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1. Introduction
Let C be a nonempty closed convex subset of a real Hilbert space H. Recall that a
mapping 7: C — C is said to be non-expansive if

[ITx — Ty|| < |lx—y|| forallx,yeC.

Denote by Fix(T) the set of fixed points of T; that is, Fix(T) = {x € C: Tx = x}.

Recently, iterative methods for finding fixed points of non-expansive mappings have
received vast investigations due to its extensive applications in a variety of applied
areas of inverse problem, partial differential equations, image recovery, and signal pro-
cessing; see [1-34] and the references therein. There are perturbations always occurring
in the iterative processes because the manipulations are inaccurate. It is no doubt that
researching the convergent problems of iterative methods with perturbation members
is a significant job.

It is our purpose in this paper that we suggest and analyze two iterative algorithms
with errors for non-expansive mappings in Hilbert spaces. We prove that the proposed
iterative algorithms converge strongly to a fixed point of some non-expansive mapping.

2. Preliminaries

Let H be a real Hilbert space with inner product {--) and norm || - ||, respectively.
Recall that the nearest point (or metric) projection from H onto a nonempty closed
convex subset C of H is defined as follows: for each point x € H, Pc(x)] is the unique
point in C with the property:

llx = Pc@)Il < [lx—yll, VyeC.
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A characterization for P¢ is described below. Given x € H and z € C. Then z = Pc(x)
if and only if there holds the inequality

(x—zy—z)<o0, WyeC (2.1)

It is known that Pc is non-expansive. The following well-known lemmas play an
important role in our argument in the next sections.

Lemma 2.1. (Demiclosedness principle) Let C be a nonempty closed convex subset of
a real Hilbert space H. Let T : C — C be a non-expansive mapping with Fix(T) # @.
Then, T is demiclosed on C, i.e., if x, > x € C weakly and x, - Tx, — y strongly, then
(I-Dx=y.

Lemma 2.2. (Suzuki’'s lemma) Let {x,} and {y,} be bounded sequences in a Banach
space X and {B,} be a sequence in [0, 1] with 0 < lim inf,_,., B,, < lim sup,_,.., B, < 1.
Suppose that x,,, = (1 - B.)yu + Bux, for all n > 0 and lim sup,,_se. (|[Vne1 - ¥n |- %0
+1 - %4|]) £0. Then, lim,, .. ||y, - x,|| = 0.

Lemma 2.3. (Liu’s lemma) Assume {a,} is a sequence of nonnegative real numbers
such that

dpy1 = (1 - yn)an +Vubp+on, n=>0,

where {y,} is a sequence in (0,1), and {0,} and {0,} are two sequences in R such that

(D) Xonso vn = 005
. . o0
(ii) lim sup,,_, ,,8n < 0 or Zn=0 |8nynl < o0

(i) Y _pog lonl < oo.

Then lim,,_,.. a,, = 0.

3. Main results
In this section, we introduce our algorithms with perturbations and state our main
results.

Algorithm 3.1. Let C be a nonempty closed convex subset of a real Hilbert space H.
Let T : C — C be a non-expansive mapping. For given xo € C, define a sequence {x,,}
by the following manner:

Xm = Pc(amim + (1 — am)Txy), m >0, (3.1)

where {o,,,} is a sequence in [0, 1], and the sequence {u,,} < H is a small perturbation
for the m-step iteration satisfying ||u,,|| — 0 as m — oo.

Remark 3.2. In this point, we want to point out that we permit the perturbation {u,,}
in the whole space H. If {u,,} € C, then (3.1) reduces to

X = Aty + (1 — o) Txyy, m > 0. (3.2)

Theorem 3.3. Suppose Fix(T) # . Then, as o, — 0, the sequence {x,,} generated by
the implicit method (3.1) converges to X € Fix(T).
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Proof. We first show that {x,,} is bounded. Indeed, take an x* € Fix(7) to derive that

[1xm — x|

[IPc(atmtbm + (1 — otm) Txm) — x|

a1+ (1 = otm) [ Toxm — x| | + et [t |

IA

IA

(1 = am)xm — x| + 11| + ot ||t
This implies that
[t — &[] < [Ix*[] + [|tm]].

Since ||u,,|| — 0, there exists a constant M > 0 such that sup,,{||#,,||} < M. Hence,

[ - x*|| < ||x*|| + M for all n > 0. It follows that {x,,} is bounded, so is the sequence
{Tx,,}.

Since x,, € C and also Tx,, € C, we get
[1%m — Txm|| = [|Pc(otmm + (1 — o) Txm) — Pe(Txm)|| < am||tm — Txm|| = 0. (3.3)

Setting v, = a,,u,, + (1 - ,,,)Tx,, for all n > 0, we then have x,, = Pc(y,,), and for
any x* € Fix(T),

Xm — X = Pc(Ym) — Ym + Ym — x*

= Pc(Ym) = Ym + ot + (1 — o) (T — X*) — ™.
Noting that the fact by (2.1) that
(Pc(ym) = ym Pcym) —x*) < 0.
Hence, we have

[1%m — x*|1> = (Pc(¥m) — Yms Xm — X*) + i (1, X — x*)
+(1— am)(Txm — X, Xy — x*) —ay (x*,xm —x*)
< (1 = am) || Txp — X% — x| + | [t || 1% — X*[| — et (x*, X — x*)

=< (1 _O‘m)me _x*||2 + | [t | ]| —JC*H — Oy (x*/xm _x*>~
It turns out that
% — x*[12 < (6%, x* — ) + [um|[(11x*]] + M), x* € Fix(T). (3.4)

Since {x,,} is bounded, without loss of generality, we may assume that {x,,} converges
weakly to a point ¥ € C. Noticing (3.3), we can use Lemma 2.1 to get x € Fix(T).
Therefore, we can substitute x for x* in (3.4) to get

[tm — %1* < (% & = %) + [[um|1(|1x*[] + M).

Consequently, the weak convergence of {x,,} to ¥ actually implies that x, — %
strongly. Finally, in order to complete the proof, we have to prove that the weak clus-
ter points set o, (x,,) is singleton. As a matter of fact, if x,,, —~ % € Fix(T) and
Xm, — X € Fix(T), then we have x,,, — % € Fix(T) and xm, — X € Fix(T). From (3.4),

we have

[otm, — EI1% < (% % = xm,) + [, [1(11]] + M),
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and

[, = &I < (& & = Xy + 1t [|(1IR]] + M).

A A

Hence, we have ||% — X||?> < (¥, X — %) and [|X — X||> < (% % — X). Therefore, we obtain
f =2 s s A s =2
2% —xl)* < (x— %X — &) = [|x — xI|°.

We have immediately % = x. This completes the proof.

From Theorem 3.3, we have the following corollary.

Corollary 3.4. Suppose Fix(T) # (. Then, as o, — 0, the sequence {x,,} generated by
the implicit method (3.2) converges to x € Fix(T).

Next, we introduce an explicit algorithm.

Algorithm 3.5. Let C be a nonempty closed convex subset of a real Hilbert space H.
Let T : C — C be a non-expansive mapping. For given xo € C, define a sequence {x,}
by the following manner:

Xn+1l = (1 - ,Bn)xn + ﬁnPC(an”n + (1 - an)Txn)/ n>0, (3.5)

where {o,,} and {B,} are two sequences in (0,1), and the sequence {u,} < H is a pertur-
bation for the n-step iteration.
Remark 3.6. If {u,} € C, then (3.5) reduces to

Xne1 = (1 — Bn)xn + Bulontin + (1 — an)Txn], n >0, (3.6)

Theorem 3.7. Suppose Fix(T) # (. Assume the following conditions are satisfied:

(i) lim,, 5o 0, = 0 and Y 2 oty = 00;
(i) 0 < lim inf,_,.. B8, < lim sup,,.. B, < 1;

(i) Y _pog otnllunl] < o0o.

Then, the sequence {x,} generated by the explicit iterative method (3.5) converges to
X € Fix(T).
Proof. First, we show that {x,} is bounded. Take an x* € Fix(T) to derive that

(1 = Bn) (en — &™) + Ba(Pe(anttn + (1 — an) Toxn) — x7)|

(1 = Ba)llxn — x*[| + Bullotntin + (1 — o) Tty — x*|

= (1 = Ba)llxn — x*[| + Bulanllunll + (1 — atn) [ Txn — x*|| + otn|1x7]]
(1 = Bu)llxn — x*[| + Bulotml [unl| + (1 — an)llxn — x*[] + ctnx*[]]
(1 = Buan)lxn — x*[| + Buotn1x™[| + otn|[unl|

< max{]|x, — x*[|, |Ix*[[} + onlunll.

(21 — x*]]

IA

IA

By induction, we get
n—1
[lxn — %1 < max{||xo — &*||, [1x*[1} + D _ atnllutn]].
n=0

Thus, {x,} is bounded, so is the sequence {T%,}. Next, we show that

[1%ns1 — Xul| — O. (3.7)
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Indeed, we write x,,,; = (1 - B,)x, + By, 1 = 0. It is clear that y, = Pc(or,u, + (1 -
a,,)Tx,,) for all # > 0. Then, we have

||Yn+1 - Yn“ < llaps1tner + (1 - an+1)Txn+1 — Oplp — (1 - an)Txn”
= ||@ns1Une1 — Qplp + (1 - c'5n-¢-1)(Txn+1 - Txn) + (Oln - ‘xn+1)Txn||
=< (1 - an+1)||Txn+l — Txnl| + (an + an+1)||Txn|| + et | [Upa || + anlug|

< (1= anen)llxner — Xull + (on + otnst I Tnl| + ctna |[unar ] + otn ||l .
It follows that
[1Yne1 =Yl = Xne1 = 2nl| < otna1 |1Xne1 —Xnl [+ (0tn +0tnat )Tl [+ 0tns1 | [an ||+ 0t [un].
This together with (i) and (iii) implies that

lim sup (|l — Yall = [ — %all) < 0.
n—oo

Hence, by Lemma 2.2, we get

lim ||y, —x,|| =0 (3.8)
n—o0
Consequently, lim ,, o, ||%,41 - || = lim,, 5o B,y |74 - %,|| = 0. We now show that

%y, — Tx,|| — O.

Notice that

[y — Txull < [1xn — Xne1 |l + [[Xne1 — Tyl
< %n — xpar ] + (1 - ,Bn)“xn — Txnl| + Bullyn — PC(Txn)”

< lxn = X |l + (1 = Bu)llxn — Txull + Bulonllunl] + o] | Tp1].

Hence,

1
[lxn — Txul| < %0 — Xne1 || + onllunll + anl|Txn]].
n

Therefore,

lim [|x, — Txy|| = 0. (3.9)
n— o0

We next show that

limsup (%, X — x,) < 0,
n—oo

where X = limy, .oy and {y,,} be the sequence defined by the implicit method (3.1).
Since x, € C and (y,, - [0ttty + (1 - &) TY,], Yiu - %) < 0, we have

[1ym —xll? = (}’m — Xns Ym *xn)
= (ym — [amtm + (1 — o) Tym], yim — x,,) + (amum + (1 — o) Tym — Xns Ym — xn)
< (amum + (1 - am)TYm — Xns Ym — xn)
=0 (umr Ym _xn> + (1 - am)<TYm — Xn: Ym _xn> — Uy (xnr Ym _xn)
=0 (”m/ Ym — xn> + (1 - O5m)<T)/m — Txy, Ym — xn)
+ (1 - Dlm) (Txn — Xn,Ym — xn) — Oy (xn — Ym:Ym — xn) — Oy <}’mr Ym — xn)
< amllumlllym — xull + (1 — o) Tym — Txullllym — xnll
+ (1 — o) Toxn — Xl lllym — Xnll + @mllym _an2 —on (Ym:)’m _xn>

2
< amllum|M1 + [lym — xall” + | Txn — xn|[M1 — oy <Vm/}’m _xn),
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where M; > 0 such that sup{||y,, - x,||, m, n > 0} < M. It follows that

[ Tx, — xn||M
(Ymr}/m_xn>§ [lum||M1 + " " 1~
Om
Therefore,
lim sup lim sup (y, ym — xa) < 0. (3.10)
m—00 n— o0

We note that

(%% — xn) = (X, X — ym) + (X = Yims Vi — Xn) + (Vi Yim — Xn)
(%ri‘_}’m)‘* [1% = Ymllllym — xnll +<}’mr}’m _xn)

< (& X = ym) + 11X =yl IM + (Y, Y — Xn).

IA

This together with y, — X and (3.10) implies that

lim sup (X, X — x,) = lim sup lim sup (%, X — x,) < lim sup lim sup (ym, ym — xx) < 0 (3.11)

n—o0 m—0o0 n—oo m—0o0 n—oo

From (3.8), (3.9) and (3.11), we have

lim sup (%, X — y,) < 0 and limsup (%, X — Tx,) < 0. (3.12)

n—oo n— 00

Finally, we show that x, — X. Set z,, = a,,u,, + (1 - o,,)Tx,,n = 0. Since x € C and y,

= Pc(z,). Hence <yn — Zn, Yn — 56) < 0. From (3.5), we have

[%ner = E[17 = [1(1 = Bu) (xtn — %) + Bulyn — D)II?
< (1= Bu)ll%n — X1 + Bullyn — I
(1 = Bu)llxn — XI1* + B (yn — 20, ¥n — %) + B (20 — %, yn — X)
(1 = B)llxn — XI1> + Bu(zn — X yn — X)
= (1= Bu)llxn — XII* + Bu(1 — o) (Txw — X,y — X)
+ Broty, (56,56 — y,,) + Broty, (un, Vn — 56)

IA

Note that
- - - - 1 - - 1 - -
(Txy — %, yn — %) < [Tty =Xl lyn—%I| < 2(|lxn—xl|2+||)/n—x||2) < 2(||xn_x||2+||zn_x||2)/

and

llzn = %I1* = [1(1 = o) (Totn — %) — @& + ayunl|?
<1 — an)(Ton — %) — anX|* + o Junl (1 = 00) (Txn — %)* — ] + ||l
< (1 — an)lITxn — XI* — 2001 — at) (X, Ty — &) + 07| |%]]
+ o [unl111(1 = an) (T — %)% — o] + 027 [un]]?

< (1= o)l — &II* = 200 (1 = &) (%, Totn — &) + o3 [1117 + et un| M1,
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where M, is a constant such that sup,,{||(1 — o) (Tx, — )* — anX|| + @nlltn]]} < Mo

Hence, we have

ﬁn(l - Oln)
2

%12 212 2112 212
[1Xpe1 — X117 < (1 = Bu)llxn — XI|° + (Hxn = I1° + l|zn — XII7)

+Bnoty <5C/ x— )’n> + BnotnMa| Uy ||
ﬁn(l - an)
2

((1 = an)llxn — XII* — 2000 (1 — et (%, Tty — %)

S(l_ﬂn)||xn_5c||2+ ||x,,—5c||2

ﬂn(l - ‘Xn)
+
2
+op |1X]1? + ot [un] IM2) + Buct (%, X — Yn) + BrotnMo | [un]|
< (1 = Bnatn)lloxn — 3~C||2 + Buan (1 — Oln)2 <J~C,J~C — Txn)
+Bnttn (%, X — yn) + Buop [1X] 17 + 2Mocty |ty |
= (1= Bon)ll — 2 + Bren (1 = ) (5 & = T,
+ Bt (%, & — ) + cnlIXI12 } + 2Mo0n ||

= (1 — yu)llxn _5‘3”2 + Vnby + O,

where  yu = Buatn, 85 = (1 — &) (%, X — Tx) + Buoty (X, X — yn) + | IXI|> and o, =
2Msa,||u,||. Now, applying Lemma 2.3 to the last inequality, we conclude that
X, — X. This completes the proof.

Corollary 3.8. Suppose Fix(T) # 0. Assume the following conditions are satisfied:

(i) lim,, e 0, = 0 and Y o oty = 00;

(i) 0 < lim inf,_,., B, < lim sup,_se, B, < 1;

(iil) > pop nllunl| < co.

Then, the sequence {x,} generated by the explicit iterative method (3.6) converges to
X € Fix(T).

Remark 3.9. We would like to point out that our algorithms (3.1) and (3.5) converge
strongly to the minimum-norm fixed point ¥ of 7. As a matter of fact, from (3.4), as
m — oo, we deduce

2

[1X — x> < (x*,x* =), Vx* € Fix(T),

which is equivalent to

X2 < (x*,ic) < ||x*||1|1X|]|, Vx* € Fix(T).
Therefore,

X[l < |1x*]l, Vx* € Fix(T).

That is, ¥ is the minimum-norm fixed point of T.

Minimum-norm solutions are important in applied problems, e.g., defining the pseu-
doinverse of a bounded linear operator, and many other problems in signal processing.
Therefore, using iterative methods to find the minimum-norm solution of a given non-
linear problem is of significant value. Finding the minimum-norm solution of a non-
linear problem has recently been received a lot of attention, and for some related
works, please see [35-37]. Our paper provides such iterative methods (an implicit and
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an explicit) for finding minimum-norm solutions of nonlinear operator equations gov-

erned by non-expansive mappings.
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