Wijewardhana et al. EURASIP Journal on Wireless Communications and
Networking 2014, 2014:37
http://jwcn.eurasipjournals.com/content/2014/1/37

® EURASIP Journal on
Wireless Communications and Networking

a SpringerOpen Journal

RESEARCH Open Access

A robust beamformer design for underlay
cognitive radio networks using worst case

optimization

Uditha Lakmal Wijewardhana'”, Marian Codreanu’, Matti Latva-aho' and Anthony Ephremides?

Abstract

Semidefinite relaxation

We propose a robust beamforming design for underlay cognitive radio networks where multiple secondary
transmitters communicate with corresponding secondary receivers and coexist with a primary network. We consider a
scenario where all transmitters have multiple antennas and all primary and secondary receivers are equipped with a
single antenna. The main focus is to design the optimal transmit beamforming vectors for secondary transmitters that
maximize the minimum of the received signal-to-interference-plus-noise ratios of the cognitive users. The
interference powers to the primary receivers are kept below a threshold to guarantee that the performance of the
primary network does not degrade due to the secondary network. Imperfect channel state information (CSI) in all
relevant channels are considered, and a bounded ellipsoidal uncertainty model is used to model the CSl errors. We
recast the problem in the form of semidefinite program and an iterative algorithm based on the bisection method is
proposed to achieve the optimal solution. Further, we propose upper and lower bounds for the optimal value of the
considered problem, which provides better initialization for the algorithm. Numerical simulations are conducted to
show the effectiveness of the proposed method against the non-robust design.
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1 Introduction

Scarcity of wireless spectrum is one of the major chal-
lenges faced by the modern wireless communication
industry. Due to rapid deployment of wireless services in
the recent past and the fixed spectrum allocation pol-
icy, the wireless spectrum has been increasingly crowded.
On the other hand, according to the Federal Communi-
cation Commissions and other regulatory bodies, most of
the allocated spectrum is under utilized [1]. Therefore,
the secondary usage of wireless spectrum has been pro-
posed as a method to utilize more efficiently the wireless
spectrum [1-4].

Cognitive radio networks (CRNs) [2-4] operate on this
idea of the secondary usage of spectrum. Here, the sec-
ondary network is allowed to opportunistically access the
spectrum owned by the primary network provided that
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it does not degrade the performance of the primary net-
work. Hence, there are two major challenges that should
be addressed by a CRN. The first challenge is to maximize
the performance of the users in the CRN as much as possi-
ble. The second challenge is to guarantee the performance
or the quality of service (QoS) of the primary network,
which is the main constraint in a CRN. Specifically, in
underlay CRNSs, the performance of the secondary (cog-
nitive) users should be maximized while the maximum
interference power to the primary users (PUs) should
remain below a pre-specified threshold [4].

Resource allocation problem for underlay CRNs have
been studied recently in [5-9], assuming that perfect chan-
nel state information (CSI) knowledge for all relevant
links is available for the design. Beamformer design for
multiple-input-multiple-output (MIMO) ad hoc CRN is
presented in [5]. The weighted sum-rate of the CRN
is maximized in [5] subject to the individual power
constraints and interference constraint to the coexist-
ing PU. A semi-distributed algorithm is proposed to
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achieve a locally optimal solution and an alternative
centralized algorithm has been proposed based on geo-
metric programming and network duality. A game the-
oretic approach for the same problem with a CRN that
coexists with multiple PUs is presented in [6].

However, in practice, the channel vectors are estimated
from training sequences and, inherently, this leads to
imperfect estimation. These CSI estimation errors can
greatly affect the performance of the network, result-
ing in degradation in both primary and secondary users’
QoS. Such channel errors are usually modeled either by a
bounded uncertainty model such as D-norm, polyhedron,
ellipsoidal [10] or a stochastic error model [11].

Robust beamformer design with imperfect CSI has
received a considerable attention recently. Usually, this
problem is tackled by either worst-case optimization
[12-27] or stochastic optimization [24,28]. In worst-case
optimization (or maximin optimization), the uncertain
parameters can take some given set of possible values,
but without any known distribution. Then the optimiza-
tion variables are designed in such a way that an objective
value is maximized while guaranteeing the feasibility of
the constraints over the given set of possible values of the
parameters. This method has been applied to design the
robust beamforming vectors for underlay CRNs in [20-
26], where the channel errors are either norm bounded
or bounded by ellipsoids. With the exception of [24]
and [26], most of the abovementioned work consider a
CRN where a single secondary transmitter (TX) co-exists
with a primary network. The problem of maximizing the
minimum signal-to-interference-plus-noise ratio (SINR)
in an underlay CRN, where the transmitter communi-
cates with multiple secondary receivers (RXs) is studied
in [21]. An iterative solution has been proposed based
on semidefinite relaxation [29], and if the solution is not
rank-one, rank-one approximations [29] have to be used to
achieve the beamforming vectors. For the same problem,
a method to achieve a rank-one solution with some tol-
erance is presented in [22]. Therefore, none of the above
work guarantee the optimal solution of the problem of
maximizing the minimum SINR in an underlay CRN.

The sum mean square error is minimized in [24] for
an underlay MIMO ad hoc CRN constrained to individ-
ual power budgets of secondary TXs, where the channel
errors are bounded by Euclidean balls. There the authors
have cast the problem as a semidefinite program (SDP)
and solved iteratively via standard interior point methods
to achieve a suboptimal solution for the problem. In [26],
the same problem of minimizing the sum mean square
error for an underlay MIMO ad hoc CRN subject to
individual power budgets for the secondary TXs was con-
sidered. A distributed solution was proposed under the
assumption that secondary TXs have perfect CSI knowl-
edge of the channels to the secondary RXs. Furthermore,
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the SINR of an underlay MIMO secondary link is max-
imized in [30] constrained to the power budget of the
secondary TX under the same assumption that secondary
TX has perfect CSI knowledge of the channel to the
secondary RX.

The focus of this paper is to design the optimal robust
beamforming vectors for the secondary TXs in a CRN that
coexists with a primary network. We address the problem
of maximizing the worst SINR of any secondary user sub-
ject to interference constraints to primary network and
individual power constraints. Further, we assume that the
network controller has imperfect CSI knowledge and all
relevant channel vectors may take any value within some
pre-specified bounded uncertainty ellipsoids [10,14,17].
An equivalent reformulation of the problem is obtained,
and then the S-procedure [31,32] is used to handle the
non-convex quadratic constraints due to channel uncer-
tainties. In particular, we replace each quadratic con-
straint pair by a linear matrix inequality (LMI) for a fixed
objective value by means of the S-lemma [18,21], which
leads to a SDP. An iterative algorithm based on the bisec-
tion method is proposed to solve the relaxed version
(relaxed the non-convex rank constraints in the problem)
of the reformulated problem. Finally, we show that the
optimal solution for the original problem can be achieved
by introducing a properly chosen objective function to the
feasibility check step of the iterative algorithm.

As the main contribution, in this work, we show the abil-
ity to handle CSI uncertainty in a multiple-input-single-
output (MISO) communication network with interference
temperature constraints. Further, we provide a rigorous
proof for the tightness of SDP relaxation in worst SINR
maximization problem in multi-cell downlink scenario
with a single user per cell and subject to interference
temperature constraints. Additionally, we show that the
proposed solution approach can be extended to maximize
the worst weighted SINR or, more generally, the worst
among a set of increasing functions of each SINR.

Organization: Section 2 describes the network and the
channel uncertainty models used in this paper. The prob-
lem formulation for the worst-case scenario and a suit-
able equivalent reformulation is presented in Section 3.
In Section 4, the SDP-based solution is presented and
an iterative algorithm is proposed to obtain the optimal
beamforming vectors. Simulation results are presented in
Section 5. Finally, we conclude the paper with Section 6.

Notations: Throughout this paper, C, H! and R denotes
the set of /-dimensional complex vectors, the set of /-
dimensional complex Hermitian matrices and the set of
real values, respectively. Further, the complex column vec-
tors and matrices are represented by the boldfaced lower-
case and uppercase letters, respectively, e.g. w and W. We
denote a real scalar by a lower case letter and Re(-) denotes
the real part of a complex number. The superscript (-)T
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denotes the transpose and (-)! denotes the Hermitian
(conjugate transpose) operation for a vector or a matrix.
W > 0and W > 0 means that W is positive semidefi-
nite and positive definite, respectively. Rank and the trace
of a matrix are represented by Rank(W) and Trace(W),
respectively. Modulus of a scalar is denoted by | - | and || - ||
denotes the Euclidean norm of a vector. The expectation
of a random variable is denoted by E{-}. In addition, I,
denotes the n-dimensional identity matrix while 0 denotes
an all-zero vector or matrix with appropriate dimen-
sions. We denote the complex normal distribution with
mean y and covariance o2 by CA (i, 02). The distribution
TCN (u, 02, a, b) represents the truncated complex nor-
mal distribution with parameters u, 52, 4 and b (see [33],
Chap. 4 in [34]). Finally, in an optimization problem, if
w is a variable, then w* denotes the optimal value or the
optimal solution.

2 System model

We provide the detailed description of the considered sys-
tem model in this section. Specifically, we describe the
network model and the channel uncertainty model used
throughout the paper.

2.1 Network model

We consider an underlay CRN consisting of multiple
transmitter-receiver pairs which coexists with a primary
network. The network model is shown in Figure 1. The
set of secondary links is denoted by N and we label them
asn = 1,...,N. We use the same indexing for the sec-
ondary transmitters and receivers, i.e., we refer to the
transmitter (receiver) of the nth secondary link as the
nth secondary TX (RX). We consider a MISO downlink
scenario and assume that each secondary TX (a base sta-
tion) is equipped with #; antennas to communicate with
its corresponding secondary RX (a mobile station). We

: hmk

¥V Secondary TX O Secondary RX @ Primary RX

Figure 1 System model. Underlay cognitive radio network with two
secondary TX-RX pairs (N = 2) coexists with a primary network
consisting a single primary RX (K = 1). Straight arrows show the
desired channels and the dashed arrows show the interfering
channels.
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represent the set of all primary RXs by K and label them
as k = 1,..., K. Further, we assume that all the primary
and secondary RXs are equipped with a single antenna®.

We assume that all secondary TXs operate in the same
frequency band as the primary network and use transmit
beamforming to communicate with their corresponding
secondary RXs. We further assume that a network con-
troller decides the resource allocation and beamforming
vectors for each secondary TX.

Single-stream beamforming transmission strategy is
assumed and hence the signal transmitted by the nth
secondary TX is given by

Xy = Wyudy, (1)

where d, denotes the (complex) information symbol and
w,, is its associated beamforming vector. We assume that
the information symbols are independent, i.e., E{dndz } =
0 for all m # n,m,m € N, and normalized such that
E{|d,|?} = 1for all n € N. Therefore, the transmit power
of the nth secondary TX is given by [|w,||? and it is lim-
ited by Pmax, the maximum available transmit power, for
allme NV.

We denote the channel vector from the mth secondary
TX to the nth secondary RX by g,,, € C". The signal
received at the nth secondary RX can be written as

N
Yn = gl;;lnwndn + Z gznwmdm + zy, (2)
mign

where the first term is the signal of interest, the second
term represents the interference from the secondary net-
work and z,, € C is the additive noise at the nth secondary
RX. We assume that the noise term z, has power 02 and it
includes the receiver’s thermal noise and the interference
from the primary network. Therefore, the instantaneous
SINR at the nth secondary RX can be expressed as

gl

SINR,, = (3)

Ir\[n=1 |gznwm|2 + Gr% '
m#£n

The interfering channel from the nth secondary TX to the
kth primary RX is denoted by h,; € C". Now, the total
interference power caused by the secondary network on
the kth primary RX can be written as

N
L= hfw, |, @
n=1

which should be limited by the interference threshold Iy,
in order to guarantee the QoS of the primary network.

2.2 Channel uncertainty model
We assume that the channels are uncertain at the network
controller?, but they belong to a known compact sets of
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possible values. Specifically, we assume that the channel
vectors, g, and h,y for all n,m € N and k € K, belong
to known ellipsoidal uncertainty sets.

We model the channel vector, g, from the mth sec-
ondary TX to the nth secondary RX as the sum of two
components, i.e.,

8mn = gmn + €mn, (5)

where g,,, € C™ denotes the estimated value at the
network controller and ey, represents the correspond-
ing channel estimation error. It is assumed that e, can
take any value inside a #n;-dimensional complex ellipsoid.
Hence, the channel uncertainty set can be defined as

Emn (Qun) = {emn : ely;qIannemn = 1} ’ (6)

where Qj,, is a complex Hermitian positive definite
matrix (Qy, > 0), assumed to be known, which speci-
fies the size and shape of the ellipsoid. For example, when
Qun = (1/€2,,) 1, the ellipsoidal channel error model (6)
reduces to |eml® < E,z,m. This represents a ball uncer-
tainty region [35] with uncertainty radius &,,,. In this
model, &,,;, = 0 implies that perfect CSI knowledge is
considered and with &,,,, the channel uncertainty becomes
larger causing CSI knowledge to become imperfect [21].

We use the same uncertainty model for the channel vec-
tor, h,, from the nth secondary TX to the kth primary
RX, i.e.,

A~

hnk = hnk + énk) (7)

where ﬁnk € C™ is the estimated value at the network
controller and e,; denotes the corresponding channel
estimation error. The ellipsoidal channel uncertainty set
can be defined as

Enk <an> = {énk s Qe < 1}, (8)

where Q« > O specifies the size and shape of the
uncertainty ellipsoid.

3 Problem formulation

Our objective is to maximize the performance of the CRN
while satisfying the QoS requirements of the primary
network. We consider the minimum SINR among all sec-
ondary receivers as the performance indicator of the CRN
and the interference received from the CRN as the QoS
measurement for the primary network. Then the solution
of the problem will guarantee a certain SINR for all sec-
ondary RXs while the interference to all the RXs in the
primary network will be lower than a predefined threshold
Iih. The mathematical formulation of the mentioned prob-
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lem and a suitable equivalent reformulation is presented
in this section.

3.1 Problem formulation

Now, with the channel uncertainty model above, we can
re-write the instantaneous SINR at the nth secondary RX
as

2

‘(gnn + enn)H Wi
SINR,, =

N
Zm:l

m#n

, )

2
(gmn + emn)H Wm‘ + 0}%

and the interference power, caused by the secondary net-
work on the kth primary RX as

N

L=Y"

n=1

2

(Roe +&0c) Wi (10)

The resource allocation problem we address in this work
is to optimize the transmit beamforming vectors in CRN,
{wn}ﬁl‘lzl, to maximize the minimum SINR of the sec-
ondary RXs for given parameters Ppax and Ii,. Due to
the CSI uncertainty, the beamfomer design should guar-
antee a certain SINR for any channel error value inside
the uncertainty region. Further, the design should keep the
interference to the primary RXs below the threshold for all
channel errors inside the uncertainty region to guarantee
the performance of the primary network. This problem
can be mathematically expressed as

maximize
subject to

minnzlw,N infem,,eé'mn,mej\/ SINRn
SUPg &, neN Iy <ILn kek
||Wn||2 <Pnax ne€ N,

(11)

where the optimization variables are wy, e, e, for
n,m € N,k € K. Note that SINR,, depends on e, for
all m € N (see (9)) and I; depends on &, forallm € N
(see (10)). In Problem (11), the infimum in the objective
function and supremum in the first constraint are taken
over all possible channel errors contained in the given
uncertainty region.

3.2 Anequivalent reformulation

Since the minimization in the objective function of Prob-
lem (11) is over all secondary RXs, the optimal value
should be less than or equal to any SINR value that can
be achieved by a secondary RX for the optimal beam-
former design. Therefore, the optimization Problem (11)
can be equivalently written in the epigraph form (see
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p. 134 in [31]) (strictly speaking, this is a hypograph form,
as Problem (11) is a maximization) as®

maximize y
2

‘ (gl’l}’l + enn)H Wy,
er\é:l |(gmn + emn)HWm|2 + 0’37
m#n

neMN

subjectto y <

Veun € Emny
N e \H
Zn:l (hnk + enk) Wy

Ve, € gnk, kel

”wn”% < Pmax neN,

(12)
2
= Ith;

where the optimization variables are y and wy,, e,,,,, €, for
nmeN,kek.
By introducing the new variables,

2, meN\{n},ne N

Smn = ’(gmn + emn)H Wm

(13)
. H |2
L = ‘(hnk—l—énk) wal , neNkek (14)
Problem (12) can be recast equivalently as
maximize y (15a)

Subject to (gnn + enn)H WnWJ,;I (grm + enn)

N
2
>y § Smn + 0, | » Veu, € Eypyn € N
m=1

m#n
(15b)

(gmn + emn)H WmW]yf, (gmn + emn) = Smn,

Veun € Epmym € N\{nl,ne N (15¢)
N
Y Iy <ln kek (15d)
n=1

N H N
(hnk + énk) wnwff (hn/< + énk) < Ly,

Ve € Eone N kek (15e)
wilw, < Ppax, nelN, (15f)
where the optimization variables are y and

Wits €1s €0k Srms Lk for all m,m € N,k € K. Note that
we have re-written 1st constraint in Problem (12) as two
separate ones, i.e., (15b) and (15c). Furthermore, it is easy
to show (e.g., by contradiction) that constraints (15¢) and
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(15e) are tight (i.e., they hold with equality at optimality).
Hence, Problem (15) is an equivalent reformulation of
Problem (12).

4 Optimal beamformer design

In this section, we propose an iterative algorithm to solve
the equivalent Problem (15) and compute the optimal
beamforming vectors for the underlay CRN.

4.1 Optimal solution and iterative algorithm
The outer product wnwlni in Problem (15) is a rank-one
positive semidefinite matrix. We introduce a new set of
variables W, = w,w!! for all # € N. Then the con-
straints (15b), (15c¢), (15d) and (15f) become linear in W, ,
and W, should be rank one. Furthermore, we can see that
the constraint (15b) is quadratic in e, constraint (15c) is
quadratic in e, and (15e) is quadratic in €,. This sug-
gests that we can use the following lemma to recast these
constraints in such a way that they become linear matrix
inequalities (LMlIs) for fixed value of y in Problem (15).
S-lemma[18,31,32]: Let ®; be a real valued function of
an [-dimensional complex vector y, defined as

Pi(y) = Y Ay + 2Re (b}'y) + c;,

where A; € H!, b; € C!, ¢; € Rand i = 0, 1. Assume that
there exists a vector y € C such that ®;(§) < 0. Then the
following conditions are equivalent:

S1:®p(y) > 0forally e C! such that Pi(y) <0.
S2: There exists A > 0 such that the following LMI is

feasible:
Ay b() Ay bl
+ A > 0.
[bé’ Co} [bf’ 61} -

Consider the first constraint in Problem (15). It can be
re-written as

S H S A~
e{q{anenn + 2Re ((annn) enn) + gfq{nwngnn

N
-7 Zsmn‘{'o'nz >0, nehN (16)
m=1
m#£n
for all e,;;, € C" such that
e]y;[nanenn -1<0, ne N 17)

should be satisfied. The existence of an e,;, for which
(17) holds strictly is obvious (e.g., e, = 0). Hence, we
can regard the left-hand sides of (16) and (17) as ®q(e;)
and ®;(ey,,) in S-lemma. Then, according to S-lemma,
the inequality (16) is satisfied for all channel errors e,
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that satisfy (17) if there exists pu, > 0 such that the
condition

WVI annn
g]r;[nWVl glrfnwngnn -Y (er\[nzl Smn + Ur%)
m=*+n

A
Apy =

+,U«nn|:Q(;m _011| =0, neN
(18)

is satisfied.

Following the same procedure, it follows that the
inequality (15c¢) is satisfied for all channel errors e, €
Emn if there exists i, > 0 such that

)Y A —Wy, _ngmn
" —éﬁnwm Smn — gﬁnwmgmn
0
+umn[Q6"" _1:| >0, meN\{nh,neN

(19)

is satisfied. Similarly, the inequality (15e) is satisfied for all
channel errors €, € &, if there exists v, > 0 such that

Al W, —W,h,
Ou| =, bk
—h W, Ly — B W, R,
(20)

+\)nk|:Q(;lk _01] =0, neN,kek
is satisfied.

Thus, we can rewrite Problem (15) equivalently as
follows:

maximize y

subjectto A, >0, neN

®,,>0, meN\|{n,neN
O>0, neN,kek
SN Lk <Im kek @)
Won =0, mmeN
vk >0, neN,kek
W,>=0, neN
Trace (W,) < Pmax, HEN
Rank(W,) =1, nel,

where the optimization variables are y and

Wi, s Viaks Smns Lk for m,m € N, k € K. Note that if the
rank constraints are neglected, Problem (21) can be easily
solved using the bisection method (see p. 146 in [31])
which provides the optimal solution for Problem (21).
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Specifically, for a fixed y , the feasibility can be checked
by solving the problem

Po(y): find Wi, o> Viaks S Lnkh nyme N ek
Auw(y) =0, neN

®,,>0, meN\{n,neN
Q>0 neNkek

SN Lk <In kek
nmeN

vk >0, neN,kek
W,>0, neN

Trace (Wy) < Pmax,

subject to

Mmn = 0,

neN,
(22)

where the optimization variables are Wy, 4y, Viks Smns Ink
for all n,m € N,k € K, using a standard SDP solver and
the optimal solution is the maximum value of y for which
Problem (22) is feasible.

However, it turns out that we can employ a simple trick
to handle also the rank constraint of Problem (21). The
procedure is based on replacing the dummy objective
function in Problem (22) with the sum power minimiza-
tion for the secondary network. Then the problem used to
check the feasibility can be written as

Pi(y): minimize Zﬁlzl Trace (W) (23)

subject to constraints of Py(y)

where the optimization variables are Wy, 4y, Viks Smns Ink
for all n,m € N,k € K. Clearly, Problem (22) is feasible
if and only if Problem (23) is feasible (because they have
the same set of constraints). Furthermore, the following
proposition ensures that Problem (23) returns always a set
of rank one matrices W,.

Proposition 1. If Problem (23) is feasible (for a given y),
then the optimal matrices W, are always rank one, i.e.,
Wi =wiwl foralln e N.

Proof. The proof is presented in Appendix 1. [

Note that for a given feasible value of y, Problem (22)
can also have higher rank solutions but Problem (23) has
only rank one solutions. The optimal beamforming vec-
tors that maximize the minimum SINR can be found
directly by eigen-decomposition of W7 for all n € N. This
implies that the global optimal solution of the original
Problem (11) is obtained.

Following iterative algorithm can be used to design the
optimal robust beamforming vectors for an underlay CRN
that maximize the minimum SINR of the cognitive users
within a pre-defined accuracy ¢ > 0.
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In the bisection method, exactly [log, ((Vupp — Viow)/€)1
iterations are required before the algorithm termi-
nates (see p. 146 in [31]), where Y14 and yypp are the initial
lower and upper bounds for the optimal value. Hence, a
good initialization can reduce the number of iterations
required in the algorithm which leads to lower resource
consumption. Therefore, in practice, it is highly beneficial
to have good initial lower and upper bounds which are
simple to obtain. Next, we describe an efficient method
for finding lower and upper bounds (i.e., ¥iow and yypp) to
initialize the above algorithm.

4.2 Initial lower bound

When a constraint in a maximization problem is modi-
fied (perturbed) in such a way that it gets tightened, the
optimal value of the perturbed problem is always a lower
bound for the optimal value of the original problem (see
pp- 249-251 in [31]). We use this fact to compute an
efficient initial lower bound, yjow, for Algorithm 1.

Algorithm 1 Robust cognitive beamforming via bisection
method

given
{gmm hy,i, Quiny Qukos Un} » Iths Pmax. tolerance
nmeN ke

€ > 0, initial lower and upper bounds for the optimal
value Yiow and yypp.
repeat

Ly:= (Vlow + Vupp)/z-

2. Solve the convex feasibility Problem P; ().

3.if P1(y) is feasible, yiow := y;  else yupp :=y.
until yypp — Yiow < €.
outputs y* and {WZ (w:,)H = W:,]

network parameters

neN’

Consider the first constraint of Problem (15),

N
(gnn + enn)H anj,;l (gnn + enn) =Yy Z Smn + 0’,3 ,

m=1

m#£n

neN.
(24)

We introduce a new variable ¢, that should satisfy the

inequality

N
t> Z Smn + 0, (25)
m=1

m;—n
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Now, using (24) and (25), the constraint (15b) can be
tightened as follows:

(gnn + enn)H anl;;[ (gnn + enn) >yt, neN, (26)

N
ZSmn"‘Unzft, nehN. (27)
m=1

m#£n

We define a new set of variables x = 1 and u,,, = S’Z”,

Yk = I‘;", vV, = w”:vl”{ for n € N,k € K. Then, the
perturbed problem can be written as

maximize y
. . H N
subject to (&un + €mn) Vi (8 + €un) > v,
Ve, € Eppne N
S o wmmtoix<1l, neN
m+n
N H N
(gmn + emn) Vin (gmn + emn) = Umn,
Veun € Epmym e N\{n},n e N
S ok <l kek
R _N\H R _
(hnk + enk) Vi (hnk + enk) < L
Ve € Eone N ke K

Trace (V) < Pmax%, neN
Rank (V,) =1, nelN,
(28)
where the optimization variables are y,x and

Vois €115 €51k Uy Y for all m,m € N k € K.

Following the same method as in Section 4.1, using
S-lemma to recast the quadratic constraints as LMIs,
Problem (28) can be reformulated as follows:

maximize y

subjectto A, =0, nmelN
®&,, >0, meN\{nh,neN
O>=0, neN,kek
SN o wmmto2x<1, neN

mn

SN vk < Imx, kek (29)
Lwn =0, mmeN
V>0, neN,kek
V,>0, neN
Trace (V,,) < Ppax¥, neN
Rank (V,) =1, nelN,
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where
v Vv V.8 . Qu O
A — . n . HA nn + [ nn ] 30
nn |:g1n—lnvn gln—lnvngnn —y ] Mnn 0 —1 (30)
p4 _Vm _Vmgmn ] v |:an 0 ]
D= . N N +
" |: W Umn — EpnVnbin om0 1
(31)
. -V, —V,hy . [Qu ©
O, = ~Vn Vinfnk + Dk |: n
" |: _hi[kvn Ynk — hlrzlkvnhnk ! 0 -1
(32)
and the optimization variables are y,x and

Vo, Bomns Viier Uy Yk for all mym € N,k € K. Note that
the non-convex product terms ys;,;, (in Problem (21))
are not present in Problem (29). Hence, without the rank
constraints the Problem (29) is convex (even when y is
considered as a variable). Therefore, the relaxed prob-
lem can be efficiently solved using SDP solvers such as
SeDuMi [36] or SDPT3 [37].

Let us denote the optimal matrices V,, for Problem (29)
by V; for all n € N. Then a rank-one feasible solution for
Problem (29) can be achieved by eigenvalue decomposi-
tion as follows:

ei __
V., = )‘maxymaxYﬁax’

where Amax is the maximum eigenvalue and ymax repre-
sents the corresponding eigenvector of matrix V}. The
feasibility of V¢ is proved in Appendix 2. Since the matri-
ces Vfli are feasible for the perturbed Problem (29), the
corresponding objective value obtained by solving Prob-
lem (29) is a lower bound for Problem (15).

(33)

4.3 Initial upper bound

An upper bound for a maximization problem can be
found by relaxing a constraint of the original problem.
Specifically, here we relax the first constraint,

2

~ H
‘(gnn“f‘enn) Wy
y = nenN,
N 1
m=

. H_ |? ’
(gmn + emn) Wm‘ + (73
m#£n

(34)

in Problem (12). Since the interference from the mth sec-
ondary TX to the nth secondary RX is a non-negative
entity, i.e., | (&mun + €mn) 'Wu|> > 0, the constraint (34) can
be relaxed as

2

, neN.

‘(gnn + enn)H Wi

2
Oy

y < (35)
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Now the perturbed Problem (12) with the relaxed con-
straint can be written as

maximize y

2

’(gnn + enn)H Wn

) , Ve €EmneN
Gn

subjectto y <

2

N /e \H
anl hy +e) wu| <In,

Ve € Egone N ke K

neN,

”wn”% < Pmaxs
(36)

where the optimization variables are y and wy, e, €, for
neN,kek.

Following a similar approach as in sections 3.2 and 4.1,
by introducing variables W, = wnwln" y e = |(flnk +
&0 w,|? and using the S-lemma to recast the quadratic
constraints, Problem (36) can be reformulated as

maximize y

subjectto A, >0, nelN,
Ou>0, neN,kek
SN Lk <Im kekK
>0, neN (37)
V>0, neN,kek
W,>=0, neN
Trace (W,) < Pmax, HEN
Rank(W,) =1, nelN,
where
e P ) L Y
(38)
- W —W,h, _ 0
O = [_ﬁ;fk\?«n - ﬁ;fzv;iﬁnk]””" R
(39)

and the optimization variables are y and W, fLyn, Vg Lk
for all # € N,k e K. Without the rank constraints,
Problem (37) can be efficiently solved using existing SDP
solvers. Note that the non-convex product terms y s, (in
Problem (21)) are not present in Problem (37). Hence,
without the rank constraints, Problem (37) is convex (even
when we consider y as a variable). Further, the optimal
solution of Problem (37) gives an upper bound for Prob-
lem (15). It should be mentioned that we solve a relaxed
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version of Problem (37). Hence, the optimal solution of
the relaxed problem also provides an upper bound for
Problem (15).

4.4 Extension to a more general objective function
Consider the resource allocation problem where the CRN
is required to optimize the transmit beamforming vectors
to maximize the worst weighted SINR or, more gener-
ally the worst among a set of increasing functions of each
SINR. Let f,, be an increasing function of SINR,. Since
transmit power and primary interference constraints are
inherited in underlay CRNs, for a bounded uncertainty in
the channel errors, this problem can be mathematically
expressedd as

maximize min,—, ninfe,, eg,,.meN fu (SINRy,)
subject to SUPG  c£, e’ Iy <Ly, kek
||Wn||2 <Pnax ne N,
(40)

where the optimization variables are wy, e, e, for
nmeN,kek.

The function f, is an increasing function of SINR,;
hence,

€mn€Emn,m €n €Empn,ME

inf fu (SINR,) = f, ( inf SINRn) .
eN

Therefore, the optimization Problem (40) can be equiva-
lently written in the hypograph form (see p. 134 in [31]) as

maximize y
2

S H
‘(gnn + enn) Wy
Z%:l |(gmn + emn)me|2 + GV% ’

m#n
Veun € Emny neN
2

< I, Vénk € 8nk’

subject to £, 1(y) <

. _\H
(hnk + enk) Wn

neN,

N
Zn:l

ke K ”wn”% < Pmax

(41)

where the optimization variables are y and wy, €, €«
for ,m € N,k € K. Problem (41) has the similar
format as Problem (12), the only difference is that y in
the first constraint of Problem (12) should be replaced
by the evaluated function value £, 1(y) in Problem (41).
Hence, following the similar steps as in sections 3.2 and
4, the Problem P;(y) can be modified according to the
new constraint. Then Problem (40) can be solved opti-
mally by directly applying Algorithm 1 with the modified
Problem P (y) to check the feasibility.
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5 Results and discussion

Numerical simulations are performed to validate and
assess the performance of the proposed beamforming
scheme. We consider a network model where two sec-
ondary TX-RX pairs (N = 2) coexist in a primary
network with two primary RXs (K = 2). We assume
that each secondary TX is equipped with four anten-
nas (n; = 4). Further, all complex entries of the esti-
mated channel vectors are independent and identically
distributed (i.i.d) according to CA/(0, 1). We assume that
Qu = Qu = (/DL for all um € N,k € K.
Thus, an estimation error can take any value inside a ball
with radius &. We use a truncated normal distribution
TCN (0,62/9ns, —& //2n;, +& /+/21;) (see [33], Chap. 4
in [34]) to generate each complex entry of the estimation
errors. Additionally, we assume that 0> = o2 = 1 for
all # € N and the maximum available transmit power of
a secondary TX is Ppax = 1002. To maintain the QoS
requirements for the primary network, we limit the max-
imum allowable interference power from the secondary
network in the order of the received noise power, i.e.,
I = o02(=1).

We present results for both robust and non-robust
beamforming designs for comparison. The robust beam-
forming vectors are acquired directly following Algo-
rithm 1 with tolerance ¢ = 1072. For the non-robust
case, the beamforming vectors are obtained based only on
the estimated channels and ignoring the uncertainty. We
follow the Algorithm 1 except that at step 2, we replace
Problem (23) by the following one:

minimize Zﬁlzl Trace (W)

subject to g]r;[rzwngnn =Yy ( %:1 g%nwmgmn + 63) ’

m#n

neN 22[:1 BZ(Wnﬁnk —Imh <0, kek

Trace (W,) — Pnax <0, neN

W, =0 nelkN,

(42)

where the optimization variables are W, for all n € N.
The MATLAB toolbox CVX [38] is used to solve all the
optimization problems, and there, the SDPs are solved
using the SeDuMi solver.

Figure 2 displays the empirical cumulative density func-
tion (CDF) of the interference due to the secondary net-
work at first primary RX for different values of £ (ie.,
radius of the uncertainty ball). The empirical CDF is cal-
culated over a set of 10,000 different channel errors inside
the given uncertainty region for a fixed estimated chan-
nel realization. As expected, the non-robust design can
not guarantee the maximum interference threshold even
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Figure 2 CDF of the interference due to the secondary network
at a primary RX. Empirical CDF of the interference due to the
secondary network at first primary RX for different values of &. A
network with parameters n; = 4, N = 2 and K = 2 is considered. The
interference threshold for the primary network is 1 (0 dB). The
empirical CDF is calculated over different channel errors for a fixed

estimated channel realization.

when the CSI uncertainties are relatively small. Specifi-
cally, with non-robust design, around 52%, 55%, 57%, 59%
and 61% of the simulated channel errors exceed the inter-
ference threshold of the primary network (I, = 1) for
uncertainty ball radius of 0.1,0.2,0.3,0.4 and 0.5, respec-
tively. On the other hand, for the proposed robust algo-
rithm, the interference to the primary RX is always less
than the threshold level®, which guarantees the required
QoS of the primary network.

In Figure 3, we plot the empirical CDF of the interfer-
ence due to the secondary network at first primary RX

1
09 b
~ 08F b
3 —&=0.1 (Robust) S £=0.1,0.2,0.3,0.4,0.5
2 - --£=0.2 (Robust) S ™~
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Interference power at primary RX 1 [dB]

Figure 3 CDF of the interference due to the secondary network
at a primary RX. Empirical CDF of the interference due to the
secondary network at first primary RX for different values of &. A
network with parameters ny = 4, N = 2 and K = 2 is considered. The
interference threshold for the primary network is 1 (0 dB). The
empirical CDF is calculated over different channel errors and over
multiple estimated channel realizations.
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for different values of £ averaged over different estimated
channel realizations. We generated 1,000 distinct esti-
mated channel realizations and for each of them, 10,000
different channel errors are generated to calculate the
empirical CDF. It can be seen that for more than half of
the simulated cases, regardless the level of uncertainty, the
non-robust solution exceeds the maximum interference
threshold. On the other hand, the robust design guaran-
tees the interference to the primary RX remain below the
interference threshold (I;;, = 1) for all simulated cases.
Moreover, it can be observed from Figures 2 and 3 that
the variation in interference power becomes large with
&. When the uncertainty region is small (i.e., small &),
the beamformer can be designed to direct relatively sharp
nulls towards primary RXs for all possible channel values
within the uncertainty region. As the radius £ increases,
the range of possible channel values inside the uncer-
tainty region increases as well and causes the nulls to
become less focused. Hence, the interference power varies
in a wider range for different channel errors inside the
uncertainty region.

Figure 4 shows the empirical CDF of the received SINR
at the second secondary RX for different values of &
(i.e., the radius of uncertainty balls). We plot the SINR
at the second secondary RX since it gives the minimum
SINR for the considered value of the channel estimate.
As in Figure 2, the empirical CDF is taken over 10,000
possible channel errors inside the uncertainty region.
When the uncertainty region is small, the beamformer
can be designed to direct relatively sharp nulls towards
the primary RXs for all possible channel values within the
uncertainty region. Hence, higher transmit powers can be
allocated to the sharp beams towards the secondary RXs
resulting in higher SINR values for smaller £ values. The

1 .
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08f : 1
5 07t : |
5 : !
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Z oal K ! —&=01(Robust) |
2 : : - --E= 02(Robust)
2 osl ; : . £=03(Robust) |
=" : : ——&= 04(Robust)
02} ! B ——&=05(Robust) |
’ : : Non-robust design
01t ! ; i
0 L L L " \k L L
0 2 4 6 8 10 12 14 16
SINR at secondary RX 2 [dB]
Figure 4 CDF of the received SINR at a secondary RX. Empirical
CDF of the received SINR at second secondary RX for different values
of &. A network with parameters n; = 4,N =2and K = 2is
considered. The empirical CDF is calculated over different channel
errors for a fixed estimated channel realization.
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ability of the secondary TXs to focus sharp beams towards
the corresponding secondary RXs while simultaneously
directing nulls towards other secondary and primary RXs
reduces as the channel knowledge decreases (i.e., when
& increases). Hence, the mean SINR reduces with the
increase in the radius of uncertainty balls.

Figure 5 displays the empirical CDF of the received
SINR at a specific secondary RX for different values of &,
averaged over multiple estimated channels. As in Figure 3,
we produced 1,000 different estimated channels, and for
each of them, 10,000 different channel errors are gener-
ated to calculate the empirical CDFE. We can observe that
the SINR performance of the robust design with £ = 0.1
is similar to the SINR performance of the non-robust
design which is not able to guarantee the interference
threshold. Thus, in average, our robust design provides a
similar SINR performance for the secondary network as
the non-robust design without exceeding the interference
threshold of the primary network. Further, we notice a
reduction in SINR when the uncertainty region increases.
This is mainly due to the fact that the transmitter is not
able to use all the available transmit power when the
uncertainty region is large. This effect can be clearly seen
in the next figure.

Figure 6 presents the transmit power variation at a
specific secondary TX with & (i.e., the radius of uncer-
tainty balls). This figure is drawn using the same setup
as in Figures 3 and 5. When the uncertainty region is
small, since the nulls towards the primary RXs are sharp,
higher transmit powers can be allocated to secondary TXs
to achieve higher SINR values at secondary RXs. As &
decreases from 0.3 to 0, we notice a rapid increase in the
transmit power. On the other hand, when the uncertainty
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Figure 5 CDF of the received SINR at a secondary RX. Empirical

CDF of the received SINR at a secondary RX for different values of &. A

network with parameters n; = 4, N = 2 and K = 2 is considered. The

empirical CDF is calculated over different channel errors and over

multiple estimated channel realizations.
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Transmit power
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Figure 6 Transmit power variation at a secondary TX. The
transmit power variation at a secondary TX with respect to the radius
of the uncertainty balls (§). A network with parameters n; = 4,N = 2
and K = 2 is considered. Transmit power is averaged over 1,000

estimated channel realizations.

region is large, the beamformer design cannot focus sharp
nulls towards primary RXs for all possible channel val-
ues in the uncertainty region. Therefore, the transmitter
has to decrease its transmit power to be able to guarantee
the interference threshold for all possible channel values
in the uncertainty region. Hence, for & values greater than
0.5, the transmit power has become small.

Next, we illustrate the gain pattern variation of the
beamforming vectors designed from non-robust and
robust designs for different uncertainty regions (i.e., dif-
ferent values of &). For illustration purposes, we consider
a simple network model where a single secondary TX-RX
pair (N = 1) coexist in a primary network with three
primary RXs (K = 3; see Figure 7). Further, we use a sim-
ple line-of-sight model for the channels since the physical
meaning of a beamforming pattern in a rich scattering
environment is difficult to visualize with respect to the
locations of the receivers. We model the estimated chan-
nel vector from the secondary TX to secondary RX as
g1 = [g),...g....g"]" , where the channel from
antenna element i to secondary RX is given by [17]

1
exp(2mj/A(x; cos O + y;sinf)), (43)
t

i
&1 N
where (x;,y;) is the location of the ith antenna element,
0 is the direction of the RX with respect to the direction
of the antenna array and j = +/—1. Similarly, we model
the estimated channel vector from the secondary TX to

the kth primary RX as hjy = [h}k,...,hik,...,h'fli]T,
where hik = Jl»ﬂt exp (Zﬂj/k(xi cos 0 + y;sin 9)) gives
the channel from antenna element i to the kth primary
RX. We assume that the secondary TX is equipped with

n; = 10 antennas arranged in a linear array and spaced
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Figure 7 Network model for gain pattern comparison. Sample
network. Secondary receiver at direction 6 = 45° and primary
receivers at directions @ = 60°, 0 = 90°and 0 = 120°. Network with
parameters n; = 10,N = 1 and K = 3. Antennas lie in a linear array
A/2 apart, centered at transmitter and along the direction 8 = 0°.

half-a-wavelength (A/2) apart. Further, the antenna array
is centered at the transmitter and lies along the direction
0 = 0°. The secondary RX is located at direction 6 = 45°
and the primary RXs are located at directions 6§ = 60°,
6 =90°and 6 = 120°.

Figure 8 shows the gain patterns for the non-robust
beamforming vector designed with estimated chan-
nels and robust beamforming vectors designed with
Algorithm 1. As expected, the gain reduces with &, reduc-
ing the SINR at the secondary RX since the TX have
to decrease its transmit power to be able to guarantee
the interference threshold for primary RXs. Further, as

20

—— Non-robust design
- - =£=0.4 (Robust)
== '£=0.5 (Robust)

Gain (dB)

|

@

o
bosssmamses e anszE s
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Angle of transmission (degrees)
Figure 8 Gain pattern comparison. Gain pattern comparison for
robust and non-robust beamforming designs. Network with
parameters n; = 10,N = 1 and K = 3. Antennas lie in a linear array
A/2 apart, centered at a transmitter and along the direction 6 = 0°.
Vertical dotted lines represent the directional location of the receivers
(secondary receiver 6 = 45°, primary receivers 6 = 60°,90°, 120°).
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& increases, we notice that the nulls around the angles
at which the primary RXs are located become wider in
order to protect the primary system’. Therefore, Figure 8
validates the previous observations that as & increases
the transmit power decreases reducing the SINR at sec-
ondary RXs and nulls become wider around the angles
at which the primary RXs are located to protect the pri-
mary system, explaining the trade-off between secondary
performance and the protection for the primary system.

6 Conclusion

We have proposed a method to design the optimal trans-
mit beamformer vectors for an underlay cognitive radio
network, which maximizes the minimum received SINRs
of the cognitive users subject to primary users’ interfer-
ence constraints. We have considered that the network
controller has imperfect CSI knowledge in all relevant
channels, and bounded ellipsoidal uncertainty model has
been used to model the CSI errors. First, we have con-
verted this highly untractable non-convex problem into
a convex problem by means of semidefinite relaxation.
Then, an iterative algorithm has been proposed based
on the bisection method to solve the relaxed problem.
Furthermore, we have provided a method to obtain the
optimal solution for the original problem (i.e., non-relaxed
problem) by introducing a properly chosen objective func-
tion into the iterative algorithm. Finally, upper and lower
bounds for the optimal value of the considered problem
have been proposed, which provides better initialization
for the algorithm. The simulation results show that the
performance of the primary network is guaranteed by
the proposed algorithm for any channel error within the
considered uncertainty region. Furthermore, results show
that for smaller uncertainty regions, the SINR perfor-
mance of the proposed robust design is similar to that of
the non-robust design.

Endnotes

*We can apply the mathematical model of the proposed
network to more general network scenarios. As an
example, we can consider a multi-cell network where the
transmitters are base stations (BSs) equipped with
multiple antennas that communicate with the single
antenna mobile stations (MSs) using time-division-
multiple-access. A BS transmits signals to a single MS at
a given time instant and has per-transmission power
constraints. Further, the multi-cell network is subject to
some interference temperature constraints.

bWe assume that the equivalent channel and the power
of interference are perfectly known at each receiver.

“Note that the infimum and the supremum in
Problem (11) implies that the solution should satisfy for
all channel errors inside the given uncertainty region.
Therefore, we have written them equivalently as
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Ve, € Emn and Ve, € &, in the first and second
constraints of Problem (12), respectively. We can see that
the variables y and wy,, €, €« forn,m € N, k € K are
optimal for Problem (12) if and only if wy;, €., €, for
n,m € N,k € K are optimal for Problem (11) and the
first inequality constraint of Problem (12) holds with
equality. Hence, the optimal solution of Problem (12) is
equivalent to that of Problem (11).

dNote that in the worst weighted SINR case the
increasing functions f;,(SINR,) = ¢,SINR, for all n € N,
where ¢, is an arbitrary nonnegative weight associated
with nth secondary RX. Weights ¢, can be used to
balance between user fairness and total throughput.

¢Note that in worst-case robust optimization, the
beamforming vectors are designed to keep interference
to the primary RXs below the threshold for all possible
channel errors (irrespective of their probability of
occurrence) inside the uncertainty region. In the
simulations, each complex entry of the channel error
vector is generated using a truncated Gaussian
distribution CN (0, ¢2) truncated at —3¢ and 3¢ (roughly
speaking, this corresponds to 1% error outage), where
¢ = £/34/2n; denotes the standard deviation. The larger
value of £ implies that the actual channel vector can be
very far from the estimated value of the channel. Since in
the considered simulation model, the probability of
occurrence of the channel vectors which are far from the
estimated value is small the probability of achieving
interference close to the threshold is small.

fNote that in the non-robust design, there is no null
present at & = 90°. This is due to the fact that the
beamforming design assumes perfect CSI at the
secondary TX. Since the secondary TX knows the exact
channel to the primary RX, even with this gain, the
secondary TX can guarantee that the interference to the
primary RX for that specific estimated channel is below
the interference threshold.

Appendices

Appendix 1

Proof of proposition 1

Let us rewrite Problem (23) as follows:

minimize 22121 Trace (W)
subject to

Ay (Wn’ Y Knns {Smn}m;én) >0, neN W,
D00 Wi, s Sn) = 0,m e N\{uh,ne N ¥,
Ok Wi, Vi Luk) =0, nmeN,kek Ak
W,>=0, nelN Z,
Trace (Wy) < Pmax, 1€ N Bn
SN Lk <Im kek o
Wmn =0, nmmeN Nimn
vk =0, neN,kek Tukr
(44)
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where the optimization variables are Wy, Ly, Viuk> S Ink
for all ,m € N,k € K for a fixed y value. The corre-
sponding dual variables for the constraints are shown in
the rightmost column of Problem (44).

Let £(-) define the Lagrangian of Problem (44) and

v, — [A”” "””} >0 neN, (45)

H
bnn

where A, € H", b,,;, € C™ and ¢, is a non-negative real
value according to the properties of positive semidefinite
matrices. Using the Karush-Kuhn-Tucker (KKT) condi-
tions, gradient (V), complimentary slackness (C.S.), pri-
mal feasibility (P.F.) and dual feasibility (D.F.), we can write
the following:

Vﬁ\x/; =0=7Z)=

N
(1+8)1 Z

+i[

k=1

1 I
- T 89, [g,,] ne N
(46)
VL =0= Trace (Q,,,,A;n) -yt M, =0 neN
(47)
CSwsro = ZIWE=0, neN (48)
C.S.A;nzo = A:m‘l’:m =0, ne N (49)
P.F,. = Wy >0, mymeN  (50)
PFg: = oy >0, nmeN (51)
DF.z: = Z,>0, neN (52
D.F.y; = v >0, mumeN  (53)
DF.,: = =0, neN,keK (54)
DF. = M >0 nmmeN  (55)
D.F.g = B:>0, neN. (56)

Further, we can observe for Problem (44) that the target
minimum SINR

y>0= W;#0, nel. (57)
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Now, we write the first-three term of (46) as

I
Z (1+IB nt+Z ny gnm |: Vlt:|
Brim
i (58)
+ Z [ n nk ] |:hH i|
From (53), (54) and (56), we can say that
Z;, -~ 0= Rank(Z}) =mn,, (59)
since Z* should be full ranked. Moreover, if W%, = 0,

(46) and (59) suggest that Z» > 0. From (48), this leads

to W7 = 0 which contradicts with (57). Therefore, the
condition

m#0, nelN (60)
should be satisfied.

The rest of the proof follows from the proof of propo-
sition 1 in [18] and we provide the details for the com-
pleteness of the paper. First, we prove that W7, has rank
one provided that ¥}, has rank one. Then we prove that
indeed W7, has rank one.

Assume that ¥},  has rank one and therefore it can
be written as WY, = wv/, where v e C™"tlL
Then the last term in (46) can be written as Z;‘, =
1 [Im Sun ] it [I,,t Sun ]H, which has also rank one. So

1%
we can write

Rank (Z}) = Rank (Z; + Z;)
< Rank (Z}) + Rank (2;)
= n; —1 <Rank(Z}).

(61)

Using Sylvester’s rank inequality (see p. 211 in [39]) on
(48) and with the help of (61), we can write following for
rank of W7 :

Rank(W},) < n;+Rank (Z}W})—Rank (Z}) < 1. (62)
It follows from (57) and (62) that
Rank (W) = 1.

What remains is to prove that ¥} indeed has rank one.
First, we will show that ¢}, > 0 and u}, > 0. From (47)
and (55), we can write

Trace (QunA},) < ¢, neN. (64)

Since Qun > 0, by (45), (60) and (64), it is obvious that
¢, > 0. We can see from (18) that when p,, = 0, Ay, is

not positive semidefinte because

(=&t 11 A (W v i (S5 i) [ _%m}

(63)

(65)
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This implies that 1, # 0 and hence from (50), we can say
that @y, > 0.

By substituting (18) and (45) into (49), the following two
equalities can be easily obtained:

(WZ + H:,nan) A nt annnb*];,[ =0, (66)

(W, + 145, Qun) b, + Wigunc),, = 0. (67)

Since ¢,z > 0, post-multiplying (67) by —bH ./ Cnn and
adding to (66) result in

(W5, + 143, Qun) (A,

The term (W}, + 1, Qun) > 0, since u},, > 0 and Q,;, >
0, then (68) implies that A%, = b* b ! /c* . Hence, (45)
transforms to

0= [P V[0, e

*.
b}’l}’l CVIVI

b}, bt cr ) = 0. (68)

(69)

which is indeed a rank-one matrix. This concludes the
proof.

Appendix 2

Proof of feasibility of eigenvalue approximation

Consider a positive definite matrix Y € H with r =
Rank(Y). Then according to the eigenvalue decomposi-
tion, we can write

r
Y=yl
i=1

where A1 > Xy > ... > A, > O are the eigenvalues and
Y1, -..,yr € C!are the respective eigenvectors of Y. Since
Y is positive semidefinite, for any random vector z € c!,

(70)

'Yz > A1zHy1y'1L[z > 0. (71)
Here, the first inequality is achieved from the fact that
all the eigenvalues are non-negative and the definition of
positive semidefinite matrix gives the second inequality.
Further, consider any vector z € C! where the elements
are denoted by z3, . . ., z, € C. Then, from the definition

Zzle > 0.

Let the solution of relaxed SDP (29) be given by y*, x*
and Vi, fin,, Ve uh, vy for all m,m € N,k € K. Now,
from the perturbed Problem (28), we can say that for the

Trace zz (72)
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matrices V}, for all n € N there exists a y* > 0 such that
the following conditions are satisfied:

(@',’;In + e]};ln)vz (gnn“‘enn) = )/*; Vely;Inanenn <1, neN

(73a)
N
wh,+olx <1, neN (73b)
m=1
m#£n
(gﬁn + e]y;{[n) V:n (gmn + emn) = U:,,n; Vefnanmnemn <1
mmeN (73c)
N
Sy <o, ke K (73d)
n=1

(IAIZ( + éﬂ) A\ (f‘nk + énk> <V Ve Queu <1,
nelN, kek
nelN.

(73e)

Tr (V};) < Prmaxx”, (73f)

n
Therefore, in order to show that the eigenvalue approx-
imation is feasible, we should be able to find a y > 0
for the approximated beamforming vectors such that all
above inequalities are satisfied.

Let the rank of V}, be r, eigenvalues and the correspond-
ing eigenvectors be A1, > Ay, >,...,> A,y > 0and
Y11 Y25 - - -» Yru T€Spectively for all n € N. Then, using
the eigenvalue decomposition, the trace of the beamform-
ing matrix can be written as

r
Tr (V;) = Z Tr (A.j,nyj,n ]',n) > Tr (Al,nyl,nyll_{n) ,

j=1
(74)

where the inequality is obtained using (72) and the fact
that all eigenvalues are non-negative. Therefore, it can be
easily shown from (74) that the condition (73f) is satisfied
for the eigenvalue approximation.

Then from (71), for any error vector €, we can say that,

<ﬁ]n—[k + éi;() Al,nYl,nY{_{n <flnk + énk)
(75)

= <ﬁ1,;1/< + él;;lk) VZ (ﬁnk + énk) .

This implies that the condition (73e) is satisfied with the
approximation. Further, the same method can be applied
to prove that the condition (73c) is also satisfied.
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According to (71), in order to satisfy the condition (73a),
the beamforming matrix V; should be rank one for all
n € N, i.e.,, when the first inequality of (71) becomes an
equality. But from the second inequality of (71), we can say
that for any error vector e, there exists some y"*%, such
that

*

Yy = (ﬁfn + e{jn) }Ll,nYI,nY{-{n (gnn + enn) = )/“ew >0,

neN.
(76)

This concludes the proof and shows that we can find a
ye¥ > 0 for the eigenvalue approximation such that the
problem is feasible, but which will be a lower bound for
the solution.

Competing interests
The authors declare that they have no competing interests.

Author details
! Centre for Wireless Communications, University of Oulu, P.O. Box 4500, Oulu
90014, Finland. 2University of Maryland, College Park, MD 20742, USA.

Received: 06 August 2013 Accepted: 03 March 2014
Published: 12 March 2014

References

1. FCC, Spectrum policy task force report. Tech. Rep. TR 02-155 (2002).
http://www.fcc.gov/sptf/reports.html. Accessed 15 March 2013

2. JMitola lll, Cognitive radio: an integrated agent architecture for software
defined radio. PhD thesis, Royal Institute of Technology, Sweden, 2000

3. SHaykin, Cognitive radio: brain-empowered wireless communications.
|EEE J. Selected Areas Commun. 23(2), 201-220 (2005)

4. AGoldsmith, SA Jafar, I Maric, S Srinivasa, Breaking spectrum gridlock with
cognitive radios: an information theoretic perspective. Proc. IEEE 97(5),
894-914 (2009)

5. SJKim, GB Giannakis, Optimal resource allocation for MIMO ad hoc
cognitive radio networks, in Proceedings of the Annual Allerton Conference
on Communications, Control, and Computing, 23-26 September 2008
(Monticello, IL, 2008), pp. 39-45

6. G Scutari, DP Palomar, S Barbarossa, Competitive optimization of
cognitive radio MIMO systems via game theory, in Proceedings of the
International Conference on Game Theory for Networks (Istanbul, Turkey,
2009), pp. 452-461

7. Hlslam, YC Liang, A Hoang, Joint power control and beamforming for
cognitive radio networks. IEEE Trans. Wireless Commun. 7(7), 2415-2419
(2008)

8. L Zhang, R Zhang, YC Liang, Y Xin, HV Poor, On Gaussian MIMO BC-MAC
duality with multiple transmit covariance constraints. IEEE Trans. Inf.
Theory 58(4), 2064-2078 (2012)

9. L Zhang, Y Xin, YC Liang, Weighted sum rate optimization for cognitive
radio MIMO broadcast channels. IEEE Trans. Wireless Commun. 8(6),
2950-2959 (2009)

10. KYang, Y Wu, J Huang, X Wang, S Verdu, Distributed robust optimization
for communication networks, in Proceedings of the IEEE International
Conference on Computer Communications, 15-17 April 2008 (Phoenix, AZ,
2008), pp. 1157-1165

11. M Shenouda, TN Davidson, On the design of linear transceivers for
multiuser systems with channel uncertainty. IEEE J. Selected Areas
Commun. 26(6), 1015-1024 (2008)

12. E Song, Q Shi, M Sanjabi, R Sun, ZQ Luo, Robust SINR-constrained MISO
downlink beamforming: when is semidefinite programming relaxation
tight?, in Proceedings of the IEEE International Conference on Acoustics,


http://www.fcc.gov/sptf/reports.html

Wijewardhana et al. EURASIP Journal on Wireless Communications and Networking 2014, 2014:37 Page 16 of 16
http://jwcn.eurasipjournals.com/content/2014/1/37

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31

32.

33

34.

35.

36.

Speech, and Signal Processing, 22-27 May 2011 (Prague, Czech Republic,
2011), pp. 3096-3099

SJKim, A Magnani, A Mutapcic, SP Boyd, ZQ Luo, Robust beamforming
via worst-case SINR maximization. [EEE Trans. Signal Process. 56(4),
1539-1547 (2008)

RG Lorenz, SP Boyd, Robust minimum variance beamforming. IEEE Trans.
Signal Process. 53(5), 1684-1696 (2005)

E Bjornson, G Zheng, M Bengtsson, B Ottersten, Robust monotonic
optimization framework for Multicell MISO systems. IEEE Trans. Signal
Process. 60(5), 2508-2523 (2012)

E Bjornson, E Jorswieck, Optimal resource allocation in coordinated
multi-cell systems. Foundations Trends Commun. Inf. Theory 9(2-3),
111-381 (2013)

A Mutapcic, SJ Kim, S Boyd, A Tractable Method for Robust Downlink
Beamforming in Wireless Communications, in Proceedings of the Annual
Asilomar Conference on Signals, Systems and Computers, 47 November
2007 (Pacific Grove, CA, 2007), pp. 1224-1228

C Shen, TH Chang, KY Wang, Z Qiu, CY Chi, Distributed robust multicell
coordinated beamforming with imperfect CSI: an ADMM Approach. IEEE
Trans. Signal Process. 60(6), 2988-3003 (2012)

SA Vorobyov, AB Gershman, ZQ Luo, Robust adaptive beamforming using
worst-case performance optimization: a solution to the signal mismatch
problem. IEEE Trans. Signal Process. 51(2), 313-324 (2003)

F Wang, W Wang, Robust beamforming and power control for multiuser
cognitive radio network, in Proceedings of the IEEE Global
Telecommunication Conference, 6-10 December 2010 (Miami, FL, 2010),
pp. 1-5

G Zheng, KK Wong, B Ottersten, Robust cognitive beamforming with
bounded channel uncertainties. IEEE Trans. Signal Process. 57(12),
4871-4881 (2009)

MF Hanif, PJ Smith, M Alouini, SINR balancing in the downlink of cognitive
radio networks with imperfect channel knowledge, in Proceedings of the
IEEE International Conference on Cognitive Radio Oriented Wireless Networks
and Communications, 9-11 June 2010 (Cannes, France, 2010), pp. 1-5

I Wajid, M Pesavento, YC Eldar, A Gershman, Robust downlink
beamforming for cognitive radio networks, in Proceedings of the IEEE
Global Telecommunication Conference, 6-10 December 2010 (Miami, FL,
2010), pp. 1-5

EA Gharavol, Y Liang, K Mouthaan, Robust linear transceiver design in
MIMO ad hoc cognitive radio networks with imperfect channel state
information. IEEE Trans. Wireless Commun. 10(5), 1448-1457 (2011)

Y Huang, Q Li, WK Ma, S Zhang, Robust multicast beamforming for
spectrum sharing-based cognitive radios. IEEE Trans. Signal Process. 60,
527-533 (2012)

Y Zhang, ED Anese, GB Giannakis, Distributed optimal beamformers for
cognitive radios robust to channel uncertainties. IEEE Trans. Signal
Process. 60(12), 6495-6508 (2012)

L Zhang, YC Liang, Y Xin, HV Poor, Robust cognitive beamforming with
partial channel state information. IEEE Trans. Wireless Commun. 8(8),
4143-4153 (2009)

G Zheng, S Ma, KK Wong, TS Ng, Robust beamforming in cognitive radio.
|EEE Trans. Wireless Commun. 9(2), 570-576 (2010)

ZQ Luo, WK Ma, AMC So, Y Ye, S Zhang, Semidefinite relaxation of
quadratic optimization problems. IEEE Signal Process. Mag. 27(3), 20-34
(2010)

YJ Zhang, AMC So, Optimal spectrum sharing in MIMO cognitive radio
networks via semidefinite programming. IEEE J. Selected Areas Commun.
29(2), 362-373 (2011)

S Boyd, L Vandenberghe, Convex Optimization. (Cambridge University
Press, Cambridge, 2004)

UT Jénsson, A Lecture on the S-procedure (2001). http://www.math.kth.
se/~Ulfj/5B5746/Lecture.ps. Accessed 12 January 2013

CP Robert, Simulation of truncated normal variables. Springer J. Stat.
Comput. 5(2), 121-125 (1995)

DJ Olive, Applied robust statistics. Preprint M-02-006 (2008). http://
lagrange.math.siu.edu/Olive/ol-bookp.htm. Accessed 1 March 2013

M Botros, TN Davidson, Convex conic formulations of robust downlink
precoder designs with quality of service constraints. IEEE J. Selected Top.
Signal Process. 1(4), 714-724 (2007)

| Polik, SeDuMi (2010). http://sedumi.ie.lehigh.edu/. Accessed

25 January 2013

37. KCToh, MJTodd, RH Tutlnct, SDPT3 — A Matlab software package for
semidefinite programming, Version 1.3. Optimization Methods Softw.
11(1-4), 545-581 (1999)

38. CVXResearch |, CVX: Matlab Software for Disciplined Convex
Programming (2012). http://cvxr.com/cvx. Accessed 25 January 2013

39. CD Meyer, Matrix Analysis and Applied Linear Algebra. (Society for Industrial
and Applied Mathematics, Philadelphia, PA, 2000)

doi:10.1186/1687-1499-2014-37

Cite this article as: Wijewardhana et al.: A robust beamformer design for
underlay cognitive radio networks using worst case optimization. FURASIP
Journal on Wireless Communications and Networking 2014 2014:37.

Submit your manuscript to a SpringerOpen®
journal and benefit from:

» Convenient online submission

» Rigorous peer review

» Immediate publication on acceptance

» Open access: articles freely available online
» High visibility within the field

» Retaining the copyright to your article

Submit your next manuscript at » springeropen.com



http://www.math.kth.se/~ulfj/5B5746/Lecture.ps
http://www.math.kth.se/~ulfj/5B5746/Lecture.ps
http://lagrange.math.siu.edu/Olive/ol-bookp.htm
http://lagrange.math.siu.edu/Olive/ol-bookp.htm
http://sedumi.ie.lehigh.edu/
http://cvxr.com/cvx

	Abstract
	Keywords

	Introduction
	System model
	Network model
	Channel uncertainty model

	Problem formulation
	Problem formulation
	An equivalent reformulation

	Optimal beamformer design
	Optimal solution and iterative algorithm
	Initial lower bound
	Initial upper bound
	Extension to a more general objective function

	Results and discussion
	Conclusion
	Endnotes
	Competing interests
	Author details
	References

