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1 Introduction and preliminaries
In the past years, the extension of the theory of fixed point to generalized structures as

cone metrics, partial metric spaces and quasi-metric spaces has received much atten-

tion (see, for instance, [1-7] and references therein). Partial metric space is generalized

metric space in which each object does not necessarily have to have a zero distance

from itself [8]. A motivation behind introducing the concept of a partial metric was to

obtain appropriate mathematical models in the theory of computation and, in particu-

lar, to give a modified version of the Banach contraction principle, more suitable in

this context [8,9]. Salvador and Schellekens [10] have shown that the dual complexity

space can be modelled as stable partial monoids. Subsequently, several authors studied

the problem of existence and uniqueness of a fixed point for mappings satisfying differ-

ent contractive conditions (e.g., [1,2,11-18]).

Existence of fixed points in ordered metric spaces has been initiated in 2004 by Ran

and Reurings [19], and further studied by Nieto and Lopez [20]. Subsequently, several

interesting and valuable results have appeared in this direction [21-28].

The aim of this article is to study the necessary conditions for existence of common

fixed points of four maps satisfying generalized weak contractive conditions in the fra-

mework of complete partial metric spaces endowed with a partial order. Our results

extend and strengthen various known results [8,29-32].

In the sequel, the letters ℝ, ℝ+, ω and N will denote the set of real numbers, the set

of nonnegative real numbers, the set of nonnegative integer numbers and the set of

positive integer numbers, respectively. The usual order on ℝ (respectively, on ℝ+) will

be indistinctly denoted by ≤ or by ≥.

Consistent with [8,12], the following definitions and results will be needed in the

sequel.
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Definition 1.1. Let X be a nonempty set. A mapping p : X × X ® ℝ+ is said to be a

partial metric on X if for any x, y, z Î X, the following conditions hold true:

(P1) p(x, x) = p(y, y) = p(x, y) if and only if x = y;

(P2) p(x, x) ≤ p(x, y);

(P3) p(x, y) = p(y, x);

(P4) p(x, z) ≤ p(x, y) + p(y, z) - p(y, y).

The pair (X, p) is then called a partial metric space. Throughout this article, X will

denote a partial metric space equipped with a partial metric p unless or otherwise

stated.

If p(x, y) = 0, then (P1) and (P2) imply that x = y. But converse does not hold always.

A trivial example of a partial metric space is the pair (ℝ+, p), where p : ℝ+ × ℝ+ ® ℝ+ is

defined as p(x, y) = max{x, y}.

Example 1.2. [8] If X = {[a, b]: a, b Î ℝ, a ≤ b} then p([a, b], [c, d]) = max{b, d} -

min{a, c} defines a partial metric p on X.

For some more examples of partial metric spaces, we refer to [12,13,16,17].

Each partial metric p on X generates a T0 topology τp on X which has as a base the

family of open p-balls {Bp(x, ε): x Î X, ε >0}, where Bp(x, ε) = {y Î X : p(x, y) < p(x, x)

+ ε}, for all x Î X and ε >0.

Observe (see [8, p. 187]) that a sequence {xn} in X converges to a point x Î X, with

respect to τ p, if and only if p(x, x) = lim
n→∞ p(x, xn).

If p is a partial metric on X, then the function pS : X × X ® ℝ+ given by pS(x, y) =

2p(x, y) -p(x, x) -p(y, y), defines a metric on X.

Furthermore, a sequence {xn} converges in (X, pS) to a point x Î X if and only if

lim
n,m→∞ p(xn, xm) = lim

n→∞ p(xn, x) = p(x, x). (1:1)

Definition 1.3. [8] Let X be a partial metric space.

(a) A sequence {xn} in X is said to be a Cauchy sequence if lim
n,m→∞ p(xn, xm) exists

and is finite.

(b) X is said to be complete if every Cauchy sequence {xn} in X converges with

respect to τp to a point x Î X such that lim
n→∞ p(x, xn) = p(x, x) . In this case, we say

that the partial metric p is complete.

Lemma 1.4. [8,12] Let X be a partial metric space. Then:

(a) A sequence {xn} in X is a Cauchy sequence in X if and only if it is a Cauchy

sequence in metric space (X, pS).

(b) A partial metric space X is complete if and only if the metric space (X, pS) is

complete.

Definition 1.5. A mapping f : X - X is said to be a weakly contractive if

d(fx, fy) ≤ d(x, y) − ϕ(d(x, y)), for all x, y ∈ X, (1:2)
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In 1997, Alber and Guerre-Delabriere [33] proved that weakly contractive mapping

defined on a Hilbert space is a Picard operator. Rhoades [34] proved that the corre-

sponding result is also valid when Hilbert space is replaced by a complete metric

space. Dutta et al. [35] generalized the weak contractive condition and proved a fixed

point theorem for a selfmap, which in turn generalizes Theorem 1 in [34] and the cor-

responding result in [33].

Recently, Aydi [29] obtained the following result in partial metric spaces.

Theorem 1.6. Let (X, ≤ X) be a partially ordered set and let p be a partial metric on X

such that (X, p) is complete. Let f : X ® X be a nondecreasing map with respect to ≤X.

Suppose that the following conditions hold: for y ≤ x, we have

(i)

p(fx, fy) ≤ p(x, y) − ϕ(p(x, y)), (1:3)

where � : [0, +∞[® [0, +∞[is a continuous and non-decreasing function such that it

is positive in ]0, +∞[, �(0) = 0 and lim
t→∞ ϕ(t) = ∞ ;

(ii) there exist x0 Î X such that x0 ≤X fx0;

(iii) f is continuous in (X, p), or;

(iii) if a non-decreasing sequence {xn} converges to x Î X, then xn ≤X × for all n.

Then f has a fixed point u Î X. Moreover, p(u, u) = 0.

A nonempty subset W of a partially ordered set X is said to be well ordered if every

two elements of W are comparable.

2 Fixed point results
In this section, we obtain several fixed point results for selfmaps satisfying generalized

weakly contractive conditions defined on an ordered partial metric space, i.e., a (par-

tially) ordered set endowed with a complete partial metric.

We start with the following result.

Theorem 2.1. Let (X, ≼) be a partially ordered set such that there exist a complete

partial metric p on X and f a nondecreasing selfmap on X. Suppose that for every two

elements x, y Î X with y ≼ x, we have

ψ(p(fx, fy)) ≤ ψ(M(x, y)) − φ(M(x, y)), (2:1)

where

M(x, y) = max{p(x, y), p(fx, x), p(fy, y), p(x, fy) + p(y, fx)
2

},

ψ, j : ℝ+ ® ℝ+, ψ is continuous and nondecreasing, j is a lower semicontinuous,

and ψ(t) = j(t) = 0 if and only if t = 0. If there exists x0 Î X with x0 ≼ fx0 and one of

the following two conditions is satisfied:

(a) f is continuous self map on (X, pS);
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(b) for any nondecreasing sequence {xn} in (X, ≼) with lim
n→∞ pS(z, xn) = 0 it follows

xn ≼ z for all n Î N,

then f has a fixed point. Moreover, the set of fixed points of f is well ordered if and

only if f has one and only one fixed point.

Proof. Note that if f has a fixed point u, then p(u, u) = 0. Indeed, assume that p(u, u) >0.

Then from (2.1) with x = y = u, we have

ψ(p(u, u)) = ψ(p(fu, fu)) ≤ ψ(M(u, u)) − φ(M(u, u)), (2:2)

where

M(u, u) = max{p(u, u), p(fu, u), p(fu, u), p(u, fu) + p(u, fu)
2

}

= max{p(u, u), p(u, u), p(u, u), p(u, u) + p(u, u)
2

} = p(u, u).

Now we have:

ψ(p(u, u)) = ψ(p(fu, fu)) ≤ ψ(p(u, u)) − φ(p(u, u)),

j(p(u, u)) ≤ 0, a contradiction. Hence p(u, u) = 0. Now we shall prove that there

exists a nondecreasing sequence {xn} in (X, ≼) with fxn = xn+1 for all n Î N, and

lim
n→∞ p(xn, xn+1) = 0 . For this, let x0 be an arbitrary point of X. Since f is nondecreasing,

and x0 ≼ fx0, we have

x1 = f x0 � f 2x0 � . . . � f nx0 � f n+1x0 � . . . .

Define a sequence {xn} in X with xn = fnx0 and so xn+1 = fxn for n Î N. We may

assume that M(xn+1, xn) >0, for all n Î N. If not, then it is clear that xk = xk+1 for

some k, so fxk = xk+1 = xk, and thus xk is a fixed point of f. Now, by taking M(xn+1, xn)

>0 for all n Î N, consider

ψ(p(xn+2, xn+1)) = ψ(p(f xn+1, f xn))

≤ ψ(M(xn+1, xn)) − φ(M(xn+1, xn)),
(2:3)

where

M(xn+1, xn) = max{p(xn+1, xn), p(f xn+1, xn+1), p(f xn, xn),
p(xn+1, f xn) + p(xn, f xn+1)

2
}

= max{p(xn+1, xn), p(xn+2, xn+1), p(xn+1, xn),
p(xn+1, xn+1) + p(xn, xn+2)

2
}

≤ max{p(xn+1, xn), p(xn+2, xn+1),
p(xn, xn+1) + p(xn+1, xn+2)

2
}

= max{p(xn+1, xn), p(xn+2, xn+1)}.

Suppose that max{p(xk+1, xk), p(xk+2, xk+1)} = p(xk+2, xk+1) for some k Î N.

Then ψ(p(xk+2, xk+1)) ≤ ψ(p(xk+2, xk+1)) -j(M(xk+1, xk)) implies j(M (xk+1, xk)) ≤ 0, a

contradiction. Consequently
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ψ(p(xn+2, xn+1)) ≤ ψ(p(xn+1, xn)) − φ(M(xn+1, xn))

≤ ψ(p(xn+1, xn)),

for all n Î N. Since ψ is nondecreasing, so the sequence of positive real numbers {p(xn+1,

xn)} is nonincreasing, therefore {p(xn+1, xn)} converges to a c ≥ 0. Suppose that c >0. Then

ψ(p(xn+2, xn+1)) ≤ ψ(M(xn+1, xn)) − φ(M(xn+1, xn)),

and lower semicontinuity of j gives that

lim sup
n→∞

ψ(p(xn+2, xn+1)) ≤ lim sup
n→∞

ψ(M(xn+1, xn)) − lim inf
n→∞ φ(M(xn+1, xn)),

which implies that ψ(c) ≤ ψ(c) - j(c), a contradiction. Therefore c = 0, i.e.,

lim
n→∞ p(xn+1, xn) = 0 .

Now, we prove that lim
n,m→∞ p(xn, xm) = 0 . If not, then there exists ε >0 and sequences

{nk}, {mk} in N, with nk > mk ≥ k, and such that p(xnk , xmk) ≥ ε for all k Î N. We can

suppose, without loss of generality that p(xnk , xmk−1) < ε .

So

ε ≤ p(xmk , xnk) ≤ p(xnk , xmk−1) + p(xmk−1, xmk) − p(xmk−1, xmk−1)

implies that

lim
k→∞

p(xmk , xnk) = ε. (2:4)

Also (2.4) and inequality p(xmk , xnk) ≤ p(xmk , xmk−1) + p(xmk−1, xnk) − p(xmk−1, xmk−1)

gives that ε ≤ lim
k→∞

p(xmk−1, xnk) , while (2.4) and inequality

p(xmk−1, xnk) ≤ p(xmk−1, xmk) + p(xmk , xnk) − p(xmk , xmk) yields lim
k→∞

p(xmk−1, xnk) ≤ ε ,

and hence

lim
k→∞

p(xmk−1, xnk) = ε. (2:5)

Also (2.5) and inequality p(xmk−1, xnk) ≤ p(xmk−1, xnk+1) + p(xnk+1, xnk) − p(xnk+1, xnk+1)

implies that ε ≤ lim
k→∞

p(xmk−1, xnk+1) , while inequality

p(xmk−1, xnk+1) ≤ p(xmk−1, xnk) + p(xnk , xnk+1) − p(xnk , xnk) yields

lim
k→∞

p(xmk−1, xnk+1) ≤ ε , and

hence

lim
k→∞

p(xmk−1, xnk+1) = ε. (2:6)

Finally p(xmk , xnk) ≤ p(xmk , xnk+1) + p(xnk+1, xnk) − p(xnk+1, xnk+1) gives that

ε < lim
k→∞

p(xmk , xnk+1) , and the inequality p(xmk , xnk+1) ≤ p(xmk , xnk) + p(xnk , xnk+1) − p(xnk , xnk)

gives lim
k→∞

p(xmk , xnk+1) ≤ ε , and hence

lim
k→∞

p(xmk , xnk+1) = ε. (2:7)
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As

M(xnk , xmk−1) = max{p(xnk , xmk−1), p(f xnk , xnk),

p(f xmk−1, xmk−1),
p(xnk , f xmk−1) + p(xmk−1, f xnk)

2
}

= max{p(xnk , xmk−1), p(xnk+1, xnk),

p(xmk , xmk−1),
p(xnk , xmk) + p(xmk−1, xnk+1)

2
},

therefore lim
k→∞

M(xnk , xmk−1) = max{ε, 0, 0, ε} = ε . From (2.1), we obtain

ψ(p(xnk+1, xmk)) = ψ(p(f xnk , f xmk−1)) ≤ ψ(M(xnk , xmk−1)) − φ(M(xnk , xmk−1)).

Taking upper limit as k ® ∞ implies that ψ(ε) ≤ ψ(ε) - j(ε), which is a contradiction as

ε >0. Thus, we obtain that lim
n,m→∞ p(xn, xm) = 0 , i.e., {xn} is a Cauchy sequence in (X, p),

and hence in the metric space (X, pS) by Lemma 1.4. Finally, we prove that f has a fixed

point. Indeed, since (X, p) is complete, then from Lemma 1.4, (X, pS) is also complete, so

the sequence {xn} is convergent in the metric space (X, pS). Therefore, there exists u Î X

such that lim
n→∞ pS(u, xn) = 0 , equivalently,

lim
n,m→∞ p(xn, xm) = lim

n→∞ p(xn, u) = p(u, u) = 0, (2:8)

because lim
n,m→∞ p(xn, xm) = 0 . If f is continuous self map on (X, pS), then it is clear

that fu = u. If f is not continuous, we have, by our hypothesis, that xn ≼ u for all n Î
N, because {xn} is a nondecreasing sequence with

lim
n,m→∞ p(xn, xm) = lim

n→∞ p(xn, u) = p(u, u) = 0, . Now from the following inequalities

p(fu, u) ≤ M(u, xn)

= max{p(u, xn), p(fu, u), p(f xn, xn),
p(u, f xn) + p(xn, fu)

2
}

= max{p(u, xn), p(fu, u), p(xn+1, xn),
p(u, xn+1) + p(xn, fu)

2
}

≤ max{p(u, xn), p(fu, u), p(xn+1, xn),
p(xn+1, u) + p(xn, u) + p(u, fu) − p(u, u)

2
},

we deduce, taking limit as n ® ∞, that

lim
n→∞M(u, xn) = p(fu, u).

Hence,

ψ(p(fu, f xn+1)) ≤ ψ(M(u, xn)) − φ(M(u, xn)). (2:9)

On taking upper limit as n ® ∞, we have

ψ(p(fu, u)) ≤ ψ(p(fu, u)) − φ(p(fu, u)),
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and fu = u. Finally, suppose that set of fixed points of f is well ordered. We prove

that fixed point of f is unique. Assume on contrary that fv = v and fw = w but v ≠ w.

Hence

ψ(p(v,w)) = ψ(p(fv, fw)) ≤ ψ(M(v,w)) − φ(M(v,w)), (2:10)

where

M(v,w) = max{p(v,w), p(fv, v), p(fw,w), p(v, fw) + p(w, fv)
2

}

= max{p(v,w), p(v, v), p(w,w), p(v,w) + p(w, v)
2

}
= p(v,w),

that is, by (2.10),

ψ(p(v,w)) = ψ(p(fv, fw)) ≤ ψ(p(v,w)) − φ(p(v,w)),

a contradiction because p(v, w) >0. Hence v = w. Conversely, if f has only one fixed

point then the set of fixed point of f being singleton is well ordered. □
Consistent with the terminology in [36], we denote ϒ the set of all functions �:

R+ → R+ , where � is a Lebesgue integrable mapping with finite integral on each com-

pact subset of ℝ+, nonnegative, and for each ε > 0,
∫ ε

0 ϕ(t)dt > 0 (see also, [37]). As a

consequence of Theorem 2.1, we obtain following fixed point result for a mapping

satisfying contractive conditions of integral type in a complete partial metric space X.

Corollary 2.2. Let (X, ≼) be a partially ordered set such that there exist a complete

partial metric p on X and f a nondecreasing selfmap on X. Suppose that for every two

elements x, y Î X with y ≼ x, we have

∫ ψ(p(fx,fy))

0
ϕ(t)dt ≤

∫ ψ(M(x,y))

0
ϕ(t)dt −

∫ φ(M(x,y))

0
ϕ(t)dt, (2:11)

where � Î ϒ,

M(x, y) = max{p(x, y), p(fx, x), p(fy, y), p(x, fy) + p(y, fx)
2

},

ψ, j : ℝ+ ® ℝ+, ψ is continuous and nondecreasing, j is a lower semicontinuous,

and ψ(t) = j(t) = 0 if and only if t = 0. If there exists x0 Î X with x0 ≼ fx0 and one of

the following two conditions is satisfied:

(a) f is continuous self map on (X, pS);

(b) for any nondecreasing sequence {xn} in (X, ≼) with lim
n→∞ pS(z, xn) = 0 it follows

xn ≼ z for all n Î N,

then f has a fixed point.

Proof. Define Ψ: [0, ∞) ® [0, ∞) by �(x) =
∫ x

0
ϕ(t)dt , then from (2.11), we have

�(ψ(p(fx, fy))) ≤ �(ψ(M(x, y))) − �(φ(M(x, y))), (2:12)
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which can be written as

ψ1(p(fx, fy)) ≤ ψ1(M(x, y)) − φ1(M(x, y)), (2:13)

where ψ1 = Ψ ο ψ and j1 = Ψ ο j. Clearly, ψ1, j1 : ℝ+ ® ℝ+, ψ1 is continuous and

nondecreasing, j1 is a lower semicontinuous, and ψ1(t) = j1(t) = 0 if and only if t = 0.

Hence by Theorem 2.1, f has a fixed point. □
If we take ψ(t) = t in Theorem 2.1, we have the following corollary.

Corollary 2.3. Let (X, ≼) be a partially ordered set such that there exist a complete

partial metric p on X and f a nondecreasing selfmap on X. Suppose that for every two

elements x, y Î X with y ≼ x, we have

p(fx, fy) ≤ M(x, y) − φ(M(x, y)), (2:14)

where

M(x, y) = max
{
p(x, y), p(fx, x), p(fy, y),

p(x, fy) + p(y, fx)
2

}
,

j : ℝ+ ® ℝ+ is a lower semicontinuous and j(t) = 0 if and only if t = 0. If there

exists x0 Î X with x0 ≼ fx0 and one of the following two conditions is satisfied:

(a) f is continuous self map on (X, pS);

(b) for any nondecreasing sequence {xn} in (X, ≼) with lim
n→∞ pS(z, xn) = 0 it follows

xn ≼ z for all n Î ∞,

then f has a fixed point. Moreover, the set of fixed points of f is well ordered if and

only if f has one and only one fixed point.

If we take j(t) = (1 - k)t for k Î [0, 1) in Corollary 2.3, we have the following

corollary.

Corollary 2.4. Let (X, ≼) be a partially ordered set such that there exist a complete

partial metric p on X and f a nondecreasing selfmap on X. Suppose that for every two

elements x, y Î X with y ≼ x, we have

p(fx, fy) ≤ kM(x, y), (2:15)

where

M(x, y) = max
{
p(x, y), p(fx, x), p(fy, y),

p(x, fy) + p(y, fx)
2

}
,

and k Î [0, 1). If there exists x0 Î X with x0 ≼ fx0 and one of the following two con-

ditions is satisfied:

(a) f is continuous self map on (X, pS);

(b) for any nondecreasing sequence {xn} in (X, ≼) with lim
n→∞ pS(z, xn) = 0 it follows

xn ≼ z for all n Î ∞,

then f has a fixed point. Moreover, the set of fixed points of f is well ordered if and

only if f has one and only one fixed point.

Abbas and Nazir Fixed Point Theory and Applications 2012, 2012:1
http://www.fixedpointtheoryandapplications.com/content/2012/1/1

Page 8 of 19



Corollary 2.5. Let (X, ≼) be a partially ordered set such that there exist a complete

partial metric p on X and f a nondecreasing selfmap on X. Suppose that for every two

elements x, y Î X with y ≼ x, we have

ψ(p(fx, fy)) ≤ p(x, y) − φ(p(x, y)), (2:16)

where j : ℝ+ ® ℝ+ is a lower semicontinuous, and j(t) = 0 if and only if t = 0. If

there exists x0 Î X with x0 ≼ fx0 and one of the following two conditions is satisfied:

(a) f is continuous self map on (X, pS);

(b) for any nondecreasing sequence {xn} in (X, ≼) with lim
n→∞ pS(z, xn) = 0 it follows

xn ≼ z for all n Î ∞,

then f has a fixed point. Moreover, the set of fixed points of f is well ordered if and

only if f has one and only one fixed point.

Theorem 2.6. Let (X, ≼) be a partially ordered set such that there exist a complete

partial metric p on X and f a nondecreasing selfmap on X. Suppose that for x, y Î X

with y ≼ x, we have

ψ(p(fx, fy)) ≤ ψ(M(x, y)) − φ(M(x, y)), (2:17)

Where

M(x, y) = a1p(x, y) + a2p(fx, x) + a3p(fy, y) + a4p(fy, x) + a5p(fx, y),

a1, a2 >0, ai ≥ 0 for i = 3, 4, 5, and, if a4 ≥ a5, then a1 + a2 + a3 + a4 + a5 <1, and if

a4 < a5, then a1 + a2 + a3 + a4 + 2a5 <1 and ψ, j : ℝ+ ® ℝ+, ψ is a continuous and

nondecreasing, j is a lower semicontinuous, and ψ(t) = j(t) = 0 if and only if t = 0. If

there exists x0 Î X with x0 ≼ fx0 and one of the following two conditions is satisfied:

(a) f is continuous self map on (X, pS);

(b) for any nondecreasing sequence {xn} in (X, ≼) with lim
n→∞ pS(z, xn) = 0 it follows

xn ≼ z for all n Î ∞,

then f has a fixed point. Moreover, the set of fixed points of f is well ordered if and

only if f has one and only one fixed point.

Proof. If f has a fixed point u, then p(u, u) = 0. Assume that p(u, u) >0. Then from

(2.17) with x = y = u, we have

ψ(p(u, u)) = ψ(p(fu, fu)) ≤ ψ(M(u, u)) − φ(M(u, u)), (2:18)

where

M(u, u) = a1p(u, u) + a2p(fu, u) + a3p(fu, u) + a4p(fu, u) + a5p(fu, u)

= (a1 + a2 + a3 + a4 + a5)p(u, u),

that is

ψ(p(u, u)) ≤ ψ((a1 + a2 + a3 + a4 + a5)p(u, u))− φ((a1 + a2 + a3 + a4 + a5)p(u, u)),
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j((a1 + a2 + a3 + a4 + a5)p(u, u)) ≤ 0, a contradiction. Hence p(u, u) = 0. Now let x0
be an arbitrary point of X: If fx0 = x0, then the proof is finished, so we assume that fx0
≠ x0. As in Theorem 2.1, define a sequence {xn} in X with xn = f nx0 and so xn+1 = fxn
for n Î N. If M (xk+1, xk) = 0 for some k, then xk is a fixed point of f, as in the proof

of Theorem 2.1. Thus we can suppose that

M(xk+1, xk) > 0, for all k ∈ N. (2:19)

Now form (2.17), consider

ψ(p(xn+2, xn+1)) = ψ(p(f xn+1, f xn)) ≤ ψ(M(xn+1, xn)) − φ(M(xn+1, xn)), (2:20)

where

M(xn+1, xn) = a1p(xn+1, xn) + a2p(f xn+1, xn+1) + a3p(f xn, xn)

+ a4p(f xn, xn+1) + a5p(f xn+1, xn)

= a1p(xn+1, xn) + a2p(xn+2, xn+1) + a3p(xn+1, xn)

+ a4p(xn+1, xn+1) + a5p(xn+2, xn)

≤ (a1 + a3)p(xn+1, xn) + a2p(xn+2, xn+1) + a4p(xn+1, xn+1)

+ a5[p(xn+2, xn+1) + p(xn+1, xn) − p(xn+1, xn+1)]

= (a1 + a3 + a5)p(xn+1, xn) + (a2 + a5)p(xn+2, xn+1)

+ (a4 − a5)p(xn+1, xn+1).

We claim that

p(xn+2, xn+1) ≤ p(xn+1, xn), (2:21)

for all n Î N. Suppose that it is not true, that is, p(xk+2, xk+1) > p(xk+1, xk) for some k

Î N. Now, since xk ≼ xk+1, also if a4 ≥ a5, then we have

ψ(p(xk+2, xk+1)) ≤ ψ(M(xk+1, xk)) − φ(M(xk+1, xk))

≤ ψ((a1 + a3 + a5)p(xk+1, xk) + (a2 + a5)p(xk+2, xk+1)

+ (a4 − a5)p(xk+1, xk+1)) − φ(M(xk+1, xk))

≤ ψ((a1 + a2 + a3 + a4 + a5)p(xk+2, xk+1))

− φ(M(xk+1, xk))

≤ ψ(p(xk+1, xk+2)) − φ(M(xk+1, xk)),

which implies that j(M(xk+1, xk) ≤ 0, by the property of j, we have M (xk+1, xk) = 0,

a contradiction. If a4 < a5, then

ψ(p(xk+2, xk+1)) ≤ ψ(M(xk+1, xk)) − φ(M(xk+1, xk))

≤ ψ((a1 + a3 + a5)p(xk+1, xk) + (a2 + a5)p(xk+2, xk+1)

+ (a4 − a5)p(xk+1, xk+1)) − φ(M(xk+1, xk))

≤ ψ((a1 + a2 + a3 + a4 + 2a5)p(xk+2, xk+1)

− φ(M(xk+1, xk))

≤ ψ(p(xk+1, xk+2)) − φ(M(xk+1, xk)),

implies that j(M(xk+1, xk) ≤ 0, a contradiction. Hence p(xn+2, xn+1) ≤ p(xn+1, xn) for

all n Î N and so the sequence of positive real numbers {p(xn+1, xn)} is nonincreasing.

Thus {p(xn+1, xn)} converges to a c ≥ 0. Suppose that c >0. Now, lower semicontinuity

of j gives that
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lim sup
n→∞

ψ(p(xn+2, xn+1)) ≤ lim sup
n→∞

ψ(M(xn+1, xn)) − lim inf
n→∞ φ(M(xn+1, xn))

≤ lim sup
n→∞

ψ((a1 + a3 + a5)p(xn, xn+1)

+ (a2 + a5)p(xn+2, xn+1) + (a4 − a5)p(xn+1, xn+1))

− lim inf
n→∞ φ(M(xn+1, xn)),

which implies that

ψ(c) ≤ ψ(c) − lim inf
n→∞ φ(M(xn+1, xn)),

a contradiction since a1 >0. Therefore c = 0, i.e., lim
n→∞ p(xn+1, xn) = 0 . Now we show

that the sequence {xn} is a Cauchy sequence in (X, p). Indeed, we first prove that

lim
n,m→∞ p(xn, xm) = 0 . Assume the contrary. Then there exists ε >0 and sequences {nk},

{mk} in ∞, with nk > mk ≥ k, and such that p(xnk , xmk) ≥ ε for all k Î N. We can sup-

pose, without loss of generality, that p(xnk , xmk−1) < ε .

Follows the similar argument as in Theorem 2.1, we have lim
k→∞

p(xmk , xnk) = ε ,

lim
k→∞

p(xmk−1, xnk+1) = ε , lim
k→∞

p(xmk−1, xnk+1) = ε and lim
k→∞

p(xmk , xnk+1) = ε . As

M(xnk , xmk−1) = a1p(xnk , xmk−1) + a2p(f xnk , xnk) + a3p(f xmk−1, xmk−1)

+ a4p(f xmk−1, xnk) + a5p(f xnk , xmk−1)

= a1p(xnk , xmk−1) + a2p(xnk+1, xnk) + a3p(xmk , xmk−1)

+ a4p(xmk , xnk) + a5p(xnk+1, xmk−1),

thus lim
k→∞

M(xnk , xmk−1) = (a1 + a4 + a5)ε ≤ ε . From (2.17), we obtain

ψ(p(xnk+1, xmk)) = ψ(p(f xnk , f xmk−1))

≤ ψ(M(xnk , xmk−1)) − φ(M(xnk , xmk−1)).
(2:22)

Taking upper limit as k ® ∞ implies that

ψ(ε) ≤ ψ(ε) − φ((a1 + a4 + a5)ε),

which is a contradiction as ε >0. Thus, we obtain that lim
n,m→∞ p(xn, xm) = 0 , i.e., {xn} is

a Cauchy sequence in (X, p), and thus in the metric space (X, pS) by Lemma 1.4. Since

(X, p) is complete, then from Lemma 1.4, (X, pS) is also complete, so the sequence {xn}

is convergent in the metric space (X, pS). Therefore, there exists u Î X such that

lim
n→∞ pS(u, xn) = 0 , equivalently,

lim
n,m→∞ p(xn, xm) = lim

n→∞ p(xn, u) = p(u, u) = 0, (2:23)

because lim
n,m→∞ p(xn, xm) = 0 . If f is continuous selfmap on (X, pS), then it is clear that

fu = u. If f is not continuous, we have, by our hypothesis, that xn ≼ u for all n Î N,

because {xn} is a nondecreasing sequence with lim
n→∞ pS(u, xn) = 0 . Now from the follow-

ing inequality
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M(u, xn)

= a1p(u, xn) + a2p(fu, u) + a3p(f xn, xn)

+ a4p(f xn, u) + a5p(fu, xn)

= a1p(u, xn) + a2p(fu, u) + a3p(xn+1, xn)

+ a4p(xn+1, u) + a5p(fu, xn),

we deduce, taking limit as n ® ∞, that lim
n→∞M(u, xn) = (a2 + a5)p(fu, u) . Hence,

ψ(p(fu, u)) = lim sup
n→∞

ψ(p(fu, f xn+1))

≤ lim sup
n→∞

[ψ(M(u, xn)) − φ(M(u, xn))]

= ψ((a2 + a5)p(fu, u)) − φ((a2 + a5)p(fu, u))

≤ ψ(p(fu, u)) − φ((a2 + a5)p(fu, u)).

implies p(fu, u) = 0 and fu = u. Finally, suppose that set of fixed points of f is well

ordered. We prove that fixed point of f is unique. Assume on contrary that fu = u and

fv = v but u ≠ v. Hence

ψ(p(u, v)) = ψ(p(fu, fv)) ≤ ψ(M(u, v)) − φ(M(u, v)), (2:24)

where

M(u, v) = a1p(u, v) + a2p(fu, u) + a3p(fv, v) + a4p(fv, u) + a5p(fu, v)

= a1p(u, v) + a2p(u, u) + a3p(v, v) + a4p(v, u) + a5p(u, v)

= (a1 + a4 + a5)p(u, v),

that is, by (2.24),

ψ(p(u, v)) = ψ(p(fu, fv))

≤ ψ(a1 + a4 + a5)p(u, v)) − φ(a1 + a4 + a5)p(u, v))

≤ ψ(p(u, v)) − φ(a1 + a4 + a5)p(u, v)),

we arrive at a contradiction because a1p(u, v) >0. Hence u = v. Conversely, if f has

only one fixed point then the set of fixed point of f being singleton is well ordered. □
Following similar arguments to those given in Corollary 2.2, we obtain following cor-

ollary as an application of Theorem 2.6.

Corollary 2.7. Let (X, ≼) be a partially ordered set such that there exist a complete

partial metric p on X and f a nondecreasing selfmap on X. Suppose that for every two

elements x, y Î X with y ≼ x, we have

∫ ψ(p(fx,fy))

0
ϕ(t)dt ≤

∫ ψ(M(x,y))

0
ϕ(t)dt −

∫ φ(M(x,y))

0
ϕ(t)dt, (2:25)

where � Î ϒ,

M(x, y) = a1p(x, y) + a2p(fx, x) + a3p(fy, y) + a4p(fy, x) + a5p(fx, y),

a1, a2 >0, ai ≥ 0 for i = 3, 4, 5, and, if a4 ≥ a5, then a1 + a2 + a3 + a4 + a5 <1, and if

a4 < a5, then a1 + a2 + a3 + a4 + 2a5 <1 with ψ, j : ℝ+ ® ℝ+, ψ is continuous and

nondecreasing, j is a lower semicontinuous, and ψ(t) = j(t) = 0 if and only if t = 0. If
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there exists x0 Î X with x0 ≼ fx0 and one of the following two conditions is satisfied:

(a) f is continuous self map on (X, pS);

(b) for any nondecreasing sequence {xn} in (X, ≼) with lim
n→∞ pS(z, xn) = 0 it follows

xn ≼ z for all n Î N,

then f has a fixed point.

If we take ψ(t) = t in Theorem 2.6, we have following corollary.

Corollary 2.8. Let (X, ≼) be a partially ordered set such that there exist a complete

partial metric p on X and f a nondecreasing selfmap on X. Suppose that for x, y Î X

with y ≼ x,

p(fx, fy) ≤ M(x, y) − φ(M(x, y)), (2:26)

where

M(x, y) = a1p(x, y) + a2p(fx, x) + a3p(fy, y) + a4p(fx, y) + a5p(fy, x),

a1, a2 >0, ai ≥ 0 for i = 3, 4, 5, and, if a4 ≥ a5, then a1 + a2 + a3 + a4 + a5 <1, and if

a4 < a5, then a1 + a2 + a3 + a4 + 2a5 <1 and j : ℝ+ ® ℝ+ is a lower semicontinuous

with j(t) = 0 if and only if t = 0. If there exists x0 Î X with x0 ≼ fx0 and one of the fol-

lowing two conditions is satisfied:

(a) f is continuous self map on (X, pS);

(b) for any nondecreasing sequence {xn} in (X, ≼) with lim
n→∞ pS(z, xn) = 0 it follows

xn ≼ z for all n Î N,

then f has a fixed point. Moreover, the set of fixed points of f is well ordered if and

only if f has one and only one fixed point.

Corollary 2.9. Let (X, ≼) be a partially ordered set such that there exist a complete

partial metric p on X and f a nondecreasing selfmap on X. Suppose that for x, y Î X

with y ≼ x, we have

p(fx, fy) ≤ M(x, y), (2:27)

where

M(x, y) = a1p(x, y) + a2p(fx, x) + a3p(fy, y) + a4p(fx, y) + a5p(fy, x),

a1, a2 >0, ai ≥ 0 for i = 3, 4, 5, and, if a4 ≥ a5, then a1 + a2 + a3 + a4 + a5 <1, and if

a4 < a5, then a1 + a2 + a3 + a4 + 2a5 <1. If there exists x0 Î X with x0 ≼ fx0 and one

of the following two conditions is satisfied:

(a) f is continuous self map on (X, pS);

(b) for any nondecreasing sequence {xn} in (X, ≼) with lim
n→∞ pS(z, xn) = 0 it follows

xn ≼ z for all n Î N,

then f has a fixed point. Moreover, the set of fixed points of f is well ordered if and

only if f has one and only one fixed point.
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Corollary 2.10. Let (X, ≼) be a partially ordered set such that there exist a complete

partial metric p on X and f a nondecreasing selfmap on X. Suppose that for x, y Î X

with y ≼ x, we have

p(fx, fy) ≤ αp(x, y) + β[p(fx, x) + p(fy, y)] + γ [p(fx, y) + p(fy, x)]) (2:28)

where a, b, g >0 and a + 2b + 2g <1. If there exists x0 Î X with x0 ≼ fx0 and one of

the following two conditions is satisfied:

(a) f is continuous self map on (X, pS);

(b) for any nondecreasing sequence {xn} in (X, ≼) with lim
n→∞ pS(z, xn) = 0 it follows

xn ≼ z for all n Î N,

then f has a fixed point. Moreover, the set of fixed points of f is well ordered if and

only if f has one and only one fixed point.

We conclude the article with some examples which illustrate the obtained results.

Example 2.11. Let X = [0, 1] be endowed with usual order and let p be the complete

partial metric on X defined by p(x, y) = max{x, y} for all x, y Î X. Let f : X ® X be

defined by fx = 2x/3. Define ψ, j : ℝ+ ® ℝ+ by

ψ(t) = 3t and φ(t) =

⎧⎨
⎩
t/2, if t ∈ [0, 1],
e1−t

2
, if t > 1.

Clearly ψ is continuous and nondecreasing, j is a lower semicontinuous, and ψ(t) =

j(t) = 0 if and only if t = 0. We show that condition (2.1) is satisfied. If x, y Î [0, 1]

with y ≼ x, then we have

ψ(p(fx, fy)) = ψ

(
max

{
2x
3
,
2y
3

})
= ψ

(
2x
3

)
= 2x ≤ 5

2
x

=
5
2
max

{
2x
3
, x

}
=
5
2
p(fx, x) ≤ 5

2
M(x, y)

= 3M(x, y) − M(x, y)
2

= ψ(M(x, y)) − φ(M(x, y)).

Thus f satisfies all the conditions of Theorem 2.1. Moreover, 0 is the unique fixed

point of f. □
Example 2.12. Let X = ℝ be endowed with usual order. Let p : X × X ® ℝ+ be

defined by p(x, y) = |x - y| if x, y Î [0, 1), and p(x, y) = max{x, y} otherwise. It is easy

to verify that p is complete partial metric on X. Now let f : X ® X be given by

fx =

⎧⎨
⎩

1
2 , if x < 1,
x
2 , if 1 ≤ x < 2,
1, otherwise.

Clearly, f is continuous on (X, pS). Define ψ, j : ℝ+ ® ℝ+ by

ψ(t) = 2t and φ(t) = t/6 for all t ∈ R+.
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Obviously, ψ is a continuous and nondecreasing, j is a lower semicontinuous, and

ψ(t) = j(t) = 0 if and only if t = 0. Now, we shall show that f satisfies condition (2.17)

of Theorem 2.6, for a1 = a2 = 3/10 and a3 = a4 = a5 = 1/10. We shall distinguish six

cases with y ≼ x.

(1) If x, y Î [0, 1), then (2.17) is satisfied as p(fx, fy) = p( 12 ,
1
2 ) = 0 ,

(2) if y Î [0, 1), x Î [1, 2), then p(fx, fy) = 1
2(x − 1) and p(x, y) = x, p(fx, x) = x,

p(fy, y) =
∣∣y − 1

2

∣∣ , p(fy, x) = x, p(fx, y) =
∣∣ x
2 − y

∣∣ . Therefore
ψ(p(fx, fy)) = ψ

(
1
2
(x − 1)

)
= x − 1 ≤ 11

6

(
3
10

x +
3
10

x
)

≤ 11
6

[
3
10

x +
3
10

x +
1
10

|y − 1/2| + 1
10

x +
1
10

|x/2 − y|
]

=
11
6
[a1p(x, y) + a2p(fx, x) + a3p(fy, y)

+ a4p(fy, x) + a5p(fx, y)]

=
11
6
M(x, y) = 2M(x, y) − 1

6
M(x, y)

= ψ(M(x, y)) − φ(M(x, y)).

(3) For y Î [0, 1) and x ≥ 2, then p(fx, fy) = 1 and p(x, y) = x, p(fx, x) = x,

p(fy, y) =
∣∣y − 1

2

∣∣ , p(fy, x) = x, p(fx, y) = 1. Therefore

ψ(p(fx, fy)) = ψ(1) = 2 ≤ 11
6

(
3
10

x +
3
10

x
)

≤ 11
6

[
3
10

x +
3
10

x +
1
10

|y − 1
/
2| + 1

10
x +

1
10

]

=
11
6
[a1p(x, y) + a2p(fx, x) + a3p(fy, y)

+ a4p(fy, x) + a5p(fx, y)]

=
11
6
M(x, y) = 2M(x, y) − 1

6
M(x, y)

= ψ(M(x, y)) − φ(M(x, y)).

(4) If x, y Î [1, 2), then p(fx, fy) = p(x/2, y/2) = 1
2(x − y) and p(x, y) = x, p(fx, x) =

x, p(fy, y) = y, p(fy, x) = x, p(fx, y) = y. Therefore

ψ(p(fx, fy)) = ψ

(
1
2
(x − y)

)
= (x − y) ≤ 11

6

(
3
10

x +
3
10

x
)

≤ 11
6

[
3
10

x +
3
10

x +
1
10

y +
1
10

x +
1
10

y
]

=
11
6
[a1p(x, y) + a2p(fx, x) + a3p(fy, y)

+ a4p(fy, x) + a5p(fx, y)]

=
11
6
M(x, y) = 2M(x, y) − 1

6
M(x, y)

= ψ(M(x, y)) − φ(M(x, y)).
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(5) If y Î [1, 2), x ≥ 2, then p(fx, fy) = p(1, y/2) = 1 - y/2 and p(x, y) = x, p(fx, x) =

x, p(fy, y) = y, p(fy, x) = x, p(fx, y) = y. Therefore

ψ(p(fx, fy)) = ψ(1 − y/2) = 2 − y ≤ 11
6

(
3
10

x +
3
10

x
)

≤ 11
6

[
3
10

x +
3
10

x +
1
10

y +
1
10

x +
1
10

y
]

=
11
6
[a1p(x, y) + a2p(fx, x) + a3p(fy, y)

+ a4p(fy, x) + a5p(fx, y)]

=
11
6
M(x, y) = 2M(x, y) − 1

6
M(x, y)

= ψ(M(x, y)) − φ(M(x, y)).

(6) If x, y ≥ 2, then p(fx, fy) = p(1, 1) = 1 and p(x, y) = x, p(fx, x) = x, p(fy, y) = y, p

(fy, x) = x, p(fx, y) = y. Therefore

ψ(p(fx, fy)) = ψ(1) = 2 ≤ 11
6

(
3
10

x +
3
10

x
)

≤ 11
6

[
3
10

x +
3
10

x +
1
10

y +
1
10

x +
1
10

y
]

=
11
6
[a1p(x, y) + a2p(fx, x) + a3p(fy, y)

+ a4p(fy, x) + a5p(fx, y)]

=
11
6
M(x, y) = 2M(x, y) − 1

6
M(x, y)

= ψ(M(x, y)) − φ(M(x, y)).

Thus all the axioms of Theorem 2.6 are satisfied. Moreover, 1/2 is the unique fixed

point of f. □

3 A homotopy result
Let F be denote the set of all functions j : ℝ+ ® ℝ+ such that j is a nondecreasing,

lower semicontinuous, and j(t) = 0 if and only if t = 0.

Now, we state a following homotopy result.

Theorem 3.1. Let (X, ≼) be a partially ordered set such that there exist a complete

partial metric p on X, U be an open subset of X and V be a closed subset of X with U

⊂ V. Let H : V × [0, 1] ® X be a given mapping such that H(., l): V ® X is nonde-

creasing and continuous for each l Î [0, 1]. If following conditions hold:

(a) x ≠ H(x, l) for every x Î V\U and l Î [0, 1].

(b) For every x, y Î V, either H(y, l) ≼ H(x, l) or H(x, l) ≼ H(y, l) for each l Î [0,

1].

(c) For all comparable elements x, y in V, there exist j Î F such that

p(H(x,λ),H(y,λ))) ≤ p(x, y) − φ(p(x, y)),

holds for each l Î [0, 1].

(d) There exists L ≥ 0, such that

p(H(x, s),H(x, t)) ≤ L|s − t|
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for each x Î V and s, t Î [0, 1].

Then H(., 0) has a fixed point in U if and only if H(., 1) has a fixed point in U pro-

vided that there exist x0 Î X with x0 ≼ H(x0, l) for each l Î [0, 1].

Proof. Consider

A = {λ ∈ [0, 1] : x = H(x,λ)for some x ∈ U}.

Now, if H(., 0) has a fixed point in U, then 0 Î A, so A is nonempty. Now we show

that A is both open and closed in [0, 1], which by connectedness of [0, 1] will imply

that A = [0, 1]. First, we show that A is closed in [0, 1].

For this, let {ln} be a sequence in A such that ln ® l for some l Î [0, 1] as n ® ∞.

Since ln Î A for n = 1, 2, 3,..., there exists xn Î U such that xn = H(xn, ln). Let n, m
Î N. For each ln Î [0, 1], xm Î U, using property (b) and by nondecreasness of H(.,

l) for each l Î [0, 1], we obtain that xn and xm are comparable. Now

p(xn, xm) = p(H(xn,λn),H(xm,λm))

≤ p(H(xn,λn),H(xm,λn)) + p(H(xm,λn),H(xm,λm))

− p(H(xm,λn),H(xm,λn))

≤ p(H(xn,λn),H(xm,λn)) + p(H(xm,λn),H(xm,λm))

≤ p(xn, xm) − φ(p(xn, xm)) + L|λn − λm|,

that is

φ(p(xn, xm)) ≤ L|λn − λm|.

Since ln ® l as n ® ∞, so that on taking the upper limit as n ® ∞ we obtain that

lim
n,m→∞ p(xn, xm) = 0 , that is, {xn} is a Cauchy sequence in (X, p). Since (X, p) is com-

plete, there exist x in V such that p(x, x) = lim
n→∞ p(x, xn) = lim

n,m→∞ p(xn, xm) = 0 . As xn Î

U and x Î V, using property (b) and the nondecreasness of H(., l) for each l Î [0, 1],

x and xn are comparable. So we have

p(H(x,λ), xn) = p(H(x,λ),H(xn,λn))

≤ p(H(x,λ),H(xn,λ)) + p(H(xn,λ),H(xn,λn))

− p(H(xn,λ),H(xn,λ))

≤ p(x, xn) − φ(p(xn, x)) + L|λ − λn|

which on taking the upper limit as n ® ∞ implies

lim sup
n→∞

p(xn,H(x,λ)) ≤ lim sup
n→∞

p(xn, x) − lim inf
n→∞ φ(p(xn, x)) + lim sup

n→∞
L|λ − λn|

Hence lim
n→∞ p(xn, H(x, λ)) = 0 and

lim
n→∞ p(xn,H(x,λ)) = p(x,H(x,λ)) = 0.

Thus l Î A and A is closed in [0, 1]. Next we show that A is an open in [0, 1]. Let l0 Î
A. Then there exists x0 Î U such that x0 = H(x0, l0). Since U is open, there exists r >0

such that Bp(x0, r) ⊆ U. Now, take δ = inf{p(x0, x): x Î V\U}. Then we have, r = δ - p(x0,

x0) >0. Fix ε >0 with ε ≤ φ(δ)
L

. Let l Î (l0 - ε, l0 + ε) and
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x ∈ Bp(x0, r) = {x ∈ X : p(x, x0) ≤ r + p(x0, x0)} . Since H(., l) is nondecreasing for each l

Î [0, 1], property (b) implies that x and x0 are comparable and

p(H(x,λ), x0) = p(H(x,λ),H(x0,λ0))

≤ p(H(x,λ),H(x0,λ)) + p(H(x0,λ),H(x0,λ0))

− p(H(x0,λ),H(x0,λ))

≤ p(x, x0) − φ(p(x, x0)) + L|λ − λ0|
≤ r + p(x0, x0) − φ(p(x, x0)) + L|λ − λ0|
≤ r + p(x0, x0) − φ(δ) + Lε

≤ r + p(x0, x0).

Thus for each fixed l Î (l0 - ε, l0 + ε), H(.,λ) : Bp(x0, r) → Bp(x0, r) .

Taking V = U and applying Corollary 2.5, we obtain that H(., l) has a fixed point in

U . But this fixed point must be in U in the presence of assumption (a). Thus l Î A

for any l Î (l0 - ε, l0 + ε), therefore A in open in [0, 1]. Similarly, the reverse implica-

tion follows. □
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