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Abstract

In this paper, the common solution problem (P1) of generalized equilibrium
problems for a system of inverse-strongly monotone mappings {Ak}Nk=1 and a system
of bifunctions {fk}Nk=1 satisfying certain conditions, and the common fixed-point
problem (P2) for a family of uniformly quasi-j-asymptotically nonexpansive and
locally uniformly Lipschitz continuous or uniformly Hölder continuous mappings
{Si}∞i=1 are proposed. A new iterative sequence is constructed by using the
generalized projection and hybrid method, and a strong convergence theorem is
proved on approximating a common solution of (P1) and (P2) in Banach space.
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1. Introduction
Recently, common solution problems (i.e., to find a common element of the set of

solutions of equilibrium problems and/or the set of fixed points of mappings and/or

the set of solutions of variational inequalities) with their applications have been dis-

cussed. Some authors such as in references [1-7] presented various iterative schemes

and showed some strong or weak convergence theorems on common solution pro-

blems in Hilbert spaces. In 2008-2009, Takahashi and Zembayashi [8,9] introduced

several iterative sequences on finding a common solution of an equilibrium problem

and a fixed-point problem for a relatively nonexpansive mapping, and established some

strong or weak convergence theorems. In 2010, Chang et al. [10] discussed the com-

mon solution of a generalized equilibrium problem and a common fixed-point problem

for two relatively nonexpansive mappings, and established a strong convergence theo-

rem on the common solution problem. The frameworks of spaces in [8-10] are the

uniformly smooth and uniformly convex Banach spaces. Chang et al. [11] established a

strong convergence theorem on solving the common fixed-point problem for a family

of uniformly quasi-j-asymptotically nonexpansive and uniformly Lipschitz continuous

mappings in a uniformly smooth and strictly convex Banach space with the Kadec-

Klee property. Some other problems such as optimization problems (e.g. see [1,4,6])
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and common zero-point problems (e.g. see [10]) are closely related to common solu-

tion problems.

Throughout this paper, unless other stated, ℝ and J are denoted by the set of the

real numbers and the set {1, 2,..., N}, respectively, where N is any given positive integer.

Let E be a real Banach space with the norm || · ||, E* be the dual of E, and 〈·,·〉 be the

pairing between E and E*. Suppose that C is a nonempty closed convex subset of E.

Let {Ak}Nk=1 : C → E∗ be N mappings and {fk}Nk=1 : C × C → R be N bifunctions. For

each k ∈ J, the generalized equilibrium problem for fk and Ak is to seek ū ∈ C such

that

fk(ū, y) + 〈y − ū, Akū} ≥ 0, ∀y ∈ C. (1:1)

The common solution problem (P1) of generalized equilibrium problems for {Ak}Nk=1
and {fk}Nk=1 is to seek an element in G, where G =

⋂N
k=1 G(k) and G(k) is the set of solu-

tions of (1.1). We write G instead of G in the case of N = 1.

Let {Si}∞i=1 : C → C be a family of mappings. The common fixed-point problem (P2)

for {Si}∞i=1 is to seek an element in F, where F =
⋂∞

i=1 F(Si) and F (Si) is the set of fixed

points of Si.

Motivated by the works in [8-11], in this paper we will produce a new iterative

sequence approximating a common solution of (P1) and (P2) (i.e., some point belong-

ing to F ∩ G), and show a strong convergence theorem in a uniformly smooth and

strictly convex Banach space with the Kadec-Klee property, where {Si}∞i=1 in (P2) is a

family of uniformly quasi-j-asymptotically nonexpansive mappings and for each i ≥ 1,

Si is locally uniformly Lipschitz continuous or uniformly Hölder continuous with order

Θi .

2. Preliminaries
Let E be a real Banach space, and {xn} be a sequence in E. We denote by xn ® x and

xn ⇀ x the strong convergence and weak convergence of {xn}, respectively. The normal-

ized duality mapping J : E ® 2E* is defined by

Jx = {f ∈ E∗ : 〈x, f 〉 = ||x||2 = ||f ||2}, ∀x ∈ E.

By the Hahn-Banach theorem, Jx ≠ ∅ for each x Î E.

A Banach space E is said to be strictly convex if
||x + y||

2
< 1 for all x, y Î U = {u Î E

: ||u|| = 1} with x ≠ y; to be uniformly convex if for each ε Î (0, 2], there exists g > 0

such that
||x + y||

2
< 1 − γ for all x, y Î U with ||x - y|| ≥ ε; to be smooth if the limit

lim
t→0

||x + ty|| − ||x||
t

(2:1)

exists for every x, y Î U; to be uniformly smooth if the limit (2.1) exists uniformly for

all x, y Î U.

Remark 2.1. The basic properties below hold (see [12]).

(i) If E is a real uniformly smooth Banach space, then J is uniformly continuous on

each bounded subset of E.

(ii) If E is a strictly convex reflexive Banach space, then J-1 is hemicontinuous, that is,

J-1 is norm-to-weak*-continuous.
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(iii) If E is a smooth and strictly convex reflexive Banach space, then J is single-

valued, one-to-one and onto.

(iv) Each uniformly convex Banach space E has the Kadec-Klee property, that is, for

any sequence {xn} ⊂ E, if xn ⇀ x Î E and ||xn|| ® ||x||, then xn ® x.

(v) A Banach space E is uniformly smooth if and only if E* is uniformly convex.

(vi) A Banach space E is strictly convex if and only if J is strictly monotone, that is,

〈x − y, x∗ − y∗〉 > 0 whenever x, y ∈ E, x �= y and x∗ ∈ Jx, y∗ ∈ Jy.

(vii) Both uniformly smooth Banach spaces and uniformly convex Banach spaces are

reflexive.

Now let E be a smooth and strictly convex reflexive Banach space. As Alber [13] and

Kamimura and Takahashi [14] did, the Lyapunov functional j : E × E ® ℝ+ is defined

by

φ(x, y) = ||x||2 − 2〈x, Jy〉 + ||y||2, ∀x, y ∈ E.

It follows from [15] that j(x, y) = 0 if and only if x = y, and that

(||x|| − ||y||)2 ≤ φ(x, y) ≤ (||x|| + ||y||)2. (2:2)

Further suppose that C is a nonempty closed convex subset of E. The generalized

projection (see [13]) ΠC: E®C is defined by for each x Î E,

�C(x) = argmin
y∈C

φ(y, x).

A mapping A : C ® E* is said to be δ-inverse-strongly monotone, if there exists a

constant δ > 0 such that

〈x − y, Ax − Ay 〉 ≥ δ|| Ax − Ay ||2, ∀x, y ∈ C.

A mapping S : C ® C is said to be closed if for each {xn} ⊂ C, xn ® x and Sxn ® y

imply Sx = y; to be quasi-j-asymptotically nonexpansive (see [16]) if F(S) ≠ ∅, and

there exists a sequence {ln} ⊂ [1, ∞) with ln ® 1 such that

φ(u, Snx) ≤ lnφ(u, x), ∀x ∈ C, u ∈ F(S), ∀n ≥ 1.

It is easy to see that if A : C ® E* is δ-inverse-strongly monotone, then A is
1
δ
-Lipschitz continuous. The class of quasi-j-asymptotically nonexpansive mappings

contains properly the class of relatively nonexpansive mappings (see [17]) as a subclass.

Definition 2.1 (see [11]). Let {Si}∞i=1 : C → C be a sequence of mappings. {Si}∞i=1 is
said to be a family of uniformly quasi-j-asymptotically nonexpansive mappings, if

F �= ∅ and there exists a sequence {ln} ⊂ [1, ∞) with ln ® 1 such that for each i ≥ 1,

φ(u, Sni x) ≤ lnφ(u, x), ∀u ∈ F, x ∈ C, ∀n ≥ 1.

Now we introduce the following concepts.

Definition 2.2. A mapping S : C ® C is said

(1) to be locally uniformly Lipschitz continuous if for any bounded subset D in C,

there exists a constant LD > 0 such that

||Snx − Sny|| ≤ LD||x − y||, ∀x, y ∈ D, ∀n ≥ 1;
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(2) to be uniformly Hölder continuous with order Θ (Θ > 0) if there exists a constant

L > 0 such that

||Snx − Sny|| ≤ L||x − y||�, ∀x, y ∈ C, ∀n ≥ 1.

Remark 2.2. It is easy to see that any uniformly Lipschitz continuous mapping (see

[11]) is locally uniformly Lipschitz continuous, and is also uniformly Hölder continu-

ous with order Θ = 1. However, the converse is not true.

Example 2.1. Suppose that S : ℝ ® ℝ is defined by

S(x) =
{
x2, if x < 0,
0, if x ≥ 0.

Then S is locally uniformly Lipschitz continuous. In fact, for any bounded subset D

in ℝ, setting M = 1 + sup{|x| : x Î D}, we have |Snx - Sny| ≤ 2M |x - y|, x, y Î D, ∀n
≥ 1. But S fails to be uniformly Lipschitz continuous.

Example 2.2. Suppose that S : ℝ - ℝ is defined by

S(x) =
{√−x, if x < 0,

0, if x ≥ 0.

S is uniformly Hölder continuous with order � = 1
2, since |Snx − Sny| ≤ 2|x − y|

1
2, ∀x,

y Î ℝ, ∀n ≥ 1. But S fails to be uniformly Lipschitz continuous.

Lemma 2.1 (see [13,14]). If C is a nonempty closed convex subset of a smooth and

strictly convex reflexive Banach space E, then

(1) j(x, ΠC(y)) + j(ΠC(y), y) ≥ j(x, y), ∀x Î C, y Î E;

(2) for × Î E and u Î C, one has

u = �C(x) ⇔ 〈u − y, Jx − Ju〉 ≥ 0, ∀y ∈ C.

□
Lemma 2.2. Let E be a uniformly smooth and strictly convex Banach space with the

Kadec-Klee property, {xn} and{yn} be two sequences of E, and ū ∈ E. If xn → ū and j(xn,
yn) ® 0, then yn → ū.

Proof. We complete this proof by two steps.

Step 1. Show that there exists a subsequence {ynk} of {yn} such that ynk → ū.

In fact, since j(xn, yn) ® 0, by (2.2) we have ||xn|| - ||yn|| ® 0. It follows from

xn → ū that

||yn|| → ||ū|| (as n → ∞), (2:3)

and so

||Jyn|| → ||Jū|| (as n → ∞). (2:4)

Then {Jyn} is bounded in E*. It follows from Remark 2.1(v) and (vii) that E* is reflex-

ive. Hence there exist a point f0 Î E* and a subsequence {Jynk} of {Jyn} such that

Jynk ⇀ f0(as k → ∞). (2:5)

It follows from Remark 2.1(vii) and (iii) that there exists a point x Î E such that Jx =

f0. By the definition of j, we obtain
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φ(xnk , ynk) = ||xnk ||2 − 2〈xnk , Jynk〉 + ||ynk ||2
= ||xnk ||2 − 2〈xnk , Jynk〉 + ||Jynk ||2.

By weak lower semicontinuity of norm || · ||, we have

0 = lim inf
k→∞

φ(xnk , ynk)

≥ ||ū||2 − 2〈ū, f0〉 + ||f0||2
= ||ū||2 − 2〈ū, Jx〉 + ||Jx||2
= ||ū||2 − 2〈ū, Jx〉 + ||x||2 = φ(ū, x),

which implies that ū = x and f0 = Jū. It follows from Remark 2.1(iv) and (v) that E*

has the Kadec-Klee property, and so Jynk → Jū by (2.4) and (2.5). By Remark 2.1(vii)

and (ii), we have ynk ⇀ ū, which implies that ynk → ū by (2.3) and the Kadec-Klee

property of E.

Step 2. Show that yn → ū.

In fact, suppose that yn �→ ū. For some given number ε0 > 0, there exists a positive

integer sequence {nk} with n1 <n2 < · · · <nk < · · ·, such that

||ynk − ū|| ≥ ε0. (2:6)

Replacing {yn} by {ynk} in Step 1, there exists a subsequence {ynki } of {ynk} such that

ynki → ū, which contradicts (2.6). □
Lemma 2.3. Let C be a nonempty closed convex subset of a smooth and strictly con-

vex reflexive Banach space E, and let A : C ® E* be a δ-inverse-strongly monotone

mapping and f : C × C ® ℝ be a bifunction satisfying the following conditions

(B1) f(z, z) = 0, ∀z Î C;

(B2)
lim sup

t↓0
f (z + t(x − z), y) ≤ f (z, y), ∀x, y, z ∈ C;

(B3) for any z Î C, the function y a f(z, y) is convex and lower semicontinuous;

(B4) for some b ≥ 0 with b ≤ δ,

f (z, y) + f (y, z) ≤ β||Az − Ay||2, ∀z, y ∈ C.

Then the following conclusions hold:

(1) For any r > 0 and u Î E, there exists a unique point z Î C such that

f (z, y) + 〈y − z, Az〉 + 1
r
〈y − z, Jz − Ju〉 ≥ 0, ∀y ∈ C. (2:7)

(2) For any given r > 0, define a mapping Kr : E ® C as follows: ∀u Î E,

Kru = z such that f (z, y) + 〈y − z, Az〉 +
1
r
〈y − z, Jz − Ju〉 ≥ 0, ∀y ∈ C.

We have (i) F(Kr) = G and G is closed convex in C, where

G = {z ∈ C : f (z, y) + 〈y − z, Az〉 ≥ 0, ∀y ∈ C};

(ii) j(z, Kru) + j(Kru, u) ≤ j(z, u), ∀z Î F(Kr).

(3) For each n ≥ 1, rn >a > 0 and un Î C with limn→∞un = limn→∞Krnun = ū, we

have

f (ū, y) + 〈y − ū, Aū〉 ≥ 0, ∀y ∈ C.

Qu and Cheng Fixed Point Theory and Applications 2011, 2011:17
http://www.fixedpointtheoryandapplications.com/content/2011/1/17

Page 5 of 13



Proof. (1) We consider the bifunction f̃ : (z, y) �→ f (z, y) + 〈y − z, Az〉 instead of f. It

follows from the proof of Lemma 2.5 in [10] that f̃ satisfies (B1)-(B3). Since A is δ-

inverse-strongly monotone, by (B4), we have

(f (z, y) + 〈y − z, Az〉) + (f (y, z) + 〈z − y, Ay〉)
= f (z, y) + f (y, z) − 〈z − y, Az − Ay〉
≤ (β − δ)||Az − Ay||2 ≤ 0, ∀y, z ∈ C,

(2:8)

which implies f̃ is monotone. By Blum amd Oettli [18], for any r > 0 and u Î E,

there exists z Î C such that (2.7) holds. Next we show that (2.7) has a unique solution.

If for any given r > 0 and u Î E, z1 and z2 are two solutions of (2.7), then

f (z1, z2) + 〈z2 − z1, Az1〉 + 1
r
〈z2 − z1, Jz1 − Ju〉 ≥ 0,

and

f (z2, z1) + 〈z1 − z2, Az2〉 + 1
r
〈z1 − z2, Jz2 − Ju〉 ≥ 0.

Adding these two inequalities, we have

f (z1, z2) + f (z2, z1) − 〈z2 − z1, Az2 − Az1〉 − 1
r
〈z2 − z1, Jz2 − Jz1〉 ≥ 0.

It follows from (2.8) that

〈z2 − z1, Jz2 − Jz1〉 ≤ 0,

which implies that z1 = z2 by Remark 2.1(vi).

(2) Since f̃ satisfies (B1)-(B3) and is monotone, the conclusion (2) follows from Lem-

mas 2.8 and 2.9 in [9].

(3) Since

f (Krnun, y) + 〈y − Krnun, AKrnun〉 +
1
rn

〈y − Krnun, JKrnun − Jun〉 ≥ 0, ∀y ∈ C,

we have

1
rn

〈y − Krnun, JKrnun − Jun〉 ≥ −(f (Krnun, y) + 〈y − Krnun, AKrnun〉)
≥ f (y, Krnun) + 〈Krnun − y, Ay〉, ∀y ∈ C,

(2:9)

by the monotonicity of f̃ . It follows from limn→∞un = limn→∞Krnun = ū. rn >a > 0

and Remark 2.1(i) that

lim
n→∞

||Jun − JKrnun||
rn

= 0.

Since y �→ f̃ (z, y) is convex and lower semicontinuous, it is also weakly lower semi-

continuous. Letting n ® ∞ in (2.9), we have f (y, ū) + 〈ū − y, Ay〉 ≤ 0, ∀y Î C. For any

t Î (0, 1] and y Î C, setting yt = ty + (1 − t)ū, we have yt Î C and

f (yt, ū) + 〈ū − yt, Ayt〉 ≤ 0, which together with (B1) implies that
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0 = f (yt, yt) + 〈yt − yt, Ayt〉
= f (yt, ty + (1 − t)ū) + 〈ty + (1 − t)ū − yt, Ayt〉
≤ t[f (yt, y) + 〈y − yt, Ayt〉] + (1 − t)[f (yt, ū) + 〈ū − yt, Ayt〉]
≤ t[f (yt, y) + 〈y − yt, Ayt〉].

Thus f(yt, y) + 〈y - yt, Ayt〉 ≥ 0, ∀y Î C, ∀t Î (0, 1]. Letting t ↓ 0, since z a f(z, y) + 〈y

- z, Az〉 satisfies (B2), we have f (ū, y) + 〈y − ū, Aū〉 ≥ 0, ∀y Î C.

Remark 2.3. If b = 0 in (B4), that is, f is monotone, then the conclusions (1) and (2)

in Lemma 2.3 reduce to the relating results of Lemmas 2.5 and 2.6 in [10], respectively.

Next we give an example to show that there exist the mapping A and the bifunction

f satisfying the conditions of Lemma 2.3. However, f is not monotone.

Example 2.3. Define A : ℝ ® ℝ and f : ℝ × ℝ ® ℝ by Ax = 2x +
√
1 + x2 Î ∀x Î ℝ

and f (x, y) = (x−y)2

10
, ∀(x, y) Î ℝ × ℝ, respectively. It is easy to see that A is 1

3-inverse-

strongly monotone, f satisfies (B1)-(B3), and f (x, y) + f (y, x) ≤ 1
5 |Ax − Ay|2, ∀(x, y) : ℝ

× ℝ with 1
5 ≤ 1

3.

Lemma 2.4 (see [12]). Let C be a nonempty closed convex subset of a real uniformly

smooth and strictly convex Banach space E with the Kadec-Klee property, S : C ® C be

a closed and quasi-j-asymptotically nonexpansive mapping with a sequence {ln} ⊂ [1,

∞), ln ® 1. Then F(S) is closed convex in C.

Lemma 2.5 (see [11]). Let E be a uniformly convex Banach space, h > 0 be a positive

number and Bh(0) be a closed ball of E. Then, for any given sequence

{xn}∞n=1 ⊂ Bη(0)and for any given {λn}∞n=1 ⊂ (0, 1)with
∞∑
n=1

λn = 1, there exists a continu-

ous, strictly increasing and convex function g : [0, 2h) ® [0, ∞) with g(0) = 0 such that

for any positive integers i, j with i <j,

∥∥∥∥∥
∞∑
n=1

λnxn

∥∥∥∥∥
2

≤
∞∑
n=1

λn||xn||2 − λiλjg(||xi − xj||).

□

3. Strong convergence theorem
In this section, let C be a nonempty closed convex subset of a real uniformly smooth

and strictly convex Banach space E with the Kadec-Klee property.

Theorem 3.1. Suppose that

(C1) for each k ∈ J, the mapping Ak : C ® E* is δk-inverse-strongly monotone, the

bifunction fk : C × C ® ℝ satisfies (B1)-(B3), and for some bk ≥ 0 with bk ≤ δk,

fk(z, y) + fk(y, z) ≤ βk||Akz − Aky||, ∀z, y ∈ C;

(C2) {Si}∞i=1 : C → Cis a family of closed and uniformly quasi-j-asymptotically nonex-

pansive mappings with a sequence {ln} ⊂ [1, ∞), ln ® 1;

(C3) for each i ≥ 1, Si is either locally uniformly Lipschitz continuous or uniformly

Hölder continuous with order Θi (Θi > 0), and Fis bounded in C.
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(C4) F ∩ G �= ∅. Take the sequence {xn}∞n=1generated by
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x0 ∈ C, H0 = W0 = C,

u0,n = J−1(αn,0Jxn +
∞∑
i=1

αn,iJ Sni xn),

u1,n ∈ C such that
f1(u1,n, y) + 〈y − u1,n, A1u1,n〉 + 1

r1,n
〈y − u1,n, Ju1,n − Ju0,n〉 ≥ 0, ∀y ∈ C,

............................
uN,n ∈ C such that
fN(uN,n, y) + 〈y − uN,n, ANuN,n〉 + 1

rN,n
〈y − uN,n, JuN,n − JuN−1,n〉 ≥ 0, ∀y ∈ C,

Hn+1 = {v ∈ Hn : φ(v, uN,n) ≤ φ(v, xn) + ξn},
Wn+1 = {z ∈ Wn : 〈xn − z, Jx0 − Jxn〉 ≥ 0},
xn+1 = �Hn+1∩Wn+1x0, ∀n ≥ 0,

where for each k ∈ J, {rk,n}∞n=0 ⊂ [a, ∞)with some a > 0, {αn,i}∞n=0,i=0 ⊂ [0, 1], and

ξn = sup
u∈F

(ln − 1)φ(u, xn). If
∑∞

i=0 αn,i = 1, ∀n ≥ 0 and lim infn®∞ an,0 an, i > 0, ∀i ≥ 1,

then xn → �F∩Gx0.
Proof. We shall complete this proof by seven steps below.

Step 1. Show that F, G, Hn and Wn for all n ≥ 0 are closed convex.

In fact, F =
⋂∞

i=1 F(Si) is closed convex since for each i ≥ 1, F(Si) is closed convex by

(C2) and Lemma 2.4. G is closed convex since for each k ∈ J, G(k) is closed convex by

(C1) and Lemma 2.3(2)(i). H0 = C is closed convex. Since j(v,uN,n) ≤ j(v,xn) + ξn is

equivalent to

2〈v, Jxn − JuN,n〉 ≤ ||xn||2 − ||uN,n||2 + ξn,

we know that Hn(n ≥ 0) are closed convex. Finally, Wn is closed convex by its defini-

tion. Thus �F∩Gx0 and �Hn∩Wnx0 are well defined.

Step 2. Show that {xn} and {Sni xn}∞i,n=1 are bounded.

From xn = �Hn∩Wnx0, ∀n ≥ 0 and Lemma 2.1(1), we have

φ(xn, x0) ≤ φ(u, x0) − φ(u, xn) ≤ φ(u, x0), ∀u ∈ C, ∀n ≥ 0, (3:1)

which implies that {j(xn, x0)} is bounded, and so is {xn} by (2.2). It follows from (C2)

that for all u ∈ F, i ≥ 1, n ≥ 1,

φ(u, Sni xn) ≤ lnφ(u, xn) ≤ ln(||u|| + ||xn||)2 ≤ sup
u∈F

ln(||u|| + ||xn||)2.

Hence for all i ≥ 1, {φ(u, Sni xn)}∞n=1 is uniformly bounded, and so is {Sni xn}∞n=1 by (2.2).

Obviously,

ξn = sup
u∈F

(ln − 1)φ(u, xn) ≤ sup
u∈F

(ln − 1)(||u|| + ||xn||)2 → 0 (as n → ∞). (3:2)

Step 3. Show that F ∩ G ⊂ Hn ∩ Wn, ∀n ≥ 0.

Since Banach space E is uniformly smooth, E* is uniformly convex, by Remark 2.1(v).

For any given p ∈ F, any n ≥ 1 and any positive integer j, by (C2) and Lemma 2.5, we

have
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φ(p, u0,n) = φ(p, J−1(αn,0Jxn +
∞∑
i=1

αn,iJS
n
i xn))

= ||p||2 − 2〈p, αn,0Jxn +
∞∑
i=1

αn,iJS
n
i xn〉 +

∥∥∥∥∥αn,0Jxn +
∞∑
i=1

αn,iJS
n
i xn

∥∥∥∥∥
2

≤ ||p||2 − 2αn,0〈p, Jxn〉 − 2
∞∑
i=1

αn,i〈p, JSni xn〉 + αn,0||xn||2

+
∞∑
i=1

αn,i||Sni xn||2 − αn,0αn,jg(||Jxn − JSnj xn||) (By Lemma 2.5)

= αn,0φ(p, xn) + (1 − αn,0)||p||2 − 2
∞∑
i=1

αn,i〈p, JSni xn〉

+
∞∑
i=1

αn,i||Sni xn||2 − αn,0αn,jg(||Jxn − JSnj xn||)

= αn,0φ(p, xn) +
∞∑
i=1

αn,iφ(p, Sni xn) − αn,0αn,jg(||Jxn − JSnj xn||)

≤ αn,0φ(p, xn) +
∞∑
i=1

αn,ilnφ(p, xn) − αn,0αn,jg(||Jxn − JSnj xn||)

≤ lnφ(p, xn) − αn,0αn,jg(||Jxn − JSnj xn||)
≤ φ(p, xn) + sup

p∈F
(ln − 1)φ(p, xn) − αn,0αn,jg(||Jxn − JSnj xn||)

= φ(p, xn) + ξn − αn,0αn,jg(||Jxn − JSnj xn||).

(3:3)

Put uk,n = Krk,nuk−1,n, k ∈ J, ∀n ≥ 0. It follows from (3.3) and Lemma 2.3(2)(ii) that

φ(p, uk,n) = φ(p, Krk,nuk−1,n) ≤ φ(p, uk−1,n) ≤ φ(p, xn) + ξn,

∀p ∈ F ∩ G, ∀k ∈ J, ∀n ≥ 0,
(3:4)

which implies that if p ∈ F ∩ G, then p Î Hn, ∀n ≥ 0. Hence, F ∩ G ⊂ Hn, ∀n ≥ 0. By

induction, now we prove that F ∩ G ⊂ Wn, ∀n ≥ 0. In fact, it follows from W0 = C that

F ∩ G ⊂ W0. Suppose that F ∩ G ⊂ Wm for some m ≥ 0. By the definition of
xm = �Hm∩Wmx0 and Lemma 2.1(2), we have

〈xm − z, Jx0 − Jxm〉 ≥ 0, ∀z ∈ Hm ∩ Wm,

and so

〈xm − z, Jx0 − Jxm〉 ≥ 0, ∀z ∈ F ∩ G,

which shows z Î Wm+1, so F ∩ G ⊂ Wm+1.

Step 4. Show that there exists ū ∈ C such that xn → ū.

Without loss of generalization, we can assume that xn ⇀ ū, since {xn} is bounded and

E is reflexive. Moreover, it follows that ū ∈ Hn ∩ Wn, ∀n ≥ 0 from Hn+1 ∩ Wn+1 ⊂ Hn ∩
Wn and the closeness and convexity of Hn ∩ Wn. Noting that

lim inf
n→∞ φ(xn, x0) = lim inf

n→∞ (||xn||2 − 2〈xn, Jx0〉 + ||x0||2)
≥ ||ū||2 − 2〈ū, Jx0〉 + ||x0||2 = φ(ū, x0),
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we have

φ(ū, x0) ≤ lim inf
n→∞ φ(xn, x0) ≤ lim sup

n→∞
φ(xn, x0) ≤ φ(ū, x0).

by (3.1). It follows that

lim
n→∞ φ(xn, x0) = φ(ū, x0), (3:5)

and so ||xn|| → ||ū|| by xn ⇀ ū. Hence,

xn → ū (as n → ∞) (3:6)

by the Kadec-Klee property of E, and so

Jxn → Jū (as n → ∞) (3:7)

by Remark 2.1(i).

Step 5. Show that ū ∈ F.

Since xn+1 Î C, setting u = xn+1 in (3.1), we have

φ(xn+1, xn) ≤ φ(xn+1, x0) − φ(xn, x0).

By (3.5),

φ(xn+1, xn) → 0 (as n → ∞). (3:8)

By xn+1 Î Hn+1, (3.2) and (3.8), we have

φ(xn+1, uN,n) ≤ φ(xn+1, xn) + ξn → 0 (as n → ∞),

which together with (3.6) and Lemma 2.2 implies that

lim
n→∞ uN,n = ū. (3:9)

For any j ≥ 1 and any given p ∈ F ∩ G, it follows from (3.2)-(3.4) and (3.9) that

αn,0αn,jg(||Jxn − JSnj xn||) ≤ φ(p, xn) + ξn − φ(p, u0,n)

≤ φ(p, xn) + ξn − φ(p, uN,n) → 0 (as n → ∞),
(3:10)

which implies that

g(||Jxn − JSnj xn||) → 0 (as n → ∞),

since lim inf
n→0

αn,0αn,i > 0, ∀i ≥ 1. We obtain

||Jxn − JSnj xn|| → 0 (as n → ∞), (3:11)

since g(0) = 0 and g is strictly increasing and continuous. By (3.7) and (3.11), we have

JSnj xn → Jū and ||Snj xn|| → ||ū|| for all j ≥ 1. It follows from Remark 2.1(ii) that

Snj xn ⇀ ū, which implies

Snj xn → ū (as n → ∞), ∀j ≥ 1, (3:12)

by the uniform boundedness of {Snj xn}∞n=1 and the Kadec-Klee property of E. Thus

||Sn+1j xn+1 − Snj xn|| → 0 (as n → ∞), ∀j ≥ 1.
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By (C3) and (3.6), we have

||Sn+1j xn − Sn+1j xn+1|| → 0 (as n → ∞), ∀j ≥ 1.

Hence, for each j ≥ 1,

||Sj(Snj xn) − Snj xn|| = ||Sn+1j xn − Snj xn||
≤ ||Sn+1j xn − Sn+1j xn+1|| + ||Sn+1j xn+1 − Snj xn|| → 0 (as n → ∞).

By (3.12) and the closeness of Sj, we have Sjū = ū for all j ≥ 1 and so ū ∈ F.

Step 6. Show that ū ∈ G.

In fact, it is easy to see that for each k ∈ {0} ∪ J, and p ∈ F ∩ G, the sequence {j(p,
uk,n)} is bounded by (3.2), (3.4) and the boundedness of {xn} and F, which implies that

{uk,n} is bounded in C by (2.2). Since ū ∈ F, by (3.2), (3.3), (3.5) and (3.10), we have

φ(ū, u0,n) ≤ φ(ū, xn) + ξn − αn,0αn,jg(||Jxn − JSnj xn)||)
≤ φ(ū, xn) + ξn → 0 (as n → ∞).

It follows from Lemma 2.2 that

u0,n → ū (as n → ∞). (3:13)

Furthermore, it follows from (3.4) and Lemma 2.3(2)(ii) that for any given p ∈ F ∩ G,

φ(p, uN,n) + φ(u1,n, u0,n) ≤ φ(p, u1,n) + φ(u1,n, u0,n) ≤ φ(p, u0,n),

which implies

φ(u1,n, u0,n) ≤ φ(p, u0,n) − φ(p, uN,n)

= ||u0,n||2 − ||uN,n||2 − 2〈p, Ju0,n − JuN,n〉 → 0 (as n → ∞),

by Remark 2.1(i), (3.9) and (3.13). Then u1,n → ū by (3.13) and Lemma 2.2. Similarly,

we also obtain uk,n → ū (k = 2, 3, . . . , N − 1). Hence, together with (3.9) and (3.13),

for each k ∈ {0} ∪ J,

uk,n → ū (as n → ∞). (3:14)

For each k ∈ J, since uk,n = Krk,nuk−1,n, we have

fk(uk,n, y) + 〈y − uk,n,Akuk,n〉 + 1
rk,n

〈y − uk,n, Juk,n − Juk−1,n〉 ≥ 0, ∀y ∈ C,

which together with (3.14) and Lemma 2.3(3) implies that fk(ū, y) + 〈y − ū,Akū〉 ≥ 0,

∀y Î C. Therefore ū ∈ G and so ū ∈ F ∩ G.

Step 7. Show that ū = �F∩Gx0.
In fact, letting w = �F∩Gx0, by w ∈ F ∩ G ⊂ Hn ∩ Wn and xn = �Hn∩Wnx0, we have

φ(xn, x0) ≤ φ(w, x0), ∀n ≥ 0.

It follows from (3.6) that

φ(ū, x0) = ||ū||2 − 2〈ū, Jx0} + ||x0||2
= lim

n→∞{||xn||2 − 2〈xn, Jx0} + ||x0||2}
= lim

n→∞ φ(xn, x0) ≤ φ(w, x0).
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Hence, ū = w, and so xn → ū = �F∩Gx0. □
Setting N = 1, u0,n = yn and uN,n = un in Theorem 3.1, we can obtain the following

result.

Corollary 3.1 Suppose that

(D1) the mapping A : C ® E* is a mapping with δ -inverse-strongly monotone, the

bifunction f : C × C ® ℝ satisfies (B1)-(B3) and for some b > 0 with b ≤ δ,

f (z, y) + f (y, z) ≤ β||Az − Ay||2, ∀z, y ∈ C;

(D2) both (C2) and (C3) hold, and F ∩ G �= ∅Take the sequence {xn}∞n=1generated by
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x0 ∈ C, H0 = W0 = C,

yn = J−1(αn,0Jxn +
∞∑
i=1

αn,iJSni xn),

un ∈ C such that
f (un, y) + 〈y − un,Aun〉 + 1

rn
〈y − un, Jun − Jyn} ≥ 0, ∀y ∈ C,

Hn+1 = {v ∈ Hn : φ(v, un) ≤ φ(v, xn) + ξn},
Wn+1 = {z ∈ Wn : 〈xn − z, Jx0 − Jxn〉 ≥ 0},
xn+1 = �Hn+1∩Wn+1x0, ∀n ≥ 0,

where {αn,i}∞n=0,i=0 ⊂ [0, 1], {rn}∞n=0 ∈ [a,∞)for some a > 0 and

ξn = supu∈F(ln − 1)φ(u, xn). If
∑∞

i=0 αn,i = 1, ∀n ≥ 0 and lim infn®∞ an,0an,i > 0, ∀i ≥ 1,

then xn → �F∩Gx0. □
Furthermore, if Si = S, i ≥ 1 in Corollary 3.1, the following corollary can be obtained

immediately.

Corollary 3.2. Suppose that, besides (D1),

(E1) S : C ® C is closed and quasi-j-asymptotically nonexpansive with {ln} ⊂ [1, ∞),

ln ® 1;

(E2) S is either locally uniformly Lipschitz continuous or uniformly Hölder continuous

with order Θ (Θ > 0), F(S) is bounded in C and F(S) ∩ G ≠ ∅. Take the sequence
{xn}∞n=1generated by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

x0 ∈ C, H0 = W0 = C,
yn = J−1(αnJxn + (1 − αn)JSnxn),
un ∈ C such that

f (un, y) + 〈y − un,Aun〉 + 1
rn

〈y − un, Jun − Jyn} ≥ 0, ∀y ∈ C
Hn+1 = {v ∈ Hn : φ(v, un) ≤ φ(v, xn) + ξn},
Wn+1 = {z ∈ Wn : 〈xn − z, Jx0 − Jxn〉 ≥ 0},
xn+1 = �Hn+1∩Wn+1x0, ∀n ≥ 0,

,

where {αn}∞n=0 ⊂ (0, 1), {rn}∞n=0 ∈ [a,∞)for some a > 0 and ξ = supuÎF(S)(ln -1)j(u, xn)
. If lim infn®∞ an(1- an) > 0, then xn → �F(S)∩Gx0. □

Author details
1College of Applied Science, Beijing University of Technology, Beijing 100124, PR China 2College of Mathematics, Jilin
Normal University, Siping, Jilin 136000, PR China

Authors’ contributions
All the authors read and approved the final manuscript.

Competing interests
The authors declare that they have no completing interests.

Received: 7 January 2011 Accepted: 21 July 2011 Published: 21 July 2011

Qu and Cheng Fixed Point Theory and Applications 2011, 2011:17
http://www.fixedpointtheoryandapplications.com/content/2011/1/17

Page 12 of 13



References
1. Zhang F, Su YF: A general iterative method of fixed points for equilibrium problems and optimization problems. J

Syst Sci Complex 2009, 22:503-517.
2. Ceng LC, Al-Homidan S, Ansari QH, Yao JC: An iterative scheme for equilibrium problems and fixed point problems

of strict pseudo-contraction mappings. J Comput Appl Math 2009, 223:967-974.
3. Zhang SS, Rao RF, Huang JL: Strong convergence theorem for a generalized equilibrium problem and a k-strict

pseudocontraction in Hilbert spaces. Appl Math Mech , English 2009, 30(6):685-694.
4. Peng JW, Yao JC: Strong convergence theorems of iterative scheme based on the extragradient method for mixed

equilibrium problems and fixed point problems. Math Comput Model 2009, 49:1816-1828.
5. Peng JW, Yao JC: A viscosity approximation scheme for system of equilibrium problems, nonexpansive mappings

and monotone mappings. Nonlinear Anal Theory Methods Appl 2009, 71:6001-6010.
6. Cianciaruso F, Marino G, Muglia L: Iterative methods for equilibrium and fixed point problems for nonexpansive

semigroups in Hilbert spaces. J Optim Theory Appl 2010, 146:491-509.
7. Qin XL, Chang SS, Cho YJ: Iterative methods for generalized equilibrium problems and fixed point problems with

applications. Nonlinear Anal Real World Appl 2010, 11:2963-2972.
8. Takahashi W, Zembayashi K: Strong convergence theorem by a new hybrid method for equilibrium problems and

relatively nonexpansive mappings. Fixed Point Theory Appl 2008, 2008:11, (Article ID 528476).
9. Takahashi W, Zembayashi K: Strong and weak convergence theorems for equilibrium problems and relatively

nonexpansive mappings in Banach spaces. Nonlinear Anal Theory Methods Appl 2009, 70(1):45-57.
10. Chang SS, Lee HWJ, Chan CK: A new hybrid method for solving a generalized equilibrium problem, solving a

variational inequality problem and obtaining common fixed points in Banach spaces, with applications. Nonlinear
Anal Theory Methods Appl 2010, 73:2260-2270.

11. Chang SS, Kim JK, Wang XR: Modified block iterative algorithm for solving convex feasibility problems in Banach
spacesm. J Inequal Appl 2010, 2010:14, (Article ID 869684).

12. Cioranescu I: Geometry of Banach spaces, Duality Mappings and Nonlinear Problems. In Mathematics and Its
Applications. Volume 62. Edited by: Hazewinkel M. Kluwer Academic Publishers, Dordecht; 1990.

13. Alber YI: Metric and generalized projection operators in Banach spaces: properities and applications. In Theory and
Applications of Nonlinear operators of Accretive and Monotone Type, Lecture Notes in Pure and Applied Mathematics.
Volume 178. Edited by: Kartosator AG. Marcel Dekker, New York; 1996:15-50.

14. Kamimura S, Takahashi W: Strong convergence of a proxiaml-type algorithm in a Banach space. SIAM J Optim 2002,
13(3):938-945.

15. Kohsaka F, Takahashi W: Existence and approximation of fixed points of firmly nonexpansive-type mappings in
Banach spaces. SIAM J Optim 2008, 19(2):824-835.

16. Zhou HY, Gao GL, Tan B: Convergence theorems of a modified hybrid algorithm for a family of quasi-ϕ-
asymptotically nonexpansive mappings. J Appl Math Comput 2010, 32:453-464.

17. Matsushita S, Takahashi W: Weak and strong convergence theorems for relatively nonexpansive mappings in
Banach spaces. Fixed Point Theory Appl 2004, 2004(1):37-47.

18. Blum E, Oettli W: From optimization and variational inequalities and equilibrium problems. Math Student 1994,
63:123-145.

doi:10.1186/1687-1812-2011-17
Cite this article as: Qu and Cheng: A strong convergence theorem on solving common solutions for generalized
equilibrium problems and fixed-point problems in Banach space. Fixed Point Theory and Applications 2011 2011:17.

Submit your manuscript to a 
journal and benefi t from:

7 Convenient online submission

7 Rigorous peer review

7 Immediate publication on acceptance

7 Open access: articles freely available online

7 High visibility within the fi eld

7 Retaining the copyright to your article

    Submit your next manuscript at 7 springeropen.com

Qu and Cheng Fixed Point Theory and Applications 2011, 2011:17
http://www.fixedpointtheoryandapplications.com/content/2011/1/17

Page 13 of 13

http://www.springeropen.com/
http://www.springeropen.com/

	Abstract
	1. Introduction
	2. Preliminaries
	3. Strong convergence theorem
	Author details
	Authors' contributions
	Competing interests
	References

