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Abstract
In this paper, we modify the general iterative method to approximate a common
element of the set of solutions of generalized equilibrium problems and the set of
common fixed points of a finite family of k-strictly pseudo-contractive nonself
mappings. Strong convergence theorems are established under some suitable
conditions in a real Hilbert space, which also solves some variation inequality
problems. Results presented in this paper may be viewed as a refinement and
important generalizations of the previously known results announced by many other
authors.
MSC: 47H05; 47H09; 47H10

Keywords: generalized equilibrium problem; k-strict pseudo-contractions; general
iterative method; α-inverse strongly monotone; common fixed point; strong
convergence

1 Introduction
Let H be a real Hilbert space with inner product 〈·, ·〉 and norm ‖ · ‖, respectively. Let K
be a nonempty closed convex subset of H . Let A : K → H be a nonlinear mapping and
F : K × K → R be a bi-function, where R denotes the set of real numbers. We consider
the following generalized equilibrium problem: Find x ∈ K such that

F(x, y) + 〈Ax, y – x〉 ≥ , ∀y ∈ K . (.)

We use EP(F ,A) to denote the solution set of the problem (.). IfA ≡ , the zeromapping,
then the problem (.) is reduced to the normal equilibrium problem: Find x ∈ K such that

F(x, y) ≥ , ∀y ∈ K . (.)

We use EP(F) to denote the solution set of the problem (.). If F ≡ , then the problem
(.) is reduced to the classical variational inequality problem: Find x ∈ K such that

〈Ax, y – x〉 ≥ , ∀y ∈ K .
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The generalized equilibrium problem (.) is very general in the sense that it includes,
as special cases, optimization problems, variational inequalities, mini-max problems, the
Nash equilibrium problem in noncooperative games and others (see, e.g., [–]).
Recall that a nonself mapping T : K →H is called a k-strict pseudo-contraction if there

exists a constant k ∈ [, ) such that

‖Tx – Ty‖ ≤ ‖x – y‖ + k
∥∥(I – T)x – (I – T)y

∥∥, ∀x, y ∈ K . (.)

We use F(T) to denote the fixed point set of T , i.e., F(T) := {x ∈ K : Tx = x}. As k = , T is
said to be nonexpansive, i.e.,

‖Tx – Ty‖ ≤ ‖x – y‖, ∀x, y ∈ K .

T is said to be pseudo-contractive if k = , and is also said to be strongly pseudo-contractive
if there exists a positive constant λ ∈ (, ) such that T + λI is pseudo-contractive. Clearly,
the class of k-strict pseudo-contractions falls into the one between classes of nonexpansive
mappings and pseudo-contractions. We remark also that the class of strongly pseudo-
contractive mappings is independent of the class of k-strict pseudo-contractions (see, e.g.,
[, ]).
Iterative methods for equilibrium problems and fixed point problems of nonexpan-

sive mappings have been extensively investigated. However, iterative schemes for strict
pseudo-contractions are far less developed than those for nonexpansive mappings though
Browder and Petryshyn [] initiated their work in ; the reason is probably that the
second term appearing in the right-hand side of (.) impedes the convergence analysis
for iterative algorithms used to find a fixed point of the strict pseudo-contraction. On the
other hand, strict pseudo-contractions have more powerful applications than nonexpan-
sive mappings do in solving inverse problems; see, e.g., [–, –] and the references
therein. Therefore it is interesting to develop the effective iterative methods for equilib-
rium problems and fixed point problems of strict pseudo-contractions.
In , Marino and Xu [] introduced a general iterative method and proved that for

a given x ∈H , the sequence {xn} generated by

xn+ = αnγ f (xn) + (I – αnB)Txn, ∀n ∈N ,

whereT is a self-nonexpansivemapping onH , f is a contraction ofH into itself and {αn} ⊆
(, ) satisfies certain conditions, B is a strongly positive bounded linear operator on H ,
converges strongly to x* ∈ F(T), which is the unique solution of the following variational
inequality:

〈
(B – γ f )x*,x* – x

〉 ≤ , ∀x ∈ F(T),

and is also the optimality condition for some minimization problem.
Recently, Takahashi and Takahashi [] considered the equilibrium problem and non-

expansive mapping by viscosity approximation methods. To be more precise, they proved
the following theorem.
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Theorem of TT Let K be a nonempty closed convex subset of H. Let F be a bi-function
from K ×K to R satisfying (A)-(A) and let T : K → H be a nonexpansive mapping such
that F(T) ∩ EP(F) 
= φ. Let f : H → H be a contraction and let {xn} and {yn} be sequences
generated by x ∈H and

⎧⎨
⎩F(yn, z) + 

rn 〈z – yn, yn – xn〉 ≥ , ∀z ∈ K ,

xn+ = αnf (xn) + ( – αn)Tyn, n≥ ,

where {αn} ⊂ [, ] and {rn} satisfy

lim
n→∞αn = ,

∞∑
n=

αn = ∞,
∞∑
n=

|αn+ – αn| <∞,

lim inf
n→∞ rn > ,

∞∑
n=

|rn+ – rn| < ∞.

Then {xn} and {yn} converge strongly to q ∈ F(T)∩ EP(F), where q = PF(T)∩EP(F)f (q).

In , Ceng et al. [] further studied the equilibrium problem and fixed point prob-
lems of strict pseudo-contraction mappings T by an iterative scheme for finding an ele-
ment of EP(F) ∩ F(T). Very recently, by using the general iterative method Liu [] pro-
posed the implicit and explicit iterative processes for finding an element of EP(F) ∩ F(T)
and then obtained some strong convergence theorems, respectively. On the other hand,
Takahashi and Takahashi [] considered the generalized equilibrium problem and non-
expansive mapping in a Hilbert space. Moreover, they constructed an iterative scheme
for finding an element of EP(F ,A) ∩ F(T) and then proved a strong convergence of the
iterative sequence under some suitable conditions.
In this paper, inspired and motivated by research going on in this area, we intro-

duce a general iterative method for generalized equilibrium problems and strict pseudo-
contractive nonself mappings, which is defined in the following way:

⎧⎪⎪⎨
⎪⎪⎩
F(un, y) + 〈Axn, y – un〉 + 

rn 〈y – un,un – xn〉 ≥ , ∀y ∈ K ,

yn = βnun + ( – βn)
∑N

i= η
(n)
i Tiun,

xn+ = αnγ f (xn) + (I – αnB)yn, n≥ ,

(.)

where constant γ > , f is a contraction and A, B are two operators, {Ti}Ni=i : K → H is a
finite family of ki-strict pseudo-contractions, {η(n)

i }Ni= is a finite sequence of positive num-
bers, {αn}, {βn} and {rn} are some sequences with certain conditions.
Our purpose is not only tomodify the general iterativemethod to the case of a finite fam-

ily of ki-strictly pseudo-contractive nonself mappings, but also to establish strong conver-
gence theorems for a generalized equilibrium problem and ki-strict pseudo-contractions
in a real Hilbert space, which also solves some variation inequality problems. Our theo-
rems presented in this paper improve and extend the corresponding results of [, , ,
, , , ].
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2 Preliminaries
Let K be a nonempty closed convex subset of a real Hilbert H space with inner product
〈·, ·〉 and norm ‖ · ‖, respectively. Recall that a mapping f : K → K is a contraction, if there
exists a constant ρ ∈ (, ) such that

∥∥f (x) – f (y)
∥∥ ≤ ρ‖x – y‖, ∀x, y ∈ K .

We use 	K to denote the collection of all contractions on K . The operator A : K → H is
said to be monotone if

〈Ax –Ay,x – y〉 ≥ , ∀x, y ∈ K .

A : K →H is said to be r-strongly monotone if there exists a constant r >  such that

〈Ax –Ay,x – y〉 ≥ r‖x – y‖, ∀x, y ∈ K .

A : K → H is said to be α-inverse strongly monotone if there exists a constant α >  such
that

〈Ax –Ay,x – y〉 ≥ α‖Ax –Ay‖, ∀x, y ∈ K .

Recall that an operator B is strongly positive if there exists a constant γ >  with the prop-
erty

〈Bx,x〉 ≥ γ ‖x‖, ∀x ∈H .

To study the generalized equilibrium problem (.), we may assume that the bi-function
F : K ×K → R satisfies the following conditions:
(A) F(x,x) =  for all x ∈ K ;
(A) F is monotone, i.e., F(x, y) + F(y,x) ≤  for all x, y ∈ K ;
(A) for each x, y, z ∈ K , limt→ F(tz + ( – t)x, y)≤ F(x, y);
(A) for each x ∈ K , y �→ F(x, y) is convex and lower semi-continuous.
In order to prove our main results, we need the following lemmas and propositions.

Lemma . [, ] Let F : K × K → R be a bi-function satisfying (A)-(A). Then, for any
r >  and x ∈H, there exists z ∈ K such that

F(z, y) +

r
〈y – z, z – x〉 ≥ , ∀y ∈ K .

Further, if Trx = {z ∈ K : F(z, y) + 
r 〈y – z, z – x〉 ≥ ,∀y ∈ K}, then the following hold:

() Tr is single-valued;
() Tr is firmly nonexpansive, i.e, ‖Trx – Try‖ ≤ 〈Trx – Try,x – y〉 for all x, y ∈H ;
() F(Tr) = EP(F);
() EP(F) is closed and convex.

Lemma . [] In the Hilbert space H, there hold the following identities:
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(i) ‖x + y‖ = ‖x‖ + 〈x, y〉 + ‖y‖ ≤ ‖x‖ + 〈y, (x + y)〉, ∀x, y ∈H ;
(ii) ‖tx + ( – t)y‖ = t‖x‖ + ( – t)‖y‖ – t( – t)‖x – y‖, ∀t ∈ [, ], ∀x, y ∈H .

Lemma . [] Assume that B is a strongly positive linear bounded operator on the Hilbert
space H with a coefficient γ >  and  < 
 < ‖B‖–. Then ‖I – 
B‖ ≤  – 
γ .

Lemma . [] If T : K → H is a k-strict pseudo-contraction, then the fixed point set
F(T) is closed convex so that the projection PF(T) is well defined.

Lemma . [, ] Let T : K → H be a k-strict pseudo-contraction. For λ ∈ [k, ), define
S : K → H by Sx = λx + ( – λ)Tx for each x ∈ K. Then S is a nonexpansive mapping such
that F(S) = F(T).

Lemma . [] Assume {an} is a sequence of nonnegative real numbers such that

an+ ≤ ( – γn)an + γnδn, n≥ ,

where {γn} is a sequence in (, ) and {δn} is a real sequence such that
(i)

∑∞
n= γn = ∞;

(ii) lim supn→∞ δn ≤  or
∑∞

n= |γnδn| < ∞.
Then limn→∞ an = .

Proposition . (See, e.g., Acedo and Xu []) Let K be a nonempty closed convex subset
of the Hilbert space H. Given an integer N ≥ , assume that {Ti}Ni= : K → H is a finite
family of ki-strict pseudo-contractions. Suppose that {λi}Ni= is a positive sequence such that∑N

i= λi = . Then
∑N

i= λiTi is a k-strict pseudo-contraction with k =max{ki :  ≤ i≤ N}.

Proposition . (See, e.g., Acedo and Xu []) Let {Ti}Ni= and {λi}Ni= be given as in Propo-
sition . above. Then F(

∑N
i= λiTi) =

⋂N
i= F(Ti).

3 Main results
Theorem . Let K be a nonempty closed convex subset of the Hilbert space H and F :
K ×K →R be a bi-function satisfying (A)-(A). Let A be an α-inverse strongly monotone
mapping and B be a strongly positive bounded linear operator onH with γ > . Assume that
{Ti}Ni= : K → H beafinite family of ki-strict pseudo-contractions such thatF =

⋂N
i= F(Ti)∩

EP(F ,A) 
= φ. Suppose f ∈ 	K with a coefficient ρ ∈ (, ) and {η(n)
i }Ni= are finite sequences of

positive numbers such that
∑N

i= η
(n)
i =  for all n ≥ , for a given point x ∈ K, αn,βn ∈ (, ),

rn ∈ (, α) and  < γ < γ

ρ
, the following control conditions are satisfied:

(i) limn→∞ αn = ,
∑∞

n= αn = ∞ and
∑∞

n= |αn – αn–| < ∞;
(ii) ki ≤ βn ≤ λ < , limn→∞ βn = λ and

∑∞
n= |βn – βn–| <∞;

(iii)
∑∞

n=
∑N

i= |η(n)
i – η

(n–)
i | < ∞;

(iv) lim infn→∞ rn >  and
∑∞

n= |rn – rn–| <∞.
Then the sequence {xn} generated by (.) converges strongly to q ∈ F , which solves the
variational inequality

〈
(B – γ f )q,q – p

〉 ≤ , ∀p ∈ F .

http://www.fixedpointtheoryandapplications.com/content/2012/1/125
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Proof PuttingWn =
∑N

i= η
(n)
i Ti, we haveWn : K →H is a k-strict pseudo-contraction and

F(Wn) =
⋂N

i= F(Ti) by Proposition . and ., where k =max{ki :  ≤ i≤ N}.
First, we show that the mapping I – rnA is nonexpansive. Indeed, for each x, y ∈ K , we

have

∥∥(I – rnA)x – (I – rnA)y
∥∥ = ‖x – y‖ – rn〈x – y,Ax –Ay〉 + rn‖Ax –Ay‖

≤ ‖x – y‖ – αrn‖Ax –Ay‖ + rn‖Ax –Ay‖

= ‖x – y‖ – rn(α – rn)‖Ax –Ay‖.

It follows from the condition rn ∈ (, α) that the mapping I – rnA is nonexpansive. From
Lemma ., we see that EP(F ,A) = F(Trn (I – rnA)). Note that un can be rewritten as un =
Trn (I – rnA)xn and p = Trn (I – rnA)p for each n≥  as p ∈ F .
From (.), condition (ii) and Lemma ., we have

‖yn – p‖ =
∥∥βn(un – p) + ( – βn)(Wnun – p)

∥∥

= βn‖un – p‖ + ( – βn)‖Wnun – p‖ – βn( – βn)‖un –Wnun‖

≤ βn‖un – p‖ + ( – βn)
[‖un – p‖ + k‖un –Wnun‖

]
– βn( – βn)‖un –Wnun‖

= ‖un – p‖ – ( – βn)(βn – k)‖un –Wnun‖

≤ ‖un – p‖. (.)

By un = Trn (I – rnA)xn, we obtain

‖un – p‖ = ∥∥Trn (I – rnA)xn – p
∥∥ ≤ ‖xn – p‖.

This together with (.), we see that

‖yn – p‖ ≤ ‖un – p‖ ≤ ‖xn – p‖. (.)

Furthermore, by Lemma ., we have

‖xn+ – p‖ =
∥∥αn

[
γ f (xn) – Bp

]
+ (I – αnB)(yn – p)

∥∥
≤ ( – αnγ )‖yn – p‖ + αn

∥∥γ f (xn) – Bp
∥∥

≤ ( – αnγ )‖yn – p‖ + αn
[∥∥γ f (xn) – γ f (p)

∥∥ +
∥∥γ f (p) – Bp

∥∥]
≤ [

 – (γ – γρ)αn
]‖xn – p‖ + αn

∥∥γ f (p) – Bp
∥∥.

It follows from induction that

‖xn – p‖ ≤ max

{
‖x – p‖, 

γ – γρ

∥∥γ f (p) – Bp
∥∥}

, n≥ , (.)

which gives that sequence {xn} is bounded, and so are {un} and {yn}.

http://www.fixedpointtheoryandapplications.com/content/2012/1/125
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Define a mapping Snx := βnx + ( – βn)Wnx for each x ∈ K . Then Sn : K → H is non-
expansive. Indeed, by using (.), Lemma . and condition (ii), we have for all x, y ∈ K
that

‖Snx – Sny‖ =
∥∥βn(x – y) + ( – βn)(Wnx –Wny)

∥∥

= βn‖x – y‖ + ( – βn)‖Wnx –Wny‖

– βn( – βn)
∥∥x –Wnx – (y –Wny)

∥∥

≤ βn‖x – y‖ + ( – βn)
[‖x – y‖ + k

∥∥x –Wnx – (y –Wny)
∥∥]

– βn( – βn)
∥∥x –Wnx – (y –Wny)

∥∥

= ‖x – y‖ – ( – βn)(βn – k)
∥∥x –Wnx – (y –Wny)

∥∥

≤ ‖x – y‖,

which shows that Sn : K →H is nonexpansive.
Next, we show that limn→∞ ‖xn+ – xn‖ = . From (.) and Lemma ., we have

‖xn+ – xn‖ =
∥∥αnγ f (xn) + (I – αnB)yn –

[
αn–γ f (xn–) + (I – αn–B)yn–

]∥∥
≤ αnγ

∥∥f (xn) – f (xn–)
∥∥ + |αn – αn–|

[
γ
∥∥f (xn–)∥∥ + ‖Byn–‖

]
+

∥∥(I – αnB)(yn – yn–)
∥∥

≤ αnγρ‖xn – xn–‖ + |αn – αn–|M + ( – αnγ )‖yn – yn–‖, (.)

whereM = supn≥{γ ‖f (xn)‖ + ‖Byn‖} < ∞. Moreover, we note that yn = Snun and

‖yn – yn–‖ ≤ ‖Snun – Snun–‖ + ‖Snun– – Sn–un–‖
≤ ‖un – un–‖ +

∥∥βnun– + ( – βn)Wnun–

–
[
βn–un– + ( – βn–)Wn–un–

]∥∥
≤ ‖un – un–‖ + |βn – βn–|‖un– –Wn–un–‖

+ ( – βn)‖Wnun– –Wn–un–‖

≤ ‖un – un–‖ + |βn – βn–|M + ( – βn)
N∑
i=

∣∣η(n)
i – η

(n–)
i

∣∣‖Tiun–‖, (.)

whereM = supn≥{‖un– –Wn–un–‖}. On the other hand, we note that

⎧⎨
⎩F(un, y) + 〈Axn, y – un〉 + 

rn 〈y – un,un – xn〉 ≥ ,

F(un–, y) + 〈Axn–, y – un–〉 + 
rn–

〈y – un–,un– – xn–〉 ≥ .
(.)

Putting y = un– and y = un in (.) respectively, we have

⎧⎨
⎩F(un,un–) + 〈Axn,un– – un〉 + 

rn 〈un– – un,un – xn〉 ≥ ,

F(un–,un) + 〈Axn–,un – un–〉 + 
rn–

〈un – un–,un– – xn–〉 ≥ .
(.)

http://www.fixedpointtheoryandapplications.com/content/2012/1/125
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It follows from (A) that
〈
un – un–,

un– – (I – rn–A)xn–
rn–

–
un – (I – rnA)xn

rn

〉
≥ ,

and hence〈
un – un–,un– – un + un – (I – rn–A)xn– –

rn–
rn

[
un – (I – rnA)xn

]〉 ≥ .

Since limn→∞ rn > , we assume that there exists a real number μ such that rn > μ >  for
all n ∈N . Consequently, we have

‖un – un–‖ ≤
〈
un – un–, (I – rnA)xn – (I – rn–A)xn–

+
(
 –

rn–
rn

)[
un – (I – rnA)xn

]〉

≤ ‖un – un–‖
[
‖xn – xn–‖ + |rn – rn–|‖Axn–‖

+
rn – rn–

rn

∥∥un – (I – rnA)xn
∥∥]

,

and hence

‖un – un–‖ ≤ ‖xn – xn–‖ + |rn – rn–|‖Axn–‖ + rn – rn–
rn

∥∥un – (I – rnA)xn
∥∥

≤ ‖xn – xn–‖ + |rn – rn–|
[
‖Axn–‖ + 

μ

∥∥un – (I – rnA)xn
∥∥]

≤ ‖xn – xn–‖ + |rn – rn–|M, (.)

where M = sup{‖Axn–‖ + 
μ
‖un – (I – rnA)xn‖,n ∈ N}. Combining (.), (.) and (.),

we have

‖xn+ – xn‖ ≤ αnγρ‖xn – xn–‖ + |αn – αn–|M + ( – αnγ )

[
‖xn – xn–‖

+ |βn – βn–|M + |rn – rn–|M + ( – βn)
N∑
i=

∣∣η(n)
i – η

(n–)
i

∣∣‖Tiun–‖
]

≤ [
 – (γ – γρ)αn

]‖xn – xn–‖ + |αn – αn–|M + |βn – βn–|M

+ |rn – rn–|M +
N∑
i=

∣∣η(n)
i – η

(n–)
i

∣∣‖Tiun–‖.

It follows from  < γ < γ

ρ
and Lemma . that

lim
n→∞‖xn+ – xn‖ = . (.)

Moreover, we observe that

‖xn – yn‖ ≤ ‖xn – xn+‖ + ‖xn+ – yn‖ ≤ ‖xn – xn+‖ + αn
∥∥γ f (xn) – Byn

∥∥.
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It follows from limn→∞ αn =  and (.) that

lim
n→∞‖xn – yn‖ = . (.)

For p ∈ F(Sn)∩ EP(F ,A), we note that un = Trn (I – rnA)xn and

‖un – p‖ = ∥∥Trn (I – rnA)xn – Trn (I – rnA)p
∥∥ ≤ 〈xn – p,un – p〉

=


(‖xn – p‖ + ‖un – p‖ – ‖xn – un‖

)
,

which implies that

‖un – p‖ ≤ ‖xn – p‖ – ‖xn – un‖. (.)

From (.), (.) and (.), we have

‖xn+ – p‖ =
∥∥αn

[
γ f (xn) – Bp

]
+ (I – αnB)(yn – p)

∥∥

≤ ( – αnγ )‖yn – p‖ + α
n
∥∥γ f (xn) – Bp

∥∥

+ αn( – αnγ )
∥∥γ f (xn) – Bp

∥∥‖yn – p‖
≤ ‖un – p‖ + α

n
∥∥γ f (xn) – Bp

∥∥ + αn
∥∥γ f (xn) – Bp

∥∥‖yn – p‖
≤ ‖xn – p‖ – ‖xn – un‖ + α

n
∥∥γ f (xn) – Bp

∥∥

+ αn
∥∥γ f (xn) – Bp

∥∥‖yn – p‖.

Using limn→∞ αn =  and (.) again, we obtain

lim
n→∞‖xn – un‖ = lim

n→∞
∥∥xn – Trn (I – rnA)xn

∥∥ = . (.)

By the nonexpansion of Sn, we have

‖xn – Snxn‖ ≤ ‖xn – xn+‖ + ‖xn+ – Snxn‖
≤ ‖xn – xn+‖ +

∥∥αnγ f (xn) + (I – αnB)yn – Snxn
∥∥

≤ ‖xn – xn+‖ + αn
[∥∥γ f (xn)

∥∥ + ‖Byn‖
]
+ ‖Snun – Snxn‖

≤ ‖xn – xn+‖ + αn
[∥∥γ f (xn)

∥∥ + ‖Byn‖
]
+ ‖un – xn‖.

This together with (.) and (.), we obtain

lim
n→∞‖xn – Snxn‖ = . (.)

Furthermore, we note that

‖xn – Snxn‖ = ( – βn)‖xn –Wnxn‖.

It follows from condition (ii) that

lim
n→∞‖xn –Wnxn‖ = . (.)
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On the other hand, by condition (iii), we may assume that η
(n)
i → ηi as n → ∞ for ev-

ery  ≤ i ≤ N . It is easily seen that each ηi >  and
∑N

i= ηi = . Define W =
∑N

i= ηiTi,
thenW : K →H is a k-strict pseudo-contraction such that F(W ) = F(Wn) =

⋂N
i= F(Ti) by

Proposition . and .. Consequently,

‖xn –Wxn‖ ≤ ‖xn –Wnxn‖ + ‖Wnxn –Wxn‖

≤ ‖xn –Wnxn‖ +
N∑
i=

∣∣η(n)
i – ηi

∣∣‖Tixn‖,

which implies that

lim
n→∞‖xn –Wxn‖ = . (.)

Combining (.) and (.), we obtain

lim
n→∞‖Wnxn –Wxn‖ = . (.)

Define S : K →H by Sx = λx+ ( –λ)Wx. By condition (ii) again, we have limn→∞ βn = λ ∈
[k, ). Then, S is nonexpansive with F(S) = F(W ) by Lemma .. Notice that

‖xn – Sxn‖ ≤ ‖xn – Snxn‖ + ‖Snxn – Sxn‖
= ‖xn – Snxn‖ +

∥∥βnxn + ( – βn)Wnxn – λxn – ( – λ)Wxn
∥∥

≤ ‖xn – Snxn‖ + |βn – λ|‖xn –Wxn‖ + ( – βn)‖Wnxn –Wxn‖.

It follows from (.), (.) and (.) that

lim
n→∞‖xn – Sxn‖ = . (.)

Now we claim that lim supn→∞〈(B – γ f )q,q – xn〉 ≤ , where q = limt→ xt with xt being
the fixed point of the contraction �n on H defined by

�nx = tγ f (x) + (I – tB)SnTrn (I – rnA)x, ∀x ∈H ,n ∈N ,

where t ∈ (, ). Indeed, by Lemma . and ., we have

‖�nx –�ny‖ ≤ tγ
∥∥f (x) – f (y)

∥∥ + ( – tγ )
∥∥SnTrn (I – rnA)x – SnTrn (I – rnA)y

∥∥
≤ tγρ‖x – y‖ + ( – tγ )

∥∥Trn (I – rnA)x – Trn (I – rnA)y
∥∥

≤ tγρ‖x – y‖ + ( – tγ )‖x – y‖
=

[
 – (γ – γρ)t

]‖x – y‖,

for all x, y ∈H . Since  <  – (γ – γρ)t < , it follows that �n is a contraction. Therefore, by
the Banach contraction principle, �n has a unique fixed point xt ∈H such that

xt = tγ f (xt) + (I – tB)SnTrn (I – rnA)xt .
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By Lemma . and (.), we have

‖xt – xn‖ =
∥∥(I – tB)

[
SnTrn (I – rnA)xt – xn

]
+ t

[
γ f (xt) – Bxn

]∥∥

≤ ( – γ t)
∥∥SnTrn (I – rnA)xt – xn

∥∥ + t
〈
γ f (xt) – Bxn,xt – xn

〉
= ( – γ t)

∥∥SnTrn (I – rnA)xt – SnTrn (I – rnA)xn + SnTrn (I – rnA)xn – xn
∥∥

+ t
〈
γ f (xt) – Bxn,xt – xn

〉
≤ ( – γ t)

[‖xt – xn‖ + ‖yn – xn‖
] + t

〈
γ f (xt) – Bxn,xt – xn

〉
≤ ( – γ t)‖xt – xn‖ +ψn(t) + t

〈
γ f (xt) – Bxt ,xt – xn

〉
+ t〈Bxt – Bxn,xt – xn〉, (.)

where ψn(t) = ( – γ t)(‖xt – xn‖ + ‖yn – xn‖)‖yn – xn‖ →  as n → ∞. Observe B is
strongly positive, we obtain

〈Bxt – Bxn,xt – xn〉 =
〈
B(xt – xn),xt – xn

〉 ≥ γ ‖xt – xn‖. (.)

Combining (.) and (.), we have

t
〈
Bxt – γ f (xt),xt – xn

〉 ≤ (
γ t – γ t

)‖xt – xn‖ +ψn(t) + t〈Bxt – Bxn,xt – xn〉
≤ (

γ t – t
)〈
B(xt – xn),xt – xn

〉
+ψn(t)

+ t〈Bxt – Bxn,xt – xn〉
= γ t〈Bxt – Bxn,xt – xn〉 +ψn(t).

It follows that

〈
Bxt – γ f (xt),xt – xn

〉 ≤ γ t


〈Bxt – Bxn,xt – xn〉 + 
t

ψn(t). (.)

Let n→ ∞ in (.) and note that ψn(t)→  as n→ ∞ yields

lim sup
n→∞

〈
Bxt – γ f (xt),xt – xn

〉 ≤ t

M, (.)

where M is an appropriate positive constant such that M ≥ γ 〈Bxt – Bxn,xt – xn〉 for all
t ∈ (, ) and n≥ . Taking t →  from (.), we have

lim sup
t→

lim sup
n→∞

〈
Bxt – γ f (xt),xt – xn

〉 ≤ . (.)

On the other hand, we have

〈
γ f (q) – Bq,xn – q

〉
=

〈
γ f (q) – Bq,xn – q

〉
–

〈
γ f (q) – Bq,xn – xt

〉
+

〈
γ f (q) – Bq,xn – xt

〉
–

〈
γ f (q) – Bxt ,xn – xt

〉
+

〈
γ f (q) – Bxt ,xn – xt

〉
–

〈
γ f (xt) – Bxt ,xn – xt

〉
+

〈
γ f (xt) – Bxt ,xn – xt

〉
.
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It follows that

lim sup
n→∞

〈
γ f (q) – Bq,xn – q

〉
≤ ∥∥γ f (q) – Bq

∥∥‖xt – q‖ + ‖B‖‖xt – q‖ lim
n→∞‖xn – xt‖

+ γρ‖xt – q‖ lim
n→∞‖xn – xt‖ + lim sup

n→∞
〈
γ f (xt) – Bxt ,xn – xt

〉
.

Therefore, from (.) and limt→ xt = q, we have

lim sup
n→∞

〈
γ f (q) – Bq,xn – q

〉
= lim sup

t→
lim sup
n→∞

〈
γ f (q) – Bq,xn – q

〉
≤ lim sup

t→

∥∥γ f (q) – Bq
∥∥‖xt – q‖

+ lim sup
t→

‖B‖‖xt – q‖ lim
n→∞‖xn – xt‖

+ lim sup
t→

γρ‖xt – q‖ lim
n→∞‖xn – xt‖

+ lim sup
t→

lim sup
n→∞

〈
γ f (xt) – Bxt ,xn – xt

〉
≤ . (.)

Finally, we prove that xn → q as n→ ∞. From (.) and (.) again, we have

‖xn+ – q‖ =
〈
αnγ f (xn) + (I – αnB)yn – q,xn+ – q

〉
= αn

〈
γ f (xn) – Bq,xn+ – q

〉
+

〈
(I – αnB)(yn – q),xn+ – q

〉
≤ αnγ

〈
f (xn) – f (q),xn+ – q

〉
+ αn

〈
γ f (q) – Bq,xn+ – q

〉
+ ( – αnγ )‖yn – q‖‖xn+ – q‖

≤ αnγρ‖xn – q‖‖xn+ – q‖ + αn
〈
γ f (q) – Bq,xn+ – q

〉
+ ( – αnγ )‖xn – q‖‖xn+ – q‖

=
[
 – (γ – γρ)αn

]‖xn – q‖‖xn+ – q‖ + αn
〈
γ f (q) – Bq,xn+ – q

〉
≤  – (γ – γρ)αn


(‖xn – q‖ + ‖xn+ – q‖) + αn

〈
γ f (q) – Bq,xn+ – q

〉
≤  – (γ – γρ)αn


‖xn – q‖ + 


‖xn+ – q‖ + αn

〈
γ f (q) – Bq,xn+ – q

〉
.

It follows that

‖xn+ – q‖ ≤ [
 – (γ – γρ)αn

]‖xn – q‖ + αn
〈
γ f (q) – Bq,xn+ – q

〉
. (.)

From  < γ < γ

ρ
, condition (i) and (.), we can arrive at the desired conclusion

limn→∞ ‖xn – q‖ =  by Lemma .. This completes the proof. �

Theorem . Let K be a nonempty closed convex subset of the Hilbert space H and
F : K ×K →R be a bi-function satisfying (A)-(A). Let A be an α-inverse strongly mono-
tone mapping, f ∈ 	K with a coefficient ρ ∈ (, ) and B be a strongly positive bounded lin-
ear operator onH with γ >  and  < γ < γ

ρ
. Let T : K → H be a k-strict pseudo-contraction
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such that F = F(T) ∩ EP(F ,A) 
= φ. Let {xn} be a sequence generated by x ∈ K in the fol-
lowing manner:

⎧⎪⎪⎨
⎪⎪⎩
F(un, y) + 〈Axn, y – un〉 + 

r 〈y – un,un – xn〉 ≥ , ∀y ∈ K ,

yn = βnun + ( – βn)Tun,

xn+ = αnγ f (xn) + (I – αnB)yn, n≥ ,

where {αn} and {βn} are two sequences in (, ), constant r ∈ (, α). If the following control
conditions are satisfied:

(i) limn→∞ αn = ,
∑∞

n= αn = ∞ and
∑∞

n= |αn – αn–| < ∞;
(ii) k ≤ βn ≤ λ < , limn→∞ βn = λ and

∑∞
n= |βn – βn–| <∞.

Then the sequence {xn} converges strongly to q ∈ F , which solves the variational inequality

〈
(B – γ f )q,q – p

〉 ≤ , ∀p ∈ F .

Proof Putting rn = r and N = , i.e., Wn = T , the desired conclusion follows immediately
from Theorem .. This completes the proof. �

Theorem . Let K be a nonempty closed convex subset of the Hilbert space H and F :
K × K → R be a bi-function satisfying (A)-(A). Let f ∈ 	K with a coefficient ρ ∈ (, )
and B be a strongly positive bounded linear operator on H with γ >  and  < γ < γ

ρ
. Let

T : K → H be a k-strict pseudo-contraction such that F = F(T)∩ EP(F) 
= φ. Let {xn} be a
sequence generated by x ∈ K in the following manner:

⎧⎪⎪⎨
⎪⎪⎩
F(un, y) + 

rn 〈y – un,un – xn〉 ≥ , ∀y ∈ K ,

yn = βnun + ( – βn)Tun,

xn+ = αnγ f (xn) + (I – αnB)yn, n≥ ,

where {αn} and {βn} are two sequences in (, ), sequence {rn} ⊂ (, α). If the following
control conditions are satisfied:

(i) limn→∞ αn = ,
∑∞

n= αn = ∞ and
∑∞

n= |αn – αn–| < ∞;
(ii) k ≤ βn ≤ λ < , limn→∞ βn = λ and

∑∞
n= |βn – βn–| <∞;

(iii) lim infn→∞ rn >  and
∑∞

n= |rn – rn–| <∞.
Then the sequence {xn} converges strongly to q ∈ F , which solves the variational inequality

〈
(B – γ f )q,q – p

〉 ≤ , ∀p ∈ F .

Proof Putting N =  and A = , i.e., the generalized equilibrium problem (.) reduces to
the normal equilibrium problem (.), the desired conclusion follows immediately from
Theorem .. This completes the proof. �

Remark . Theorem . and . improve and extend the main results of Takahashi and
Takahashi [] and Qin et al. [] in different directions.

Remark . Theorem . is mainly due to Liu [], which improves and extends themain
results of Takahashi and Takahashi [].
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Remark . If F = A =  and un = xn, then the algorithm (.) reduces to approximate the
fixed point of k-strict pseudo-contractions, which includes the general iterative method
of Marino and Xu [] and the parallel algorithm of Acedo and Xu [] as special cases.
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