

If a sequence {αn}n∈N ⊆ (, ) satisfies lim infn→∞( – αn)(αn) > , then for each x ∈ C, the
sequence {xn} with xn+ = αnxn + ( – αn)Txn for all n ∈ N weakly converges to some fixed
point of T.

Proof Since T is an (a,b)-monotone mapping with b = 
 , we have

b–
a– = . Then Corol-

lary . follows from Theorem .. �

Corollary . Let C be a nonempty, closed, and convex subset of real Hilbert space H. Let
T : C → C be a mapping with F(T) �= ∅ and satisfies one of the following:

(i) T is a nonspreading mapping;
(ii) T is a hybrid mapping;
(iii) T is a TY mapping.

Then for each x ∈ C, the sequence {xn}with xn+ = 
xn+


Txn for all n ∈Nweakly converges

to some fixed point of T.

Proof Take αn = 
 for all n ∈N. Then Corollary . follows from Corollary .. �

Next we prove a strong convergence theorem by hybrid method for (a,b)-monotone
mappings in a Hilbert space.

Theorem . Let C be a nonempty, closed and convex subset of a real Hilbert space H. Let
T : C → C be a (a,b)-monotone mapping with F(T) �= ∅. Suppose that {xn} is a sequence
generated by the following scheme:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

x ∈ C chosen arbitrarily;

yn = tnxn + ( – tn)Txn;

Cn = {v ∈ C : ‖yn – v‖ ≤ ‖xn – v‖ + ( – tn) b–a–‖xn – Txn‖};
Qn = {v ∈ C : 〈xn – v,xn – x〉 ≤ };
xn+ = PCn∩Qnx, where PCn∩Qn is the metric projection from H onto Cn ∩Qn.

If the sequence {tn}n∈N ⊆ (, ) satisfies lim supn→∞( b–a– + tn) < , then xn → PF(T)x.

Proof By Lemma ., we see that Cn is closed and convex for all n ∈ N. For any p ∈ F(T),
by Proposition ., we have

‖yn – p‖ =
∥∥tn(xn – p) + ( – tn)(Txn – p)

∥∥

= tn‖xn – p‖ + ( – tn)‖Txn – p‖ – tn( – tn)‖xn – Txn‖

≤ tn‖xn – p‖ + ( – tn)‖Txn – p‖

≤ tn‖xn – p‖ + ( – tn)
(

‖xn – p‖ + b – 
a – 

‖xn – Txn‖
)

= ‖xn – p‖ + ( – tn)
b – 
a – 

‖xn – Txn‖.
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Hence, p ∈ Cn. Then we have that F(T)⊆ Cn for all n≥ .
Next, we show that F(T) ⊆ Qn for all n ≥ . We prove this by induction. For n = , we

have F(T) ⊆ C =Q. Assume that F(T) ⊆ Qn. Since xn+ is the projection of x onto Cn ∩
Qn, by Lemma ., we have 〈xn+ – z,x – xn+〉 ≥  for all z ∈ Cn ∩Qn. As F(T)⊆ Cn ∩Qn

by the induction assumption, the last inequality holds, in particular, for all z ∈ F(T). This
together with the definition of Qn+ implies that F(T) ⊆ Qn+. Hence F(T) ⊆ Qn for all
n ∈N. Then the sequence {xn} is well defined.
The definition of Qn and Lemma . imply that xn = PQnx, which in turn implies that

‖xn–x‖ ≤ ‖p–x‖ for all p ∈ F(T), in particular, {xn} is bounded and ‖xn–x‖ ≤ ‖q–x‖
with q = PF(T)x.
That xn+ ∈Qn asserts that

〈xn – xn+,xn – x〉 ≤ .

It follows from Lemma . and the inequality above that

‖xn+ – xn‖ = ‖xn+ – x‖ – ‖xn – x‖ – 〈xn+ – xn,xn – x〉
≤ ‖xn+ – x‖ – ‖xn – x‖.

The last inequality implies that {‖xn – x‖} is increasing. Since {xn} is bounded, we have
that limn→∞ ‖xn – x‖ exists and ‖xn+ – xn‖ → . Since xn+ ∈ Cn,

‖yn – xn+‖

≤ ‖xn – xn+‖ + ( – tn)
b – 
a – 

‖xn – Txn‖.

Note that

‖yn – xn+‖

= tn‖xn – xn+‖ + ( – tn)‖Txn – xn+‖ – tn( – tn)‖xn – Txn‖.

Then

‖Txn – xn+‖ ≤ ‖xn – xn+‖ +
(
b – 
a – 

+ tn
)

‖xn – Txn‖,

‖Txn – xn+‖

≥ (‖xn – Txn‖ – ‖xn – xn+‖
)

= ‖xn – Txn‖ – ‖xn – Txn‖‖xn – xn+‖ + ‖xn – xn+‖.

Then

‖xn – Txn‖ – ‖xn – Txn‖‖xn – xn+‖

≤
(
b – 
a – 

+ tn
)

‖xn – Txn‖.
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Without loss of generality, wemay assume that xn �= Txn for all n ∈N. Otherwise, xn ∈ F(T)
for some n ∈N and we complete the proof. Therefore,

‖xn – Txn‖ – ‖xn – xn+‖ ≤
(
b – 
a – 

+ tn
)

‖xn – Txn‖.

Hence,

lim sup
n→∞

‖xn – Txn‖ ≤ lim sup
n→∞

(
b – 
a – 

+ tn
)

‖xn – Txn‖.

By the choice of {tn}, lim supn→∞( b–a– + tn) < . Therefore, limn→∞ ‖xn – Txn‖ = . Con-
sequently, ωw(xn) ⊆ F(T) by Theorem .. Hence, applying Lemma . (to u := x and
K := F(T)), one can conclude that xn → q. �

Corollary . Let C be a nonempty, closed, and convex subset of a real Hilbert space H.
Let T : C → C be a mapping with F(T) �= ∅ and satisfies one of the following conditions:

(i) T is a nonspreading mapping;
(ii) T is a hybrid mapping;
(iii) T is a TY mapping.

Suppose that {xn} is a sequence generated by the following scheme:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

x ∈ C chosen arbitrarily;

yn = tnxn + ( – tn)Txn;

Cn = {v ∈ C : ‖yn – v‖ ≤ ‖xn – v‖ + ( – tn) b–a–‖xn – Txn‖};
Qn = {v ∈ C : 〈xn – v,xn – x〉 ≤ };
xn+ = PCn∩Qnx, where PCn∩Qn is the metric projection from H onto Cn ∩Qn.

If the sequence {tn}n∈N ⊆ (, ) satisfies lim supn→∞ tn < . Then xn → PF(T)x.

Proof Since T is a (a,b)-monotone mapping with b = 
 , we have b–

a– = , then Corol-
lary . follows from Theorem .. �

Corollary . Let C be a nonempty, closed, and convex subset of a real Hilbert space H.
Let T : C → C be a mapping with F(T) �= ∅ and satisfies one of the following conditions:

(i) T is a nonspreading mapping;
(ii) T is a hybrid mapping;
(iii) T is a TY mapping.

Suppose that {xn} is a sequence generated by the following scheme:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

x ∈ C chosen arbitrarily;

yn = 
xn +


Txn;

Cn = {v ∈ C : ‖yn – v‖ ≤ ‖xn – v‖};
Qn = {v ∈ C : 〈xn – v,xn – x〉 ≤ };
xn+ = PCn∩Qnx, where PCn∩Qn is the metric projection from H onto Cn ∩Qn.

Then xn → PF(T)x.
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Proof Take tn = 
 for all n ∈N, then Corollary . follows from Corollary .. �
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