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Abstract

In this paper, we obtain some new fixed point theorems and existence theorems of
solutions for the equation Ax = μx using properties of strictly convex (concave)
function and theories of topological degree. Our results and methods are different
from the corresponding ones announced by many others.
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1 Introduction
For convenience, we first recall the topological degree of 1-set-contractive fields due to

Petryshyn [1].

Let E be a real Banach space, p Î E, Ω be a bounded open subset of E. Suppose that

A : � → E is a 1-set-contractive operator such that

||(I − A)x − p|| ≥ δ > 0, ∀x ∈ ∂�

In addition, if there exists a k-set-contractive operator (k < 1)W : D → E such that

||Ax − Wx|| ≤ δ

3
, ∀x ∈ ∂D,

then (I - W)x ≠ p, ∀x Î ∂D, and so it is easy to see that deg(I - W, D, p) is well

defined and independent of W. Therefore, we are led to define the topological degree

as follows:

deg(I − A,D, p) = deg(I − W,D, p).

Without loss of generality, we set p = θ in the above definition.

Let A : � → E be a 1-set-contractive operator. A is said to be a semi-closed 1-set-

contractive operator, if I -A is closed operator (see [2]).

It should be noted that this class of operators, as special cases, includes completely

continuous operators, strict set-contractive operators, condensing operators, semi-com-

pact 1-set-contractive operators and others (see [2]).

Petryshyn [1] and Nussbaum [3] first introduced the topological degree of 1-set-con-

tractive fields, studied its basic properties and obtained fixed point theorems of 1-set-

contractive operators. Amann [4] and Nussbaum [5] have introduced the fixed point

Wang Fixed Point Theory and Applications 2011, 2011:15
http://www.fixedpointtheoryandapplications.com/content/2011/1/15

© 2011 Wang; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribution
License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work is properly cited.

mailto:wangshuang19841119@163.com
http://creativecommons.org/licenses/by/2.0


indices of k-set contractive operators (0 ≤ k < 1) and condensing operators to derive some

fixed point theorems. As a complement, Li [2] has defined the fixed point index of 1-set-

contractive operators and obtained some fixed point theorems of 1-set-contractive opera-

tors. Recently, Li [6] obtained some fixed point theorems for 1-set-contractive operators

and existence theorems of solutions for the equation Ax = μx. Very recently, Xu [7]

extended the results of Li [6] and obtained some fixed point theorems. In this paper, we

continue to investigate boundary conditions, under which the topological degree of 1-set

contractive fields, deg(I - A, Ω, p), is equal to unity or zero. Consequently, we obtain some

new fixed point theorems and existence theorems of solutions for the equation Ax = μx

using properties of strictly convex (concave) functions. Our results and methods are differ-

ent from the corresponding ones announced by many others (e.g., Li [6], Xu [7]).

We need the following concepts and lemmas for the proof of our main results.

Suppose that A : � → E is a semi-closed 1-set-contractive operator and θ ∉ (I -

A)∂Ω, then, by the standard method, we can easily see that the topological degree has

the basic properties as follows:

(a) (Normalization) deg(I, Ω, p) = 1, when p Î Ω; deg(I, Ω, p) = 0, when p ∉ Ω;

(b) (Solution property) If deg(I - A, Ω, θ) ≠ 0, then A has at least one fixed point in

Ω.

(c) (Additivity) For every pair of disjoint open subsets Ω1, Ω2 of Ω such that {x Î
Ω |(I - A)x = 0} ⊂ Ω1 ∪ Ω2, we have

deg(I − A,�, θ) = deg(I − A,�1, θ) + deg(I − A,�2, θ).

(d) (Homotopy invariance) Let H(t, x) = Ht(x) : [0, 1] × � → E be a continuous

operator such that

||x − Ht(x)|| ≥ δ > 0, for (t, x) ∈ [0, 1] × ∂�

and the measure of non-compactness g(H([0, 1] × Q)) ≤ g(Q) for every Q ⊂ �. Then

deg(I - Ht, Ω, θ) = const, for any t Î [0, 1].

(e) Let B be an open ball with center θ, A : B̄ → E a semi-closed 1-set-contractive

operator and (I - A)x ≠ 0 for all x Î ∂B. Suppose that A is odd on ∂B (i.e., A(-x) =

Ax, for x Î ∂B), then deg(I - A, B, θ) ≠ 0.

(f) (Change of base) Let p ≠ θ, then deg(I - A, Ω, p) = deg(I - A - p, Ω, θ).

Lemma 1.1. [7]. Let E be a real Banach space, Ω a bounded open subset of E and θ

Î Ω. A : � → Eis a semi-closed 1-set-contractive operator and satisfies the Leray-

Schauder boundary condition

Ax �= tx, for all x ∈ ∂�, and t ≥ 1, (L� S)

then deg(I - A, Ω, θ) = 1 and so A has a fixed point in Ω.

Definition 1.2. Let D be a nonempty subset of R. If � : D ® R is a real function

such that

ϕ[tx + (1 − t)y] < tϕ(x) + (1 − t)ϕ(y), ∀x, y ∈ D, x �= y, t ∈ (0, 1),
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then � is called strictly convex function on D. If � : D ® R is a real function such

that

ϕ[tx + (1 − t)y] > tϕ(x) + (1 − t)ϕ(y), ∀x, y ∈ D, x �= y, t ∈ (0, 1),

then � is called strictly concave function on D.

2 Main results
We are now in the position to apply the topological degree and properties of strictly

convex (concave) function to derive some new fixed point theorems for semi-closed 1-

set-contractive operators and existence theorems of solutions for the equation Ax = μx

which generalize a great deal of well-known results and relevant recent ones.

Theorem 2.1. Let E, Ω, A be the same as in Lemma 1.1. Moreover, if there exist

strictly convex function � : R+ ® R+ with � (0) = 0 and real function j : R+ ® R with

j (t) ≥ 1, for all t > 1, such that

ϕ(||Ax − x||) ≥ ϕ(||Ax||)φ(||Ax|| · ||x||−1) − ϕ(||x||), ∀x ∈ ∂�, (1)

then deg(I - A, Ω, θ) = 1 if A has no fixed point on ∂Ω, and so A has at least one

fixed point in �.

Proof. If the operator A has a fixed point on ∂Ω, then A has at least one fixed point

in �. Now suppose that A has no fixed points on ∂Ω. Next we shall prove that the

condition (L-S) is satisfied.

Suppose this is not true. Then there exists x0 Î ∂Ω, t0 ≥ 1 such that Ax0 = t0x0, i.e.,

x0 = t−1
0 Ax0. It is easy to see that ||Ax0|| ≠ 0 and t0 > 1.

From (1), we have

ϕ(||Ax0 − t−1
0 Ax0||) ≥ ϕ(||Ax0||)φ(||Ax0|| · ||t−1

0 Ax0||−1) − ϕ(||t−1
0 Ax0||),

which implies

ϕ[(1 − t−1
0 )||Ax0||] + ϕ(t−1

0 ||Ax0||) ≥ ϕ(||Ax0||)φ(t0). (2)

By strict convexity of � and �(0) = 0, we obtain

ϕ[(1 − t−1
0 )||Ax0||] + ϕ(t−1

0 ||Ax0||) = ϕ[(1 − t−1
0 )||Ax0|| + t−1

0 ||θ ||] + ϕ[t−1
0 ||Ax0|| + (1 − t−1

0 )||θ ||]
< (1 − t−1

0 )ϕ(||Ax0||) + t−1
0 ϕ(0) + t−1

0 ϕ(||Ax0||) + (1 − t−1
0 )ϕ(0)

= ϕ(||Ax0||).
(3)

It is easy to see from (2) and (3) that

ϕ(||Ax0||)φ(t0) < ϕ(||Ax0||). (4)

Noting that t0 > 1 and j(t) ≥ 1, for all t > 1, we have

ϕ(||Ax0||)φ(t0) ≥ ϕ(||Ax0||),

which contradicts (4), and so the condition (L-S) is satisfied. Therefore, it follows

from Lemma 1.1 that the conclusions of Theorem 2.1 hold. □
Remark 2.2. If there exist convex function � : R+ ® R+, �(0) = 0 and real function j

: R+ ® R, j (t) > 1, ∀t > 1 satisfied (1), the conclusions of Theorem 2.1 also hold.

Theorem 2.3. Let E, Ω, A be the same as in Lemma 1.1. Moreover, if there exist

strictly concave function � : R+ ® R+ with � (0) = 0 and real function j : R+ ® R, j
(t) ≤ 1, ∀t > 1, such that
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ϕ(||Ax − x||) ≤ ϕ(||Ax||)φ(||Ax|| · ||x||−1) − ϕ(||x||), ∀x ∈ ∂�, (5)

then deg(I - A, Ω, θ) = 1 if A has no fixed point on ∂Ω, and so A has at least one

fixed point in �.

Proof. If the operator A has a fixed point on ∂Ω, then A has at least one fixed point

in �. Now suppose that A has no fixed points on ∂Ω. Next we shall prove that the

condition (L-S) is satisfied.

Suppose this is not true. Then there exists x0 Î ∂Ω, t0 ≥ 1 such that Ax0 = t0x0, i.e.,

x0 = t−1
0 Ax0. It is easy to see that ||Ax0|| ≠ 0 and t0 > 1. From (5), we have

ϕ(||Ax0 − t−1
0 Ax0||) ≤ ϕ(||Ax0||)φ(||Ax0|| · ||t−1

0 Ax0||−1) − ϕ(||t−1
0 Ax0||).

This implies that

ϕ[(1 − t−1
0 )||Ax0||] + ϕ(t−1

0 ||Ax0||) ≤ ϕ(||Ax0||)φ(t0). (6)

By strict concavity of � and � (0) = 0, we obtain

ϕ[(1 − t−1
0 )||Ax0||] + ϕ(t−1

0 ||Ax0||) = ϕ[(1 − t−1
0 )||Ax0|| + t−1

0 ||θ ||] + ϕ[t−1
0 ||Ax0|| + (1 − t−1

0 )||θ ||]
> (1 − t−1

0 )ϕ(||Ax0||) + t−1
0 ϕ(0) + t−1

0 ϕ(||Ax0||) + (1 − t−1
0 )ϕ(0)

= ϕ(||Ax0||).
(7)

It follows from (6) and (7) that

ϕ(||Ax0||)φ(t0) > ϕ(||Ax0||). (8)

On the other hand, by t0 > 1 and j(t) ≤ 1, ∀t > 1, we have

ϕ(||Ax0||)φ(t0) ≤ ϕ(||Ax0||),

which contradicts (8), and so the condition (L-S) is satisfied. Therefore, it follows

from Lemma 1.1 that the conclusions of Theorem 2.3 hold. □
Remark 2.4. If there exist concave function � : R+ ® R+, � (0) = 0 and real function

j : R+ ® R, j (t) < 1, ∀t > 1 satisfied (5), the conclusions of Theorem 2.3 also hold.

Corollary 2.5. Let E, Ω, A be the same as in Lemma 1.1. Moreover, if there exist a Î
(-∞, 0) ∪ (1, +∞) and b ≥ 0 such that

||Ax − x||α ≥ ||Ax||α+β ||x||−β − ||x||α , ∀x ∈ ∂�,

then deg(I - A, Ω, θ) = 1 if A has no fixed point on ∂Ω, and so A has at least one

fixed point in �.

Proof. Putting �(t) = ta, j(t) = tb, we have � (t) is a strictly convex function with �

(0) = 0 and j(t) ≥ 1, ∀t > 1. Therefore, from Theorem 2.1, the conclusions of Corollary

2.5 hold.. □
Remark 2.6. 1. Corollary 2.5 generalizes Theorem 2.2 of Xu [7] from a > 1 to a Î

(-∞, 0) ∪ (1, +∞). Moreover, our methods are different from those in many recent

works (e.g., Li [6], Xu [7]).

2. Putting a > 1, b = 0 in Corollary 2.5, we can obtain Theorem 5 of Li [6].

Corollary 2.7. Let E, Ω, A be the same as in Lemma 1.1. Moreover, if there exist a Î
(0, 1) and b ≤ 0 such that

||Ax − x||α ≤ ||Ax||α+β ||x||−β − ||x||α , ∀x ∈ ∂D,
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then deg(I - A, Ω, θ) = 1 if A has no fixed point on ∂Ω, and so A has at least one

fixed point in �.

Proof. Putting �(t) = ta, j(t) = tb, we have �(t) is a strictly concave function with �

(0) = 0 and j(t) ≤ 1, ∀t > 1. Therefore, from Theorem 2.3, the conclusions of Corollary

2.7 hold. □
Remark 2.8. Corollary 2.7 extends Theorem 8 of Li [6]. Putting b = 0 in Corollary

2.7, we can obtain Theorem 8 of Li [6].

Theorem 2.9. Let E, Ω, A be the same as in Lemma 1.1. Moreover, if there exist

strictly convex function � : R+ ® R+ with � (0) = 0 and real function j : R+ ® R with

j(t) ≥ 1, for all t > 1, such that

ϕ(||Ax − x||) ≥ ϕ(||Ax||)φ(||Ax + x|| · ||x||−1) − ϕ(||x||), ∀x ∈ ∂�, (9)

then deg(I - A, Ω, θ) = 1 if A has no fixed point on ∂Ω, and so A has at least one

fixed point in �.

Proof. If the operator A has a fixed point on ∂Ω, then A has at least one fixed point

in �. Now suppose that A has no fixed points on ∂Ω. Next we shall prove that the

condition (L-S) is satisfied.

Suppose this is not true. Then there exists x0 Î ∂Ω, t0 ≥ 1 such that Ax0 = t0x0, i.e.,

x0 = t−1
0 Ax0. It is easy to see that ||Ax0|| ≠ 0 and t0 > 1. By virtue of (9), we have

ϕ(||Ax0 − t−1
0 Ax0||) ≥ ϕ(||Ax0||)φ(||Ax0 + t−1

0 Ax0|| · ||t−1
0 Ax0||−1) − ϕ(||t−1

0 Ax0||),

which implies

ϕ[(1 − t−1
0 )||Ax0||] + ϕ(t−1

0 ||Ax0||) ≥ ϕ(||Ax0||)φ[(1 + t−1
0 )t0]. (10)

By strict convexity of � and � (0) = 0, we obtain (3) holds. From (3) and (10), we

have

ϕ(||Ax0||)φ[(1 + t−1
0 )t0] < ϕ(||Ax0||). (11)

Noting that t0 > 1 and j(t) ≥ 1, for all t > 1, we have (1 + t−1
0 )t0 = t0 + 1 > 1, and so

ϕ(||Ax0||)φ[(1 + t−1
0 )t0] ≥ ϕ(||Ax0||),

which contradicts (11), and so the condition (L-S) is satisfied. Therefore, it follows

from Lemma 1.1 that the conclusions of Theorem 2.9 hold. □
Remark 2.10. If there exist convex function � : R+ ® R+, � (0) = 0 and real function

j : R+ ® R, j(t) > 1, ∀t > 1 satisfied (9), the conclusions of Theorem 2.9 also hold.

Theorem 2.11. Let E, Ω, A be the same as in Lemma 1.1. Moreover, if there exist

strictly concave function � : R+ ® R+ with � (0) = 0 and real function j : R+ ® R, j
(t) ≤ 1, ∀t > 1, such that

ϕ(||Ax − x||) ≤ ϕ(||Ax||)φ(||Ax + x|| · ||x||−1) − ϕ(||x||), ∀x ∈ ∂�, (12)

then deg(I - A, Ω, θ) = 1 if A has no fixed point on ∂Ω, and so A has at least one

fixed point in �.

Proof. If the operator A has a fixed point on ∂Ω, then A has at least one fixed point

in �. Now suppose that A has no fixed points on ∂Ω. Next we shall prove that the

condition (L-S) is satisfied.
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Suppose this is not true. Then there exists x0 Î ∂Ω, t0 ≥ 1 such that Ax0 = t0x0, i.e.,

x0 = t−1
0 Ax0. It is easy to see that ||Ax0|| ≠ 0 and t0 > 1. By (12), we have

ϕ(||Ax0 − t−1
0 Ax0||) ≤ ϕ(||Ax0||)φ(||Ax0 + t−1

0 Ax0|| · ||t−1
0 Ax0||−1) − ϕ(||t−1

0 Ax0||),

which implies

ϕ[(1 − t−1
0 )||Ax0||] + ϕ(t−1

0 ||Ax0||) ≤ ϕ(||Ax0||)φ[(1 + t−1
0 )t0]. (13)

By strict concavity of � and � (0) = 0, we have (7) holds. From (7) and (13), we obtain

ϕ(||Ax0||)φ[(1 + t−1
0 )t0] > ϕ(||Ax0||). (14)

On the other hand, by t0 > 1, we have (1 + t−1
0 )t0 = t0 + 1 > 1. Therefore, it follows

from j(t) ≤ 1, ∀t > 1 that

ϕ(||Ax0||)φ[(1 + t−1
0 )t0] ≤ ϕ(||Ax0||),

which contradicts (14), and so the condition (L-S) is satisfied. Therefore, it follows

from Lemma 1.1 that the conclusions of Theorem 2.11 hold. □
Remark 2.12. If there exist convex function � : R+ ® R+, � (0) = 0 and real function

j : R+ ® R, j (t) > 1, ∀t > 1 satisfied (12), the conclusions of Theorem 2.11 also hold.

Corollary 2.13. Let E, Ω, A be the same as in Lemma 1.1. Moreover, if there exist a
Î (-∞, 0)∪(1, +∞) and b ≥ 0 such that

||Ax − x||α||x||β ≥ ||Ax||α||Ax + x||β − ||x||α+β , ∀x ∈ ∂�, (15)

then deg(I - A, Ω, θ) = 1 if A has no fixed point on ∂Ω, and so A has at least one

fixed point in �.

Proof. From (15), we have

||Ax − x||α ≥ ||Ax||α ||Ax + x||β ||x||−β − ||x||α , ∀x ∈ ∂�.

Taking �(t) = ta, j(t) = tb, we have � (t) is a strictly convex function with � (0) = 0

and j(t) ≥ 1, ∀t > 1. Therefore, from Theorem 2.9, the conclusions of Corollary 2.13

hold. □
Remark 2.14. 1. Corollary 2.13 generalizes Theorem 2.4 of Xu [7] from a > 1 to a Î

(-∞, 0) ∪ (1, +∞). Moreover, our methods are different from those in many recent

works (e.g., Li [6], Xu [7]).

2. Putting a > 1, b = 0 in Corollary 2.13, we can obtain Theorem 5 of Li [6].

Corollary 2.15. Let E, Ω, A be the same as in Lemma 1.1. Moreover, if there exist a
Î (0, 1) and b ≤ 0 such that

||Ax − x||α||x||β ≤ ||Ax||α||Ax + x||β − ||x||α+β , ∀x ∈ ∂�, (16)

then deg(I - A, Ω, θ) = 1 if A has no fixed point on ∂Ω, and so A has at least one

fixed point in �.

Proof. From (16), we have

||Ax − x||α ≤ ||Ax||α ||Ax + x||β ||x||−β − ||x||α , ∀x ∈ ∂�.

Putting �(t) = ta, j(t) = tb, we have � (t) is a strictly concave function with � (0) = 0

and j(t) ≤ 1, ∀t > 1. Therefore, from Theorem 2.11, the conclusions of Corollary 2.15

hold. □
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Remark 2.16. Corollary 2.15 extends Theorem 8 of Li [6]. Putting b = 0 in Corollary

2.15, we can obtain Theorem 8 of Li [6].

Theorem 2.17. Let E, Ω, A be the same as in Lemma 1.1. Moreover, if there exist a
Î (-∞, 0)∪(1, +∞), b ≥ 0 and μ ≥ 1 such that

||Ax − μx||α ≥ ||Ax||α+β ||μx||−β − ||μx||α , ∀x ∈ ∂�,

then the equation Ax = μx possesses a solution in �.

Proof. Without loss of generality, suppose that 1
μA has no fixed point on ∂Ω. From

(17), we have

1
μα

||Ax − μx||α ≥ 1
μα

||Ax||α+β ||μx||−β − 1
μα

||μx||α, ∀x ∈ ∂�,

which implies

|| 1
μ
Ax − x||α ≥ || 1

μ
Ax||α+β ||x||−β − ||x||α , ∀x ∈ ∂�.

It is easy to see that 1
μA is a semi-closed 1-set-contractive operator. It follows from

Corollary 2.5 that deg(I − 1
μ
A, �, θ) = 1 �= 0, and so the equation Ax = μx possesses a

solution in �.

Remark 2.18. Similarly, from Corollary 2.7, Corollary 2.13 or Corollary 2.15, we can

obtain the equation Ax = μx possesses a solution in �.
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