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Abstract

In this paper, we show the hierarchical convergence of the following implicit double-
net algorithm:

1 [*
X = S[tf (%s,0) + (1 — 1) (%50 — pAxXs )] + (1 — S)k / T(v)xs,dv, Vs, te (0,1),
s JO

where fis a p-contraction on a real Hilbert space H, A: H — His an a-inverse
strongly monotone mapping and S = {T(s)}s = o H — H is a nonexpansive semi-
group with the common fixed points set Fix(S) = &, where Fix(S) denotes the set of
fixed points of the mapping S, and, for each fixed t € (0, 1), the net {x; } converges
in norm as s — 0 to a common fixed point x; € Fix(S) of {T(s)}s = pand, as t — 0, the
net {x;} converges in norm to the solution x* of the following variational inequality:
x* € Fix(S);
{ (Ax*, x — x*) > 0, Vx € Fix(S).
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1 Introduction
In nonlinear analysis, a common approach to solving a problem with multiple solutions
is to replace it by a family of perturbed problems admitting a unique solution and to
obtain a particular solution as the limit of these perturbed solutions when the pertur-
bation vanishes.

In this paper, we introduce a more general approach which consists in finding a par-
ticular part of the solution set of a given fixed point problem, i.e., fixed points which
solve a variational inequality. More precisely, the goal of this paper is to present a
method for finding hierarchically a fixed point of a nonexpansive semigroup S = {T(s)},
- o with respect to another monotone operator A, namely,

Find x* € Fix(S) such that

(Ax*, x —x*) >0, Vx € Fix(S). (1.1)
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This is an interesting topic due to the fact that it is closely related to convex pro-
gramming problems. For the related works, refer to [1-19].

This paper is devoted to solve the problem (1.1). For this purpose, we propose a
double-net algorithm which generates a net {x,,} and prove that the net {x,,} hierarchi-
cally converges to the solution of the problem (1.1), that is, for each fixed £ € (0, 1),
the net {x,,} converges in norm as s — 0 to a common fixed point x, € Fix(S) of the
nonexpansive semigroup {7(s)}s = o and, as £ — 0, the net {x,} converges in norm to
the unique solution x* of the problem (1.1).

2 Preliminaries
Let H be a real Hilbert space with inner product (., -) and norm |[-||, respectively.
Recall a mapping f: H — H is called a contraction if there exists p € [0, 1) such that

() —fWIl <pllx—yll, Vx, yeH.

A mapping T: C — C is said to be nonexpansive if

Tx =Tyl < llx—=yIl. Vv yeH.

Denote the set of fixed points of the mapping T by Fix(T).

Recall also that a family S : = {T(s)}; » o of mappings of H into itself is called a non-
expansive semigroup if it satisfies the following conditions:

(S1) T(0)x = x for all x € H;

(S2) T(s + t) = T(s)T(¢) for all s, £ > 0;

(S3) ||T(s)x - T(s)y|| < || - y|| for all x, y € H and s > 0;

(S4) for all x € H, s — T(s)x is continuous.

We denote by Fix(T(s)) the set of fixed points of T(s) and by Fix(S) the set of all
common fixed points of S, i.e., Fix(S) = Ny 5 o Fix(T(s)). It is known that Fix(S) is

closed and convex ([20], Lemma 1).
A mapping A of H into itself is said to be monotone if

(Au —Av, u—v) >0, VYu, v €H,

and A : C — H is said to be a-inverse strongly monotone if there exists a positive
real number o such that

(Au— Av, u—v) > a||Au — Av||?, Vu, ve H.

It is obvious that any ¢-inverse strongly monotone mapping A is monotone and
» -Lipschitz continuous.

Now, we introduce some lemmas for our main results in this paper.
Lemma 2.1. [21]Let H be a real Hilbert space. Let the mapping A : H — H be o-
inverse strongly monotone and yu >0 be a constant. Then, we have

(I = pA)x — (I — pAWII* < llx—yI1* + w(p —2a)[|Ax — Ay||*>, Vx, y € H.

In particular, if 0 < pu < 20, then I - yA is nonexpansive.
Lemma 2.2. [22]Let C be a nonempty bounded closed convex subset of a Hilbert
space H and {T(s)}s = o be a nonexpansive semigroup on C. Then, for all h > 0,
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lim sup =0.

[— 00 xeC

1/01T(s)xds—T(h)1 /OtT(s)xds

Lemma 2.3. [23] (Demiclosedness Principle for Nonexpansive Mappings) Let C be a
nonempty closed convex subset of a real Hilbert space H and T : C — C be a nonex-
pansive mapping with Fix(T) = &. If {x,} is a sequence in C converging weakly to a
point x € C and {(I - T)x,} converges strongly to a point y € C, then (I - T)x = y. In
particular, if y = 0, then x € Fix(T).

Lemma 2.4. Let H be a real Hilbert space. Let f: H — H be a p-contraction with
coefficient p € [0, 1) and A : H— H be an a-inverse strongly monotone mapping. Let u
€ (0, 2a) and t € (0, 1). Then, the variational inequality

x* e Fix(S); 2.1)

(tf(z) +(1 —t)I— pA)z—2z, x* —2z) >0, Vze Fix(S), '
is equivalent to its dual variational inequality

x* € Fix(S); (2.2)

(tf(x*)+ (1 —t)(I — pA)x* —x*, x* —z) >0, Vze Fix(S). '

Proof. Assume that x* € Fix(S) solves the problem (2.1). For all y € Fix(S), set
x=x"+s(y —x*) € Fix(S), Vse (0,1).
We note that
(tf(x)+ (1 —6)I — uA)x —x, x* —x) > 0.
Hence, we have
(ff (" +s(y —x7)) + (1 = (I = pA) (" +5(y = 7)) —x" = s(y —x7), s(x* —y)) = 0,
which implies that
(" +s(y =) + (1 = (I = pA) (" +5(y —x7)) = &7 —s(y —x%), 2" =) 2 0.
Letting s — 0, we have
(ff () + (1 =)(I = nA)(x") =", x" —y) = 0,

which implies the point x* € Fix(S) is a solution of the problem (2.2).
Conversely, assume that the point x* € Fix(S) solves the problem (2.2). Then, we
have

(tf(x*)+ (1 —0)(I — nA)x* —x*, x* —z) > 0.
Noting that / - fand A are monotone, we have
(I-flz— (I —f)x*, z —x*) >0
and

(Az — Ax", z—x*) > 0.
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Thus, it follows that
HI—fz— I —f)x*, z— %) + (1 — t)n{Az — Ax*, z—x*) > 0,
which implies that

(tHf(2)+ (1 —0)(I—pnA)z—z x* —z)
> (tf (") + (1 — 0)(I — pA)X* —x*, &* —z)

> 0.

This implies that the point x* € Fix(S) solves the problem (2.1). This completes the
proof. O

3 Main results
In this section, we first introduce our double-net algorithm and then prove a strong
convergence theorem for this algorithm.

Throughout, we assume that

(C1) H is a real Hilbert space;

(C2) f: H—> H is a p-contraction with coefficient p € [0, 1), A: H —» H is an o-
inverse strongly monotone mapping, and S = {7(s)}; » o : H — H is a nonexpansive
semigroup with Fix(S) = &;

(C3) the solution set Q of the problem (1.1) is nonempty;

(C4) u e (0, 2¢x) is a constant, and {A}y . 5 <1 is a continuous net of positive real
numbers satisfying lim; ,o A; = +oo.

For any s, t € (0, 1), we define the following mapping

I
x> Wex =s[tf(x) +(1 —t)(x — pAx)]+ (1 —35) N / T(v)xdv.
s JO
We note that the mapping Wj , is a contraction. In fact, we have

||W5,Ix — Wsyty” = s[tf(x) + (1 — ) (x — nAx)] + (1 —5) )1 /(; 5 T(v)xdv

)+ (=0 =p) = (=9 [ 1)y

< st]f(x) = fO)I +s(1 = O)lI(x — pAx) — (y — pAy)||
As
=901 [ T Te)a
< stplle—yll + s(1 =llx—yll + (1 —=s)[lx—yll

[1—(1—p)st]llx—yIl,

which implies that W; , is a contraction. Hence, by Banach’s Contraction Principle,
W, . has a unique fixed point, which is denoted x; , € H, that is, x; , is the unique

solution in H of the fixed point equation
Ko = S[tf (Xs,0) + (1 — 1) (50 — AXsr)]

1 As (3.1)
+(1 —3) N /o T(v)xsdv, Vs, t €(0,1).
)

Now, we give some lemmas for our main result.
Lemma 3.1. For each fixed t € (0, 1), the net {x, ;} defined by (3.1) is bounded.
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Proof. Taking any z € Fix(S), since I - A is nonexpansive (by Lemma 2.1), it follows
from (3.1) that

Jvsr =2

I
s[tf (xs) + (1 —0)(I — pA)xse] + (1 =) " /(; T(v)xsdv —z

1 h
< s|f(r) + (@ =00 — pA)xg—z| + (1 —s) N / T(v)xsedv —z
s JO
s s[EffGe) —f@) + t|f@ =2 + (1 =010 = A — (1= pA)ll
+(1 = O — pA)z—z2||] + (1 — $)l1x¢ — 2|
< stpllxse =zl + tIf(2) =zl + (1= Ollxse — 2l + (1 = t)ullAz|]

+(1 = 8)llxsc — 2l

= [1= (1= p)stlllxge —zl| + stllf(2) —zll + s(1 = )ullAz]|.

This implies that

v =]

IA

1
(1- p)t(tllf(z) —zll + (1 = t)ullAz]l)

1
max{||f (z) —zl|, ul|lAz|[}.
(1 gy PR
Thus, it follows that, for each fixed ¢t € (0, 1), {x, , is bounded and so are the nets {f
(s, )} and {(I - uA)x, . This completes the proof. O
Lemma 3.2. x; , > x, € Fix(S) as s > 0.

Proof. For each fixed t € (0, 1), we set R, := (1_1p)t max{||f(z) —zll, wllAz|[}. It is

clear that, for each fixed t € (0, 1), {x,, ;7 < B(p, R,), where B(p, R,) denotes a closed
ball with the center p and radius R;. Notice that
1%
‘ / T(v)xsdv — p
As 0

< e —pll < Re.

Moreover, we observe that if x € B(p, R,), then
T(s)x —pll < IIT()x=T()pll =< [lx—pll = Ry,

that is, B(p, R;) is T(s)-invariant for all s € (0, 1). From (3.1), it follows that

As

[T()xee — x| = ||T(x)xs: — T(2) ! T(v)xs,edv
A
° 0

hs As

/T(v)xsyldu - }1 /.T(v)xwdv

0 0

1

+ T(T)A

As

1
N /T(V)Xslt dv —xg,
0

+
S

1 [ 1
< ”T(T)A/(; T(v)xsltdv—kfo T(v)xs,edv

1[h
+2 || x5 — / T(v)X,, dv
)"s 0
1[h
< 2 |tf(xse) + (1 — 1) (x50 — nAXs,) — N / T(v)x,,dv
s JO
o I
+||T(7) / T(v)xs,dv — / T(v)xs,dv| .
As Jo As Jo
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By Lemma 2.2, for all 0 < 7 <eo and fixed t € (0, 1), we deduce
lim [ T()xs — x| = 0. (3.2)

Next, we show that, for each fixed ¢ € (0, 1), the net {x, , is relatively norm-com-
pact as s — 0. In fact, from Lemma 2.1, it follows that
|Ixg,e — pAxg — (2 — pA2)||* < |lxge — 2l1* + (i — 2a)[|Axg, — Az||%. (3.3)
By (3.1), we have

|l — 2I1?

= st{f(xs0) — f(2), X510 — 2) +st{f(z) — z, x5 — 2)
+5(1 — ) {((I — pA)xs, — (I — pA)z, x50 — 2)
+5(1 —t){(I — nA)z —z, x5 — 2)

[~
+H1=y3) <)\ /0 T(v)Xs dv —z, x50 — z>
S

< stllf(xse) = F@)I 11xee — zl| + st(f(2) — 2z, x50 —2)
+s(1 =) = nA)xs: — (I — nA)zl| llxse — zll — s(1 — t)u{Az, x5 — 2)
1 [m
(=9 | [ IOy =l -2
)\5 0
< stpllxs: — Z||2 + St{f(z) — z, X0 —2) —s(1 — t)u(Az, x5, —2)
+5(1 = O)II(I — pA)xse — (I — pA)zl| lxse — 2l + (1 — s)|lxs, — 2l
< stpllxag, —zl|® + st(f(z) — z, x5 — 2) — (1 — t)u{Az, X5r — 2)
s(1—t¢
S0 = Ay — (1= AP 5 s = 2I7) + (1= 9l — 2

This together with (3.3) imply that

lIx5,c — 2|2
< stpllxge — zlI* + sHf(z) — 2, %6 — 2) —s(1 — ) (Az, x5 — 2)
s(1—t
L 5 )(||xs,1—z||2+ (e — 20)||Axs, — Azl + |lxg — 2I1*) + (1 = s)l1xs¢ — 2II
< [1 - (1 - p)St]Hxs,t *sz + St(f(Z) —Z, X5 — )

—5(1 — I)I»L(Azr Xt — Z),
which implies that

|Ixg,e — 2|2
1 . (3.4)
< (tf(z) + (1 —t)(I — nA)z —z, x5¢ —z), Vz € Fix(S).
(1—p)t
Assume that {s,} < (0, 1) is such that s, - 0 as # — oo. By (3.4), we obtain immedi-
ately that

|lxs,,c — 2I1?
1 : (3.5)
< (tf(x)+ (1 —6)I — nA)z—z, x5,; —2), Vz € Fix(S).
(1—p)t
Since {x;,:} is bounded, without loss of generality, we may assume that, as s,, — 0,

{x,,,:} converges weakly to a point x,. From (3.2) and Lemma 2.3, we get x, € Fix(S).

Page 6 of 10
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Further, if we substitute x, for z in (3.5), then it follows that

1
[1%s,,,c — xt||2 = (1- p)t<tf(xt) + (1 —=0)(I — pA)xe — X, X506 — Xe).

Therefore, the weak convergence of {x;,;} to x, actually implies that Xs,: = X
strongly. This has proved the relative norm-compactness of the net {x, ,} as s — 0.
Now, if we take the limit as # — oo in (3.5), we have

2
[l — |

e _1p)t<tf(2) +(1=0)(I—pA)z—z x —2), Vze Fix(S).

In particular, x, solves the following variational inequality:

x; € Fix(S);
{ (tf(z) + (1 —t)(I — npA)z—2z, xy —z) > 0, Vz € Fix(S),

or the equivalent dual variational inequality (see Lemma 2.4):

{xt € Fix(S); (3.6)

(tf (x) + (1 = t)(I — pA)xe — x¢, x, —2) >0, Vz € Fix(S).

Notice that (3.6) is equivalent to the fact that x, = Prs)(¢f + (1-£)(I - uA))x,, that is,
%, is the unique element in Fix(S) of the contraction Pprys)(tf +(1-2)(I -uA)). Clearly, it
is sufficient to conclude that the entire net {x; ,} converges in norm to x, € Fix(S) as s
— 0. This completes the proof. O

Lemma 3.3. The net {x,} is bounded.

Proof. In (3.6), if we take any y € Q, then we have

(tf () + (1 —t)(I — pA)x; — %1, x —y) = 0. (3.7)
By virtue of the monotonicity of A and the fact that y € Q, we have

(I = pA)x —x, x—y) < (I—pA)y —y, x —y) 0. (3.8)
Thus, it follows from (3.7) and (3.8) that

(fle) —x, x—y) =0, VyeQ (3.9)
and hence

lx—yl>? < (u—y xt—y>+(f(xt)—xt, X —Y)
o) —f@) 5= +F@) =y x—y)
< pllx—yl*+ <f(y) Y, X — ).

A

Therefore, we have
1
|lxe — yII? (f(y) —V x—y), VyeQ. (3.10)
In particular,

1
Il =il < _pllf(y) =7l vee(0,1),
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which implies that {x;} is bounded. This completes the proof. O
Lemma 3.4. If the net {x,} converges in norm to a point x* € Q, then the point solves

the variational inequality
(I—f)x", x—x") >0, VxeQ. (3.11)

Proof. First, we note that the solution of the variational inequality (3.11) is unique.
Next, we prove that w,(x,) € Q, that is, if (¢,) is a null sequence in (0, 1) such that
x, — X' weakly as n — oo, then &” € Q. To see this, we use (3.6) to get

n

(/J/Axt, Z — xt) > 1 t_ [<(I _f)xt, Xt — Z), Vz € le(S)

However, since A is monotone, we have
(Az, z—x1) > (Axy, 2—Xy).

Combining the last two relations yields that
t
(uAz, z— x;) > . t(U —f)x, x —z), Vz € Fix(S). (3.12)

Letting t = t,, > 0 as n — < in (3.12), we get
(Az, z—x') > 0, Vz e Fix(S),

which is equivalent to its dual variational inequality
(Ax', z—x) >0, Vz e Fix(S).

That is, &” is a solution of the problem (1.1) and hence x" € Q.
Finally, we prove that x” = x*, the unique solution of the variational inequality (3.11).
In fact, by (3.10), we have

1
I, — &[> < - p(f(x’) —x, x, —«), V¥ eq.

Therefore, the weak convergence to x” of {x;} implies that x,, — x" in norm. Thus, if

we let t = £, — 0 in (3.10), then we have
f)—«, y—x)<0, Weg,

which implies that " € ) solves the problem (3.11). By the uniqueness of the solu-
tion, we have x” = x* and it is sufficient to guarantee that x, — x* in norm as ¢t — 0.
This completes the proof. O

Thus, by the above lemmas, we can obtain immediately the following theorem.

Theorem 3.5. For each (s, t) € (0, 1) x (0, 1), let {x,, } be a double-net algorithm
defined implicitly by (3.1). Then, the net {x, .} hierarchically converges to the unique
solution x* of the hierarchical fixed point problem and the variational inequality pro-
blem (1.1), that is, for each fixed t € (0, 1), the net {x; ,} converges in norm as s — 0 to
a common fixed point x, € Fix(S) of the nonexpansive semigroup {1(s)}s = o. Moreover,
as t — 0, the net {x,} converges in norm to the unique solution x* € Q and the point x*
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also solves the following variational inequality.

x* e Q;
(U=f)x*, x—x*) >0, VxeQ.
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