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Abstract

In this paper, we prove a fixed point theorem for generalized weak contractions
satisfying rational expressions in partially ordered metric spaces. The result is a
generalization of a recent result of Harjani et al. (Abstr. Appl. Anal, Vol.2010, 1-8,
2010). An example is also given to show that our result is a proper generalization of
the existing one.
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1 Introduction and preliminaries
It is well known that the Banach contraction mapping principle is one of the pivotal

results of analysis. Generalizations of this principle have been obtained in several direc-

tions. The following is an example of such generalizations. Jaggi in [1] proved the fol-

lowing theorem satisfying a contractive condition of rational type

Theorem 1.1. ([1]) Let T be a continuous self-map defined on a complete metric

space (X, d). Suppose that T satisfies the following condition:

d
(
Tx,Ty

) ≤ α
d (x,Tx) .d

(
y,Ty

)
d
(
x, y

) + βd
(
x, y

)

for all x, y Î X, x ≠ y and for some a, b ≥ 0 with a + b < 1, then T has a unique

fixed point in X.

Another generalization of the contraction principle was suggested by Alber and

Guerre-Delabriere [2] in Hilbert spaces. Rhoades [3] has shown that their result is still

valid in complete metric spaces.

Definition 1.2. ([3]) Let (X, d) be a metric space. A mapping T : X ® X is said to be

�-weak contraction if

d
(
Tx,Ty

) ≤ d
(
x, y

) − ϕ
(
d
(
x, y

))
for all x, y Î X, where � : [0, ∞) ® [0, ∞) is a continuous and non-decreasing func-

tion with �(t) = 0 if and only if t = 0.
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Theorem 1.3. ([3]) Let (X, d) be a complete metric space and T be a �-weak

contraction on X. Then, T has a unique fixed point.

In fact, while Alber and Guerre-Delabriere assumed an additional assumption limt®∞

�(t) = ∞ on �, but Rhoades proved Theorem 1.3 without this particular condition. A

number of extensions of Theorem 1.3 were presented in [4-9] and references therein.

Some of these results were presented without the continuity and monotonicity of �.

Recently, existence of fixed points in partially ordered sets has been considered, and

first results were obtain by Ran and Reurings [10] and then by Nieto and Lopez [11].

The following fixed point theorem is the version of theorems, which were proved in

those papers.

Theorem 1.4. ([10,11]) Let (X, ≤) be a partially ordered set, and suppose that there is

a metric d such that (X, d) be a complete metric space. Let T : X ® X be a non-

decreasing mapping satisfying the following inequality

d(Tx,Ty) ≤ kd(x, y), for all x, y ∈ X with x ≤ y,

where k Î (0, 1). Also, assume either

(i) T is continuous or

(ii) X has the property:

If a non − decreasing sequence {xn} in X converges to x ∈ X then xn ≤ x for all n (1)

If there exists x0 Î X such that x0 ≤ Tx0, then T has a fixed point.

Besides, applications to matrix equations and ordinary differential equations were

presented in [10,11]. Afterward, coupled fixed point and common fixed point theorems

and their applications to periodic boundary value problems and integral equations

were given in [5-7,12-19]. In particular, Harjani and Sadarangani [5] proved some fixed

point theorems in the context of ordered metric spaces as the extensions of Theorem

1.3. We state one of their results.

Theorem 1.5. ([5]) Let (X, ≤) be a partially ordered set and suppose that there is a

metric d such that (X, d) be a complete metric space. Let T : X ® X be a non-decreas-

ing mapping satisfying the following inequality

d
(
Tx,Ty

) ≤ d
(
x, y

) − ϕ
(
d
(
x, y

))
, for all x, y ∈ X with x ≤ y,

where � : [0, ∞) ® [0, ∞) is a continuous and non-decreasing function with �(t) = 0 if

and only if t = 0. Also, assume either

(i) T is continuous or

(ii) X has the property (1).

If there exists x0 Î X such that x0 ≤ Tx0, then T has a fixed point.

In addition, Harjani et al. in [12] proved the following theorem as a version of Theo-

rem 1.1 in partially ordered metric spaces where they replaced the condition (1) by a

stronger condition, that is

If{xn} is a non - decreasing sequence in X such that xn → x then x = sup{xn}. (2)
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Theorem 1.6. ([12]) Let (X, ≤) be a partially ordered set and suppose that there is a

metric d such that (X, d) be a complete metric space. Let T : X ® X be a non-

decreasing mapping such that

d
(
Tx,Ty

) ≤ α
d (x,Tx) .d

(
y,Ty

)
d
(
x, y

) + βd
(
x, y

)
, for all x, y ∈ X with x ≥ y, x �= y, (3)

where 0 ≤ a, b and a + b < 1. Also, assume either

(i) T is continuous or

(ii) X has the property (2).

If there exists x0 Î X such that x0 ≤ Tx0, then T has a fixed point.

In this paper, we prove a fixed point theorem for generalized weak contractions

satisfying rational expressions in partially metric spaces, which is a generalization of

the result of Harjani et al. [12]. We also give an example to show that our result is a

proper extension of the result in [12].

2 Main theorem
Theorem 2.1. Let (X, ≤) be a partially ordered set, and suppose that there is a metric d

such that (X, d) be a complete metric space. Let T : X ® X be a non-decreasing map-

ping satisfying the following inequality

d
(
Tx,Ty

) ≤ M
(
x, y

) − ϕ
(
M

(
x, y

))
, for all x, y ∈ X with x ≥ y, x �= y, (4)

where � : [0, ∞) ® [0, ∞) is a lower semi-continuous function with �(t) = 0 if and

only if t = 0, and

M(x, y) = max

{
d (x,Tx) .d

(
y,Ty

)
d
(
x, y

) , d
(
x, y

)}
.

Also, assume either

(i) T is continuous or

(ii) X has the property (2).

If there exists x0 Î X such that x0 ≤ Tx0, then T has a fixed point.

Proof. Let x0 Î X be such that x0 ≤ Tx0, we construct the sequence {xn} in X as fol-

lows

xn+1 = Txn, n = 0, 1, 2, . . . (5)

Since T is a non-decreasing mapping, by induction, we can show that

x0 ≤ x1 ≤ x2 ≤ · · · ≤ xn ≤ xn+1 ≤ · · · (6)

If there exists n0 such that xn0 = xn0+1, then xn0 = xn0+1 = Txn0. This means that xn0 is a

fixed point of T and the proof is finished. Thus, we can suppose that xn ≠ xn+1 for all n.
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Since xn >xn-1 for all n ≥ 1, from (4), we have

d(xn+1, xn) = d(Txn,Txn−1)

≤ max
{
d(xn,Txn). d(xn−1,Txn−1)

d (xn, xn−1)
, d(xn, xn−1)

}

− ϕ

(
max

{
d(xn,Txn). d(xn−1,Txn−1)

d(xn, xn−1)
, d(xn, xn−1)

})
= max{d(xn+1, xn), d(xn, xn−1)}

− ϕ(max{d(xn+1, xn), d(xn, xn−1)})

(7)

Suppose that there exists m0 such that d
(
xm0+1, xm0

)
> d

(
xm0 , xm0−1

)
, from (7), we

have

d(xm0+1, xm0 ) ≤ max{d(xm0+1, xm0 ), d(xm0 , xm0−1)}
− ϕ(max{d(xm0+1, xm0 ), d(xm0 , xm0−1)})

= d(xm0+1, xm0 ) − ϕ(d(xm0+1, xm0 )) < d(xm0+1, xm0 )

which is a contradiction. Hence, d (xn+1, xn) ≤ d (xn, xn-1) for all n ≥ 1.

Since {d(xn+1, xn)} is a non-increasing sequence of positive real numbers, there exists

δ ≥ 0 such that

lim
n→∞ d (xn+1, xn) = δ

We shall show that δ = 0. Assume, to the contray, that δ >0. Taking the upper limit

as n ® ∞ in (7) and using the properties of the function �, we get

δ ≤ δ − lim
n→∞ infϕ (max {d (xn+1, xn) , d (xn, xn−1)}) ≤ δ − ϕ (δ) < δ

which is a contradiction. Therefore, δ = 0, that is,

lim
n→∞ d (xn+1, xn) = 0 (8)

In what follows, we shall prove that {xn} is a Cauchy sequence. Suppose, to the

contrary, that {xn} is not a Cauchy sequence. Then, there exists ε >0 such that we can

find subsequences {xm(k)}, {xn(k)} of {xn} with n(k) > m(k) ≥ k satisfying

d(xm(k), xn(k)) ≥ ε (9)

Further, corresponding to m(k), we can choose n(k) in such way that it is the

smallest integer with n(k) > m(k) ≥ k satisfying (9). Hence,

d(xm(k), xn(k)−1) < ε (10)

We have

ε ≤ d(xm(k), xn(k)) ≤ d(xm(k), xn(k)−1) + d(xn(k)−1, xn(k)) < ε + d(xn(k)−1, xn(k))

Taking k ® ∞ and using (8), we get

lim
k→∞

d
(
xm(k), xn(k)

)
= ε (11)

By the triangle inequality,

d(xm(k), xn(k)) ≤ d(xm(k), xm(k)−1) + d(xm(k)−1, xn(k)−1) + d(xn(k)−1, xn(k)),

d(xm(k)−1, xn(k)−1) ≤ d(xm(k)−1, xm(k)) + d(xm(k), xn(k)) + d(xn(k), xn(k)−1)
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Taking k ® ∞ in the above inequalities and using (7), (11), we obtain

lim
k→∞

d
(
xm(k)−1, xn(k)−1

)
= ε (12)

Since m(k) < n(k), xn(k)-1 >xm(k)-1, from (4), we have

d
(
xn(k), xm(k)

)
= d

(
Txn(k)−1,Txm(k)−1

)
≤ max

{
d
(
xn(k)−1,Txn(k)−1

)
d
(
xm(k)−1,Txm(k)−1

)
d
(
xn(k)−1, xm(k)−1

) , d
(
xn(k)−1, xm(k)−1

)}

−ϕ

(
max

{
d
(
xn(k)−1,Txn(k)−1

)
.d

(
xm(k)−1,Txm(k)−1

)
d
(
xn(k)−1, xm(k)−1

) , d
(
xn(k)−1, xm(k)−1

)})

≤ max

{
d
(
xn(k)−1, xn(k)

)
.d

(
xm(k)−1, xm(k)

)
d
(
xn(k)−1, xm(k)−1

) , d
(
xn(k)−1, xm(k)−1

)}

−ϕ

(
max

{
d
(
xn(k)−1, xn(k)

)
.d

(
xm(k)−1, xm(k)

)
d
(
xn(k)−1, xm(k)−1

) , d
(
xn(k)−1, xm(k)−1

)})

(13)

Taking upper limit as k ® ∞ in (13) and using (7), (11), (12) and the properties of

the function �, we have

ε ≤ max {0, ε} − ϕ (max {0, ε}) = ε − ϕ (ε) < ε

which is a contradiction. Therefore, {xn} is a Cauchy sequence. Since X is a complete

metric space, there exists x Î X such that limn®∞ xn = x.

Now, suppose that the assumption (a) holds. The continuity of T implies

x = lim
n→∞ xn = lim

n→∞ Txn−1 = T
(
lim
n→∞ xn−1

)
= Tx

and this proved that x is a fixed point of T.

Finally, suppose that the assumption (b) holds. Since {xn} is a non-decreasing

sequence and xn ® x, then x = sup{xn}. Particularly, xn ≤ x for all n. Since T is non-

decreasing, Txn ≤ Tx for all n, that is, xn+1 ≤ Tx for all n. Moreover, as xn ≤ xn+1 ≤ Tx

for all n and x = sup{xn}, we obtain x ≤ Tx. Consider the sequence {yn} that is con-

structed as follows

y0 = x, yn+1 = Tyn, n = 0, 1, 2, . . .

Since y0 ≤ Ty0, arguing like above part, we obtain that {yn} is a non-decreasing

sequence and lim
n→∞ yn = y for certain y Î X. By the assumption (b), we have y = sup{yn}.

Since xn <x = y0 ≤ Tx = Ty0 ≤ yn ≤ y for all n, suppose that x ≠ y, from (4), we have

d(yn+1, xn+1) = d
(
Txn,Tyn

)
≤ max

{
d(yn,Tyn). d(xn,Txn)

d(yn, xn)
, d(yn, xn)

}

− ϕ

(
max

{
d(yn,Tyn). d(xn,Txn)

d(yn, xn)
, d(yn, xn)

})

= max
{
d(yn, yn+1). d(xn, xn+1)

d(yn, xn)
, d(yn, xn)

}

− ϕ

(
max

{
d(yn, yn+1). d(xn, xn+1)

d(yn, xn)
, d(yn, xn)

})
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Taking upper limit as n ® ∞ in the above inequality, we have

d(y, x) ≤ max{0, d(y, x)} − ϕ(max{0, d(y, x)}) < d(y, x)

which is a contradiction. Hence, x = y. We have x ≤ Tx ≤ x, therefore Tx = x. That

is, x is a fixed point of T.

The proof is complete. □
Corollary 2.2. Let (X, ≤) be a partially ordered set, and suppose that there is a metric

d such that (X, d) be a complete metric space. Let T : X ® X be a non-decreasing map-

ping such that

d(Tx,Ty) ≤ kmax
{
d(x,Tx). d(y,Ty)

d(x, y)
, d(x, y)

}
, (14)

for all x, y Î X with x ≥ y, x ≠ y, where k Î (0, 1). Also, assume either

(i) T is continuous or

(ii) X has the property (2).

If there exists x0 Î X such that x0 ≤ Tx0, then T has a fixed point.

Proof. In Theorem 2.1, taking �(t) = (1 - k)t, for all t Î [0, ∞), we get Corollary 2.2.

□
Remark 2.3. For a, b >0, a + b < 1 and for all x, y Î X, x ≠ y, we have

d(Tx,Ty) ≤ α
d(x,Tx). d(y,Ty)

d(x, y)
+ βd(x, y)

≤ (α + β)max
{
d(x,Tx). d(y,Ty)

d(x, y)
, d(x, y)

}

= kmax
{
d(x,Tx). d(y,Ty)

d(x, y)
, d(x, y)

}

where k = a + b Î (0,1). Therefore, Corollary 2.2 is a generalization of Theorem 1.6,

so is Theorem 2.1.

Now, we shall prove the uniqueness of the fixed point.

Theorem 2.4. In addition to the hypotheses of Theorem 2.1, suppose that

for every x, y ∈ X, there exists z ∈ X that is comparable to x and y, (15)

then T has a unique fixed point.

Proof. From Theorem 2.1, the set of fixed points of T is non-empty. Suppose that x, y

Î X are two fixed points of T. By the assumption, there exists z Î X that is compar-

able to x and y.

We define the sequence {zn} as follows

z0 = z, zn+1 = Tzn, n = 0, 1, 2, . . .

Since z is comparable with x, we may assume that z ≤ x. Using the mathematical

induction, it is easy to show that zn ≤ x for all n.

Suppose that there exists n0 ≥ 1 such that zn0 = x, then zn = Tzn-1 = Tx = x for all n

≥ n0 - 1. Hence, zn ® x as n ® ∞.
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On the other hand, if zn ≠ x for all n, from (4), we have

d(x, zn) = d (Tx,Tzn−1)

≤ max
{
d(x,Tx). d(zn−1,Tzn−1)

d(x, zn−1)
, d(x, zn−1)

}

− ϕ

(
max

{
d(x,Tx). d(zn−1,Tzn−1)

d(x, zn−1)
, d(x, zn−1)

})
= d(x, zn−1) − ϕ(d(x, zn−1)

(16)

It implies that d (x, zn) <d (x, zn-1) for all n ≥ 1, that is, {d(x, zn)} is a decreasing

sequence of positive real numbers. Therefore, there is an a ≥ 0 such that d(x, zn) ® a.
We shall show that a = 0. Suppose, to the contrary, that a >0. Taking the upper limit

as n ® ∞ in (16) and using the properties of �, we have

α = lim
n→∞ d(x, zn) ≤ α − lim

n→∞ infϕ(d(x, zn−1)) ≤ α − ϕ(α) < α

which is a contradiction. Hence, a = 0, that is, zn ® x as n ®∞. Therefore, in both

cases, we have

lim
n→∞ zn = x (17)

Similarly, we have

lim
n→∞ zn = y (18)

From (17) and (18), we get x = y. □
Example 2.5. Let X =

[
0, 12

]
with the usual metric d (x, y) = |x - y|, ∀x, y Î X.

Obviously, (X, d) is a complete metric space. We consider the ordered relation in X as

follows

x, y ∈ X, x � y ⇔ x = y or
(
x, y ∈ {0} ∪

{
1
n
: n = 2, 3, . . .

}
and x ≤ y

)

where ≤ be the usual ordering.

Let T : X ® X be given by

Tx =

⎧⎨
⎩

0,
1/(n + 1),√

2/2,

if x = 0,
if x = 1/n, n = 2, 3, . . .
otherwise

It is easy to see that T is non-decreasing and X has the property (2). Also, there is x0
= 0 in X such that x0 = 0 ≼ 0 = Tx0.

Clearly, T has a fixed point that is 0. However, we cannot apply Theorem 1.6

because the condition (3) is not true. Indeed, suppose that the condition (3) holds.

Taking y = 0 and x = 1/n, n = 2, 3, 4,... in (3), we have

d
(
T
1
n
,T0

)
≤ α

d
( 1
n ,T

1
n

)
.d (0,T0)

d
( 1
n , 0

) + βd
(
1
n
, 0

)
,∀n = 2, 3, 4, . . .

This implies

1
n + 1

≤ β
1
n
, ∀n = 2, 3, 4, . . .
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or

n
n + 1

≤ β , ∀n = 2, 3, 4, . . .

Taking n ® ∞ in the last inequality, we have 1 ≤ b and we obtain a contradiction.

We now show that T satisfies (4) with � : [0, ∞) ® [0, ∞) which is given by

ϕ(t) = t3, ∀ t ∈ [0,∞).

We have x, y Î X, x ≽ y, x ≠ y if x = 1/n, y = 0 or x = 1/n, y = 1/m, m > n ≥ 2. So,

we have two possible cases.

Case 1. x = 1/n, n ≥ 2 and y = 0, we have

M(x, y) − ϕ
(
M(x, y)

)
=
1
n

− 1
n3

≥ 1
n

− 1
n (n + 1)

=
1

n + 1
= d

(
Tx,Ty

)

Case 2. x = 1/n, y = 1/m, m > n ≥ 2, we have

M(x, y) = max

{∣∣ 1
n − 1

n+1

∣∣ · ∣∣ 1m − 1
m+1

∣∣∣∣1
n − 1

m

∣∣ ,

∣∣∣∣1n − 1
m

∣∣∣∣
}

For m > n ≥ 2, we have∣∣1
n − 1

n+1

∣∣ · ∣∣ 1
m − 1

m+1

∣∣∣∣ 1
n − 1

m

∣∣ ≤
∣∣∣∣1n − 1

m

∣∣∣∣
is equivalent to

1
(n + 1) (m + 1)

≤ (m − n)2

mn

or

mn

(n + 1) (m + 1)
≤ (m − n)2

The last inequality holds since

mn

(n + 1) (m + 1)
< 1 ≤ (m − n)2

Therefore,

M(x, y) =

∣∣∣∣1n − 1
m

∣∣∣∣
We have

d
(
Tx,Ty

) ≤ M(x, y) − ϕ
(
M(x, y)

)
, ∀m > n ≥ 2 (19)

is equivalent to∣∣∣∣ 1
n + 1

− 1
m + 1

∣∣∣∣ ≤
∣∣∣∣1n − 1

m

∣∣∣∣ −
∣∣∣∣1n − 1

m

∣∣∣∣
3

, ∀m > n ≥ 2
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or

m − n

(n + 1) (m + 1)
≤ m − n

mn
− (m − n)

(mn)3

3

, ∀m > n ≥ 2

or

(m − n)

(mn)3

2

≤ 1
mn

− 1
(n + 1) (m + 1)

=
m + n + 1

mn (n + 1) (m + 1)
, ∀m > n ≥ 2

or (
1
n

− 1
m

)2

≤ m + n + 1
(n + 1) (m + 1)

, ∀m > n ≥ 2 (20)

We have(
1
n

− 1
m

)2

<
1
n2

<
1

n + 1
+

n

(n + 1) (m + 1)
=

m + n + 1
(n + 1) (m + 1)

, ∀m > n ≥ 2

Thus, the inequality (20) holds, so does the inequality (19).

Therefore, all the conditions of Theorem 2.1 are satisfied. Applying Theorem 2.1, we

conclude that T has a fixed point in X.

Notice that since T is not continuous, this example cannot apply to Theorem 1.1.

Moreover, since the condition (15) is not satisfied, the uniqueness of fixed point of T

does not guarantee. In fact, T has two fixed points that are 0 and
√
2/2.
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