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Abstract

An iterative procedure for a map T is said to be stable if the approximate sequence
arising in numerical praxis converges to the point anticipated by the theoretical
sequence. The study of stability of iterative procedures plays a vital role in
computational analysis, game theory, computer programming, and fractal geometry.
In generation of fractals, a sequence of approximations produces a stable set
attractor only if the corresponding iterative procedure shows a stable behavior. The
purpose of this article is to discuss stability of the Picard iterative procedure for a
map T satisfying Zamfirescu multi-valued contraction on a metric space.
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1 Introduction
Let (X, d) be a metric space and T: X ® X. The solution of a fixed point equation Tx

= x for any x Î X, is usually approximated by a sequence {xn} in X generated by an

iterative procedure f(T, xn) that converges to a fixed point of T. However, in actual

computations, we obtain an approximate sequence {yn} instead of the actual sequence

{xn}. Indeed, the approximate sequence {yn} is calculated in the following manner.

First, we choose an initial approximation x0 Î X. Then we compute x1 = f(T, x0). But,

due to rounding off or discretization of the function, we get an approximate value y1,

say, which is close enough to x1, i.e., y1 ≈ x1. Consequently, when computing x2, we

actually compute y2 ≈ x2. In this way, we obtain an approximate sequence {yn} instead

of the actual sequence {xn}. The iterative procedure f(T, xn) is considered to be numeri-

cally stable if and only if the approximate sequence {yn} still converges to the desired

solution of the equation Tx = x. Urabe [1] initiated the study of this problem. The

study of stability of iterative procedures plays a significant role in numerical mathe-

matics due to chaotic behavior of functions and discretization of computations in com-

puter programming. For a detailed discussion on the role of stability of iterative

procedures, one may refer to Czerwik et al. [2,3], Harder and Hicks [4-6], Lim [7],

Matkowski and Singh [8], Ortega and Rheinboldt [9], Osilike [10,11], Ostrowski [12],

Rhoades [13,14], Rus et al. [15] and Singh et al. [16].

However, Ostrowski [12] was the first to obtain the following classical stability result

on metric spaces.

Theorem 1.1. Let (X, d) be a complete metric space and T: X ® X a Banach con-

traction with contraction constant q, i.e., d(Tx, Ty) ≤ qd(x, y) for all x, y Î X, where 0
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≤ q <1. Let p be the fixed point of T. Let x0 Î X and xn+1 = Txn, n = 0, 1, 2,.... Suppose

that {yn} is a sequence in X and εn = d(yn+1, Tyn). Then

d(p, yn+1) ≤ d(p, xn+1) + qn+1d(x0, y0) +
n∑
j=0

qn−jεj.

Moreover, limn yn = p if and only if limn εn = 0.

This result has found a respectable place in numerical analysis and computer pro-

gramming and further extended by Harder and Hicks [5,6], Jachymski [17], Osilike

[10,11,18], Osilike and Udomene [19], Rhoades [13,14], Czerwik et al. [2] and Zhou

[20].

The classical result on stability due to Ostrowski has been extended to multi-valued

maps by Singh and Chadha [21] and further extended by Singh and Bhatnagar [22]

and Singh et al. [23].

Furhter, stability of iterative procedures has a remarkable importance in fractal gra-

phics while generating fractals. Its usefulness lies in the fact that in fractal graphics,

fractal objects are generated by an infinite recursive process of successive approxima-

tions. An itertive procedure produces a sequence of results and tends towards one

final object called a set attractor (fractal), which is independent of the initial choice.

This stable character of set attractor is due to the stability of iterative procedure, else

the system of underlying successive approximations would show chaotic behavior and

never settle into a stationary state. However, fractals themselves have a variety of appli-

cations in digital imaging, mobile computing, architecture and construction, various

branches of engineering and applied sciences. For recent potential applications of frac-

tal geometry in related fields, one may refer to Batty and Longley [24], Buser et al.

[25], Lee and Hsieh [26], Mistakeidis and Panagouli [27], Shaikh et al. [28] and Zmes-

kal et al. [29]. For connections of the round-off stability with the concept of limit sha-

dowing for a fixed point problem involving multi-valued maps, one may refer to

Petrusel and Rus [30].

The purpose of this article is to discuss the stability of Picard iterative procedure, i.e.,

xn+1 Î f(T, xn) = Txn for a map T satisfying Zamfirescu multi-valued contraction (cf.

Definition 2.2).

2 Preliminaries
This section is primarily devoted to notations and definitions to be used in the sequel.

2.1 Multivalued contractions

Let (X, d) be a metric space and

CB(X) = {A: A is a nonempty closed bounded subset of X},

CL(X) = {A: A is a nonempty closed subset of X}.

For A, B Î CL(X) and ε >0,

N(ε, A) = {x ∈ X : d(x, a) < ε for some a ∈ A},
EA,B = {ε > 0 : A ⊆ N(ε, B), B ⊆ N(ε, A)},

H(A, B) =
{
inf EA,B if EA,B �= φ,
+∞ if EA,B = φ.
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H is called the generalized Hausdorff metric (resp. Hausdorff metric) for CL(X) (resp.

CB(X)) induced by d. For any nonempty subsets A, B of X, d(A, B) will denote the gap

between the subsets A and B, while we write d(a, B) for d(A, B) when A = {a}.

An orbit O(x0) of a multi-valued map T at a point x0 is a sequence {xn: xn Î Txn-1, n

= 1, 2,...}. For a single-valued map T, this orbit is {xn: xn = Txn-1, n = 1, 2,...}. A space

X is said to be T-orbitally complete [31,32] if every Cauchy sequence which is con-

tained in O(x0) for some initial point x0 Î X converges in X.

The study of fixed point theorems for multi-valued contractions was initiated by

Markin [33] and Nadler [34]. The notion of multi-valued contractions have been gen-

eralized by many authors. For a good discussion on fixed point theorems for multi-

valued contractions, one may refer to Ćirić [31,32], Czerwik [35,36], Neammanee and

Kalwkhao [37] and Rus and Petrusel [15,30]. However for the sake of comparison, we

consider the following three conditions.

Let (X, d) be a complete metric space and let T: X ® CL(X). Then

Definition 2.1. (Nadler [34,38])

A map T: X ® CL(X) is called a Nadler multi-valued contraction if

H(Tx, Ty) ≤ qd(x, y)

for all x, y Î X, where 0 ≤ q <1.

Definition 2.2. (Zamfirescu [39])

A map T: X ® CL(X) is called a Zamfirescu multi-valued contraction if there exist

real numbers a, b, and g satisfying 0 ≤ a <1, 0 ≤ β < 1
2 and 0 ≤ γ < 1

2 such that for

each x, y Î X at least one of the following is true:

(i) H(Tx, Ty) ≤ ad(x, y),
(ii) H(Tx, Ty) ≤ b[d(x, Tx) + d(y, Ty)],

(iii) H(Tx, Ty) ≤ g[d(x, Ty) + d(y, Tx)].

Definition 2.3. (Ćirić [31])

A map T: X ® CL(X) is called a Ćirić generalized multi-valued contraction if there

exists a nonnegative number q such that

H(Tx, Ty) ≤ qmax
{
d(x, y), d(x, Tx), d(y, Ty),

1
2
(d(x, Ty) + d(y, Tx))

}
(2:1)

for all x, y Î X.

We remark that a Nadler multi-valued contraction (cf. Definition 2.1) is continuous,

while T in Definition 2.2 need not be continuous. If we take T: X ® X, then (i) Defini-

tion 2.1 is the classical Banach contraction, (ii) Definition 2.2 is due to Zamfirescu [39]

and (iii) Definition 2.3 is due to Ćirić [40]. In a comprehensive comparison of contrac-

tive maps, Rhoades [41] has listed 25 conditions for a single-valued map in a metric

space. We remark that, for T: X ® X, the conditions given in Definition 2.1, 2.2, and

2.3 are respectively the conditions (1), (19), and (21’). For a comparison of contractive

conditions for single valued maps more general than (21’), one may refer to Park [42]

and see also Sessa and Cho [43]. Evidently, Nadler multi-valued contraction ⇒ Zamfir-

escu multi-valued contraction ⇒ Ćirić generalized multi-valued contraction.

We cite the following result due to Ćirić [31].

Theorem 2.1. Let T: X ® CL(X) be a Ćirić generalized multi-valued contraction such

that X is T-orbitally complete. Then:
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(i) for each x0 Î X, there exists an orbit {xn} of T at x0 and a point p Î X such that

limn xn = p;

(ii) p Î Tp.

2.2 Stability of multivalued operators

Let X be a metric space and T: X ® CL(X). For a point x0 Î X, let

xn+1 ∈ f (T, xn) (2:2)

denote some iteration procedure. Let the sequence {xn} be convergent to a fixed

point p of T. Let {yn} be an arbitrary sequence in X and set

εn = H(yn+1, f (T, yn)), n = 0, 1, 2, . . . .

If limn εn = 0 implies that limn yn = p then the iteration process defined in (2.2) is

said to be T-stable or stable with respect to T (cf. [21]).

Ostrowski’s stablity theorem [12] says that Picard iterative procedure for (single-

valued) Banach contraction is stable. Following is the extension of this theorem to

multivalued contractions given by Singh and Chadha [21].

Theorem 2.2. Let X be a complete metric space and T: X ® CL(X) such that the

condition given in Definition 2.1 holds for all x, y Î X. Let x0 be an arbitrary point in

X and {xn}∞n=1an orbit for T at x0 such that {xn}∞n=1 is convergent to a fixed point p of T.

Let {yn} be a sequence in X, and set

εn = H(yn+1, Tyn), n = 0, 1, 2, . . . .

Then

d(p, yn+1) ≤ d(p, xn+1) + qn+1d(x0, y0) +
n∑
j=0

qn−jεj.

Further, if Tp is singleton then

lim
n

yn = p if and only if lim
n

εn = 0.

We shall need the following result.

Lemma 2.1. (Harder and Hicks [6])

If c is a real number such that 0 < | c | <1 and {bk}∞k=0is a sequence of real numbers

such that lim
k→∞

bk = 0 , then lim
n→∞(

n∑
k=0

cn−kbk) = 0 .

3 Main results
Theorem 3.1. Let X be a complete metric space and T: X ® CL(X) a Zamfirescu

multi-valued contraction (cf. Definition 2.2). Let x0 be an arbitrary point in X and

{xn}∞n=1an orbit for T at x0 such that {xn}∞n=1 is convergent to a fixed point p of T. Let

{yn}∞n=1be a sequence in X and set εn = H(yn+1, Tyn), n = 0, 1, 2,.... Then

(I) d(p, yn+1) ≤ d(p, xn+1) +
n∑

k=0
2δn+1−kH(xk, Txk) + δn+1d(x0, y0) +

n∑
k=0

δn−kεk ,

where δ = max{α, β

1−β
, γ

1−γ
}and n = 0, 1, ....

Further, if Tp is singleton then
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(II) lim
n→∞ yn = p if and only if lim

n→∞ εn = 0 .

Proof: Let x, y Î X. Since T is a Zamfirescu multi-valued contraction, T satisfies one

of (i), (ii), and (iii). If (ii) holds, then

H(Tx, Ty) ≤ β[d(x, Tx) + d(y, Ty)]

≤ β[H(x, Tx) +H(y, Ty)]

≤ β[H(x, Tx) +H(y, x) +H(x, Tx) +H(Tx, Ty)]

= β[2H(x, Tx) + d(y, x) +H(Tx, Ty)].

So,

H(Tx, Ty) ≤ 2β

1 − β
H(x, Tx) +

β

1 − β
d(x, y).

If (iii) holds, then

H(Tx, Ty) ≤ γ [d(x, Ty) + d(y, Tx)]

≤ γ [H(x, Ty) +H(y, Tx)]

≤ γ [H(x, Tx) +H(Tx, Ty) +H(y, x) +H(x, Tx)]

= γ [2H(x, Tx) + d(x, y) +H(Tx, Ty)],

that is

H(Tx, Ty) ≤ 2γ

1 − γ
H(x, Tx) +

γ

1 − γ
d(x, y).

Thus at least one of the following is true for any x, y Î X:

(i) H(Tx, Ty) ≤ ad(x, y),

(ii’) H(Tx, Ty) ≤ 2β

1−β
H(x, Tx) + β

1−β
d(x, y) .

(iii’) H(Tx, Ty) ≤ 2γ

1−γ
H(x, Tx) + γ

1−γ
d(x, y) .

Let δ = max{α, β

1−β
, γ

1−γ
} . Then

(i*) H(Tx, Ty) ≤ 2δH(x, Tx) + δd(x, y)

for any x, y Î X.

Let n be a nonnegative integer. Since

d(p, yn+1) ≤ d(p, xn+1) + d(xn+1, yn+1), (3:1)

we have

d(xn+1, yn+1) ≤ H(Txn, yn+1)

≤ H(Txn, Tyn) +H(Tyn, yn+1)

≤ 2δH(xn, Txn) + δd(xn, yn) + εn.

(3:2)

Consequently

d(xn, yn) ≤ 2δH(xn−1, Txn−1) + δd(xn−1, yn−1) + εn−1. (3:3)
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Therefore using (3.2) and (3.3) in (3.1), we obtain

d(p, yn+1) ≤ d(p, xn+1) + 2δH(xn, Txn) + εn

+ δ[2δH(xn−1, Txn−1) + δd(xn−1, yn−1) + εn−1]

= d(p, xn+1) + 2[δH(xn, Txn) + δ2H(xn−1, Txn−1)]

+ δ2d(xn−1, yn−1) + (εn + δεn−1).

Repeat this process (n - 1) times to obtain

d(p, yn+1) ≤ d(p, xn+1) +
n∑

k=0

2δn+1−kH(xk, Txk) + δn+1d(x0, y0) +
n∑

k=0

δn−kεk.

This proves (I).

By (i*), we have

εn = H(yn+1, Tyn)

≤ d(yn+1, p) +H(p, Tp) +H(Tp, Tyn)

≤ d(yn+1, p) +H(p, Tp) + 2δH(p, Tp) + δd(p, yn).

This yields εn ® 0 as n ® ∞, since Tp = {p} by hypothesis.

Conversly, suppose that εn ® 0 as n ® ∞.

First, we assert that lim
k→∞

H(xk,Txk) = 0 , if Tp = {p}. For

H(xk,Txk) ≤ H(xk, {p}) ≤ d(xk, {p}) +H(Tp,Txk). (3:4)

Since T is a Zamfirescu multi-valued contraction, it follows from (i), (ii), and (iii), (cf.

Definition 2.2), that {Txk} is a Cauchy sequence. Consequently, Txk ® Tp as k ® ∞. So

making k ® ∞, (3.4) yields the assertion.

Note that 0 ≤ δ <1.

If δ = 0, then (I) yields lim
n→∞ yn = p . So assume that 0 < δ <1.

Then δn+1d(x0, y0) ® 0 as n ® ∞.

Since lim
k→∞

H(xk,Txk) = 0, lim
k→∞

εk = 0 . Therefore, by Lemma (2.1),

n∑
k=0

2δn+1−kH(xk,Txk) → 0 and
n∑

k=0
δn−kεk → 0 as n → ∞.

Hence from (I), lim
n→∞ yn = p .□

We remark that the second term on the right-hand side of the conclusion (I)

vanishes when b = g = 0. So we have the following.

Corollary 3.1. Theorem 2.2.

Proof: It comes from Theorem 3.1 when a = q and b = g = 0.

Corollary 3.2. (Harder and Hicks [6])

Let (X, d) be a complete metric space and let T: X ® X be a Zamfirescu contraction.

Let p be the fixed point of T. Let x0 Î X, and put xn+1 = Txn for n = 0, 1, 2,..., so that

lim
n→∞ xn = p . Let {yn}∞n=0 be a sequence in X and set εn = d(yn+1, Tyn), n = 0, 1, 2,.. ..

Then
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(Ia) d(p, yn+1) ≤ d(p, xn+1) +
n∑

k=0

2δn+1−kd(xk, xk+1) + δn+1d(x0, y0) +
n∑

k=0

δn−kεk, where

δ = max{α, β

1−β
, γ

1−γ
} and n = 0, 1,....

Further, if Tp is singleton then

(IIa) lim
n→∞ yn = p if and only if lim

n→∞ εn = 0 .

Proof: It is exactly derivable from Theorem 3.1 when εn = H(yn+1, Tyn) = d(yn+1, Tyn)

when T is single valued. Further, H(xn, Txn) = d(xn, xn+1), if the map T is single-valued.

We remark that p Î X in (II) of Theorem 3.1, is not required to be the unique fixed

point of T. The related condition emphasizes that Tp contains just one point.

The following, due to an idea of Singh and Whitfield [[44], p. 226] and Singh and

Chadha [[21], p. 190], is another extension of Corollary 3.1.

Theorem 3.2. Let all the hypotheses of Theorem 3.1 hold, wherein the definition of εn
is replaced as follows:

εn = d(yn+1, pn), pn ∈ Tyn,n = 0, 1, 2....

Then

(III) d(p, yn+1) ≤ d(p, xn+1) +
n∑

k=0
2δn+1−kH(xk,Txk) + δn+1d(x0, y0) +

n∑
k=0

δn−k(εk +Hk) ,

where Hk = H(xk+1, Txk).

Further, if Tp is singleton then

(IVa) lim
n→∞ yn = p then lim

n→∞ εn = 0 ,

(IVb) If T is continuous and lim
n→∞ εn = 0 then lim

n→∞ yn = p .

Proof: Since T is Zamfirescu multi-valued contraction in Theorem 3.2, we recall by

(i*) the following property: H(Txn, Tyn) ≤ 2δH(xn, Txn) + δd(xn, yn)

for any xn, yn Î X. Therefore for any nonnegative integer n,

d(xn+1, yn+1) ≤ d(xn+1, pn) + d(pn, yn+1)

≤ H(xn+1,Tyn) + εn

≤ H(xn+1,Txn) +H(Txn,Tyn) + εn

≤ Hn + 2δH(xn,Txn) + δd(xn, yn) + εn

≤ Hn + 2δH(xn,Txn) + δ[Hn−1 + 2δH(xn−1,Txn−1)

+ δd(xn−1, yn−1) + εn−1] + εn

≤ δ2d(xn−1, yn−1) + 2δ[H(xn,Txn) + δH(xn−1,Txn−1)]

+ δ(Hn−1 + εn−1) + (Hn + εn).

Inductively,

d(xn+1, yn+1) ≤
n∑

k=0

2δn+1−kH(xk,Txk) + δn+1d(x0, y0) +
n∑

k=0

δn−k(Hk + εk),

and the relation (III) follows as in the proof of (I).

To prove (IVa), first assume that yn ® p as n ® ∞.

Then εn = d(yn+1, pn) ≤ H(yn+1, Tyn).

This, as in proof of Theorem 3.1, gives limn εn = 0.

Singh et al. Fixed Point Theory and Applications 2012, 2012:12
http://www.fixedpointtheoryandapplications.com/content/2012/1/12

Page 7 of 10



Now assume that T is continuous and limn εn = 0. From (III),

d(p, yn+1) ≤ d(p, xn+1) +
n∑

k=0

2δn+1−kH(xk,Txk) + δn+1d(x0, y0) +
n∑

k=0

δn−ktk,

where tk = (εk + Hk). In view of the (corresponding part of the) proof of Theorem

3.1, it is sufficient to show that the sequence {tk} is convergent to 0. Since, by one of

the assumptions, the sequence {εk} is convergent to 0, it is enough to show that {Hn} is

also convergent to 0. Since T is continuous,

lim
n

Hn = lim
n

H(xn+1,Txn) = H(p,Tp) = 0.

This completes the proof.□
Corollary 3.3. (Singh and Chadha [21, Theorem 3])

Let all the hypotheses of Theorem 2.2 hold, wherein the definition of εn is replaced by

the following

εn = d(yn+1, pn), pn ∈ Tyn,n = 0, 1, 2 . . . .

Then

d(p, yn+1) ≤ d(p, xn+1) + qn+1d(x0, y0) +
n∑

k=0

qn−k(Hk + εk),

where Hk = H(xk+1, Txk). Further, if Tp is singleton then

lim
n

yn = p if and only if lim
n

εn = 0.

Proof: Recall that a Nadler multi-valued contraction is continuous. So it comes from

the fact that Definition 2.1 implies Definition 2.2.

It seems interesting to answer the following

Question: Can one replace Zamfirescu multi-valued contraction in Theorems 3.1 and

3.2 by the Ćirić generalized multi-valued contraction?
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