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Abstract

Data aggregation is a very important method to conserve energy by eliminating the inherent redundancy of raw
data in wireless sensor networks (WSNs). In this article, we developed an automatic auto regressive-integrated
moving averagemodeling-based data aggregation scheme in WSNs. The main idea behind this scheme is to
decrease the number of transmitted data values between sensor nodes and aggregators by utilizing time series
prediction model. The proposed scheme can effectively save the precious battery energy of wireless sensor nodes
while keeping the predicted data values of aggregators within application-defined error threshold. We show
through experiments with real data that the predicted data values of our proposed scheme fit the real sensed data
values very well and fewer messages are transmitted between sensor nodes and aggregators than the native data
aggregation scheme. Furthermore, the characteristics of the proposed data aggregation scheme are also discussed
in this article.
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1. Introduction
Wireless sensor networks(WSNs) are made up of a mass
of spatially distributed autonomous sensor nodes, to
jointly monitor physical or environmental conditions,
such as temperature, humidity, vibration, pressure,
sound, motion, or pollutants [1]. These sensors could be
scattered randomly in harsh environments such as bat-
tlefields or deterministically placed at specified locations
to collect information from the environment. The typical
application fields of WSNs include industrial process
control, security and surveillance, traffic control, home
automation, environmental sensing, structural health
monitoring, etc. [2].
In WSNs, the communication cost of sensor node is

often several orders of magnitude higher than that of
computation. For instance, the transmission and reception
energy costs for one bit of MICAz node [3] and TelosB
node [4] are 600, 670, and 720, 810 nJ, respectively.
However, the computation energy costs for 1 bit of them
are only 3.5 and 1.2 nJ, respectively [5]. Therefore, data
aggregation scheme is often adopted as an effective way to
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save the precious battery energy of wireless sensor nodes by
eliminating the inherent redundancy in the raw data and
avoiding unnecessary data transmission. Moreover, data
aggregation scheme is also useful to extract application-
specified general information from the raw data which are
collected from the sensor nodes [6]. Hence, it is critical for
WSNs to support data aggregation schemes.
There have been plenty of researches in the recent

past on data aggregation schemes in WSNs. Typically,
the whole sensor network is partitioned into hierarchical
structure which consists of sink node, aggregators, and
ordinary sensors. The aggregator utilizes specific functions,
such as mean, min, or max, to aggregate incoming readings,
and only the aggregated results are forwarded to the sink.
Therefore, communication overhead can be reduced and
packet collision can be avoided by decreasing the amount
of transmitted messages. A comprehensive survey on data
aggregation schemes of WSN was presented in [7]. And we
will briefly review some representative data aggregation
schemes in Section 2.
In this article, we proposed an automatic auto regressive-

integrated moving average (ARIMA)modeling-based data
aggregation scheme which utilizes time series model to pre-
dict the data of next several periods at both ordinary sensor
nodes and aggregators based on the same amount of recent
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data values. The sensor node will build an appropriate time
series model to predict the future data based on recently
sensed data values and transmit the parameters of the
model to the aggregator automatically. When the predic-
tion error between the sensed value and predicted value is
within the application-specified error threshold, sensor
node will not transmit the sensed value to the aggregator.
In this case, the aggregator will regard the predicted value
as the sensed value in current data collection period. When
the prediction error is beyond the application-specified
error range, the sensor node will rebuild the time series
model and transmit the sensed value with the new model
to the aggregator in order to replace the incorrect predicted
value and unsuited prediction model. We show
through experiments that the predicted values of our
proposed scheme fit the real sensed values very well
and fewer messages are required to transmit between
sensor nodes and aggregators.
The remainder of this article is organized as follows.

In Section 2, we review some related works. In Section
3, we present our automatic ARIMA modeling-based
data aggregation scheme. In Section 4, we describe our
experiment settings and evaluation results. Finally, we
conclude this article and present future directions in the
Section 5.

2. Related works
There have been extensive researches in the field of data
aggregation scheme in WSNs. According to the underlying
route structure, the proposed data aggregation schemes can
be categorized into four classes: tree-based data aggregation
scheme, cluster-based data aggregation scheme, multi-path
data aggregation scheme, and hybrid data aggregation
scheme [8].
In tree-based data aggregation scheme, a spanning tree

rooted at the sink is constructed and data aggregation
operations proceed level-by-level from its leaves to its
root. However, the cost of maintaining such a dynamic
hierarchical tree structure is very high. In cluster-based
data aggregation scheme, sensor nodes are divided into
clusters and some special nodes, referred to as cluster
heads, are selected to aggregate data locally and forward
the result to the sink. In order to balance the energy cost
of data aggregation, cluster head is rotated within the
cluster. In multi-path data aggregation scheme, data
are sent over multiple paths and aggregation is
performed over these paths as packets move towards
the sink level-by-level. In this kind of scheme, higher
robustness is achieved by inducing extra overhead.
Hybrid data aggregation scheme tries to overcome the
problems of both the tree- and multi-path-based
structures by combining the best features of both
schemes. Hence, the whole network is organized into
regions implementing one of the above two schemes.
And the main difficulty is how to connect regions running
different aggregation schemes.
More specifically, Heinzelman et al. [9] proposed low-

energy adaptive clustering hierarchy (LEACH) to cluster
sensor nodes and let the cluster head to aggregate data.
The cluster head then transmits the aggregated results
directly to the sink. Lindsey and Raghavendra [10] pro-
posed power-efficient data gathering protocol for sensor
information systems (PEGASIS) which organizes all
sensors into a chain structure and rotates each node to
communicate with the sink. Both LEACH and PEGASIS
assume that each node in the network can reach the sink
directly in one hop, which limits the size of the network
for which they are applicable. Intanagonwiwat et al. [11]
proposed greedy incremental tree which establishes
an energy-efficient tree by attaching all sensors greed-
ily onto an energy-efficient path and prunes less
energy-efficient paths. However, it might lead to high
communication cost in moving event scenarios for
the reason of frequently pruning branches. Zhang and
Cao [12] proposed dynamic convoy tree-based collab-
oration which assumes that the distance to the event
is known to each sensor and uses the node near the
center of the event as the root to construct and
maintain the aggregation tree dynamically. However,
it involves heavy message exchanges which might
eliminate the benefit of aggregation in large-scale net-
works. Ding et al. [13] proposed energy-aware distrib-
uted aggregation tree scheme, which is based on
energy-aware distributed heuristic. It only relies on
local knowledge of the network topology and gives
higher chances to sensor node with higher residual
power to become a non-leaf tree node. Xu et al. [14]
proposed cooperative data aggregation (CDA) scheme
which is based on a cooperative communication mechan-
ism. The heuristic algorithm MCT for CDA and its dis-
tributed implementation DMCT were also proposed in
[14]. Recently, Villas et al. [15] proposed dYnamic and
scalablE tree Aware of Spatial correlatTion (YEAST)
scheme by exploiting the spatial correlation between sen-
sor nodes. The sensor nodes that detect the same event
are grouped in a correlated region and the group head is
selected and rotated in each round. On the other hand, a
structure-free real-time aggregation schemewas also pro-
posed by Yousefi et al. [16]. It combines temporal and
spatial convergence of packets using judiciously waiting
policy and real-time data-aware anycasting policy, respect-
ively, without explicit maintenance of a structure. Xiang
et al. [17] investigated the application of compressed sens-
ing theory to data collection in WSNs with the goal of
minimizing the network energy consumption through
joint routing and compressed aggregation. They proposed
mixed-integer programming scheme in [17] and dual-level
compressed aggregation scheme in [18].
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However, none of the above data aggregation
schemes have considered the problem of decreasing
the number of transmitted data values between
ordinary sensors and aggregator. They take for
granted that sensor nodes periodically report sensed
data values to the aggregator. However, the energy
cost of data transmission and reception between
them is not trivial. That is the focus and motivation
of this article.
3. Automatic ARIMA modeling-based data
aggregation scheme
Since the data generated by sensor nodes during
continuously monitoring periods usually are of high
temporal correlation, it indicates that there are
redundant data in the successive data sequence,
which causes unnecessary data transmission and
energy consumption. In this article, we only focus
on data transmission reduction and corresponding
energy saving between sensor nodes and aggregators.
Furthermore, we assume that a reliable message
retransmission mechanism is adopted in the under-
lying MAC layer to guarantee the ARIMA model
parameters and sensed data values could be delivered
to the aggregator successfully even after collusion
happens.
The automatic ARIMA modeling-based data aggrega-

tion scheme utilizes ARIMA model to predict the data
of next several periods at both ordinary sensors and
aggregators based on the same amount of recently
sensed values. The ordinary sensors and aggregators
work coordinately to reduce the amount of messages
transmitted within the network.
Figure 1 The ARIMA model construction steps.
3.1. The ARIMA model
Time series analysis uses historical data to develop a
model for the prediction of future data values. The
ARIMA model, also called Box–Jenkins model, is a
widely used prediction model for univariate time
series [19]. An ARIMA process can be divided into
three components: auto-regressive (AR), moving-
average (MA), and one-step differencing. The AR
component estimates the current sample as a linear-
weighted sum of previous samples; the MA compo-
nent captures relationship between prediction errors;
and the one-step differencing component captures
relationship between adjacent samples. In ARIMA,
the AR component captures the temporal correlation
in the time series by modeling a future value as a
function of a number of past values. The MA com-
ponent is modeled as a zero-mean, uncorrelated
Gaussian random variable (also referred to as white
noise) [20].
The ARIMA(p, d, q) model of time series {x1, x2, …} is
defined as

Φp Bð ÞΔdxt ¼ Θq Bð Þεt ð1Þ

where B is the backward shift operator, Δ is the back-
ward difference, d is the order of differencing, and Φp

and Θq are polynomials of order p and q, respectively.

Bxy ¼ xy−1 ð2Þ

Δ ¼ 1−B ð3Þ
ARIMA(p, d, q) model is the product of an AR part

AR(p):

Φp ¼ 1−φ1B−φ2B
2−⋯−φpB

p ð4Þ

an integrating part:

I dð Þ ¼ Δ−d ð5Þ
and a MA part MA(q):

Θq ¼ 1−θ1B−θ2B2−⋯−θqBq ð6Þ
The parameters Φ and Θ are chosen so that the zeros

of both polynomials lie outside the unit circle in order
to avoid generating unbounded processes.
The construction steps of ARIMA model are shown in

Figure 1. It includes the following five steps [21].



Table 1 Notations

Notation Meaning

{x1, x2, …, xn} Data series

{x1′, x2′, …, xn′} Stationary data series

I Differencing order

diff({x1, x2, …, xn},I) Execute I order of differencing operation to
{x1, x2, …, xn}

variance( ) Calculate variance

ε Application defined stationary threshold

δ Application defined BIC indicator threshold
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Step 1: Make time series stationary by differencing

The noise series being analyzed must be stationary.
When the variance of the noise series is non-stationary,
the data must be transformed by differencing the
original data to make the series stationary. If the
series exhibits a trend over time or seasonality, or if
some other non-stationary pattern exists, the series
should be differenced repeatedly until the time series
becomes stationary.

Step 2: Identify the model using ACF and PACF.

Candidate ARIMA models are identified once the time
series becomes stationary. After obtaining the autocor-
relation function (ACF) and partial autocorrelation func-
tion (PACF), multiple ARIMA models that closely fit the
data can be identified. The k-order autocorrelation coef-
ficient of time series {x1, x2, …} is defined as

rk ¼
∑T
t¼kþ1 xt−�xð Þ xt−k−�xð Þ

∑T
t¼1 xt−�xð Þ2 ð7Þ

The k-order partial autocorrelation coefficient of time
series {x1, x2, …} is defined as follows:

ϕk ¼
r1 k ¼ 1

rk−∑k−1
j¼1ϕjrk−j

1−∑k−1
j¼1ϕjrk−j

k > 1

8><
>: ð8Þ

Step 3: Estimate ARIMA model parameters.

After identifying a possible ARIMA model, we analyze
the time series and estimate the model parameters. If the
PACF of the differenced series displays a sharp cutoff and
the lag-1 autocorrelation is positive, then consider adding
one or more AR terms to the model. The lag beyond
which the PACF cuts off is the indicated number of AR
terms. If the ACF of the differenced series displays a sharp
cutoff and the lag-1 autocorrelation is negative, then
consider adding an MA term to the model. The lag be-
yond which the ACF cuts off is the indicated number of
MA terms.

Step 4: Diagnose ARIMA residual series.

This step employs a white noise test to check whether
the residual series from the model contains additional
information that might be of use to a more complex
model. In this case, the analysis must be continued by
repeating Steps 3 and 4 until an appropriate ARIMA
model is found which passes the white noise test.

Step 5: Choose the most suitable ARIMA model.

An ARIMA model with the smallest Akaike Informa-
tion Criterion (AIC) indicator or Bayesian Information
Criterion (BIC) indicator is selected as the most suitable
ARIMA model for analysis.
The AIC indicator and BIC indicators are calculated as

follows:

AIC ¼ −2l=T þ 2k=T ð9Þ

BIC ¼ −2l=T þ k logTð Þ=T ð10Þ

In Equations (9) and (10), l is the log likelihood, T is
the number of observations, k is the number of right-
hand side regressors, and ε̂′ε̂ in Equation (11) is the sum
of squared residuals.

l ¼ −
T
2

1þ log 2πð Þ þ log ε̂′ε̂=T
� �� � ð11Þ

The power of an ARIMA model resides in that it can
incorporate all the AR term, the integrated term, and
the moving average term together to model time series
with a wide variety of features such as trend by simply
adjusting the parameters of each term.



Li and Wang EURASIP Journal on Wireless Communications and Networking 2013, 2013:85 Page 5 of 13
http://jwcn.eurasipjournals.com/content/2013/1/85
3.2. Data aggregation scheme
The ordinary sensor node runs automatic ARIMA
modeling algorithm to build ARIMA prediction model
automatically. The notations used in the algorithm
are described in Table 1.
The automatic ARIMA modeling algorithm works as

follows:
Figure 2 Box search path.
In order to build ARIMA prediction model, sensor
node needs to collect recently sensed data series {x1,
x2, …, xn}. If {x1, x2, …, xn} is not stationary, we
should make the differencing adjustment to data
series until the difference between successive vari-
ances is smaller than the application-defined station-
ary threshold ε. Then, we fit ARIMA prediction
model according to the differenced data series {x1′,
x2′, …, xn′} using least square method. The iteration
of ARIMA model fitting process follows the Box
search path, which is shown in Figure 2. It can find
an appropriate fitting model using a relatively small
number of search times [22]. When the BIC indicator
of an ARIMA model is smaller than the application-
defined BIC threshold δ and the corresponding Ljung
Box white noise test of fit residual passes, the iter-
ation of ARIMA model fitting process will stop. In
other words, an appropriate ARIMA prediction model
has been built. Here, we choose BIC indicator over
AIC indicator for the reason that BIC indicator is
more consistent and penalizes free parameters more
strongly than AIC indicator.
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The automatic ARIMA modeling-based data aggregation
scheme works as follows:
First of all, the ordinary sensor node runs automatic
ARIMA modeling algorithm to build an appropriate
ARIMA prediction model. It then sends the ARIMA
model parameters to aggregator. After that, it calculates
the predicted value according to ARIMA model and
compares the sensed value with the predicted value. If the
difference between them is less than the predefined
error threshold, the sensor node will store the predicted
value into historical data queue. Otherwise, it will store
the sensed value into historical data queue and send the
sensed value to aggregator at the same time. When the
predicted value is beyond the fault tolerant range of the
sensed value, the AIRMA model will be rebuilt and corre-
sponding ARIMA model parameters of aggregator will be
refreshed again.
The aggregator listens on the wireless channel to
retrieve ARIMA model parameters and sensed values
from ordinary sensor node. If the aggregator does not
receive any data from sensor node after a predefined
periodical data collection time, it means the difference
between the sensed value and predicted value is within
the acceptable error range. Then the aggregator will
calculate the predicted value according to ARIMA
model using historical data. Otherwise, it will store the
received sensed value into historical data queue and
prepare to update the ARIMA model parameters. The
periodical data collection time should be selected
carefully to ensure it is enough to deliver the message
from sensor node to the aggregator. Meanwhile, reliable
message retransmission mechanism should be adopted



Figure 3 The interactive process of the proposed scheme.

Li and Wang EURASIP Journal on Wireless Communications and Networking 2013, 2013:85 Page 7 of 13
http://jwcn.eurasipjournals.com/content/2013/1/85
in the underlying MAC layer to guarantee the sensed
value could be delivered to aggregator even after collusion
happens.
The detailed interactive process of automatic ARIMA

modeling-based data aggregation scheme is shown in
Figure 3. The ordinary sensor node and aggregator work
coordinately to decrease the number of transmitted
messages between them. The shaded circles in the
figure indicate that the difference between sensed
value and predicted value is beyond the fault tolerant
range. In other words, the prediction model should
be rebuilt and updated.

4. Evaluations
In this section, we evaluate and compare the
performance of automatic ARIMA modeling-based
data aggregation scheme with native data aggregation
scheme without data prediction. We use the real-sensed
data collected from TAO (Tropical Atmosphere Ocean)
Figure 4 Deployment of TAO project.
project to demonstrate the performance of our proposed
scheme. The TAO project provides real-time collection of
high-quality oceanographic and surface meteorological
data for monitoring, forecasting, and understanding of
climate swings associated with El Niño and La Nina
since 1982 [23]. The collected data include sea surface
temperature, sea level pressure, salinity, relative humidity
and density, etc., along with timestamp information
collected once every 10 min. We will only use the sea
surface temperature data to evaluate our scheme. The
other collected measurement will produce the similar
results. Figure 4 shows a detailed deployment of nearly
70 buoys of TAO project.

4.1. Performance comparison
In automatic ARIMA modeling-based data aggregation
scheme, ordinary sensor node will transmit the sensed
data value to the aggregator only when the prediction
error between sensed value and predicted value is



Figure 5 Data comparison of two schemes when the error threshold is set to 0.1°C.

Figure 6 Data comparison of two schemes when the error threshold is set to 0.2°C.
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Figure 7 Comparison of transmitted data numbers.
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beyond the application-specified error threshold. In na-
tive data aggregation scheme without data prediction,
ordinary sensor node will transmit all the sensed data
values to the aggregator. We will refer to it as native
data aggregation scheme in the rest of this article. It
is noteworthy that we only consider the problem of
data transmission between ordinary sensor node and
data aggregator. Both schemes can be combined with
other data aggregation schemes which deal with data ag-
gregation between aggregator and sink.
Figures 5 and 6 show the comparison of sensed data

values of native data aggregation scheme and predicted
data values of automatic ARIMA modeling-based data
aggregation scheme with different predefined error
threshold, 0.1 and 0.2°C, respectively. The source data
values which are used to build ARIMA prediction model
Figure 8 ARIMA model rebuild times.
were collected from the buoy deployed at 8° north
latitude 155° west longitude. We can conclude that the
predicted values of our scheme fit the sensed values very
well. And the less the predefined error threshold, the
better the predicted values fit the sensed values. On the
contrary, more ARIMA prediction models should be
rebuilt to satisfy the error threshold condition. We will
discuss this property further in the next section.
Figure 7 shows the comparison of transmitted data

numbers of both data aggregation schemes when the
number of predicted values is set to 150. In native data
aggregation scheme, all the sensed data values should be
sent to the aggregator. In automatic ARIMA modeling-
based data aggregation scheme, only the sensed data
values which are beyond the error tolerance range and
the ARIMA model parameters should be sent to the
aggregator. We can see that automatic ARIMA modeling-
based data aggregation scheme transmits much less
number of messages than native data aggregation scheme
for most of the times. Consequently, precious battery
energy of wireless sensor nodes is saved and much longer
network lifetime is maintained. Only when the error
threshold is set too small, many ARIMA prediction
models are unfitted and should be rebuilt. Therefore, the
transmission of corresponding ARIMA model parameters
outnumbers the transmission of sensed data values.

4.2. Performance evaluation
In this section, we evaluate the performance of automatic
ARIMA modeling-based data aggregation scheme.
Figure 8 shows the ARIMA model rebuild times of

our proposed scheme at different error threshold when
the number of predicted values is set to 150 and histor-
ical data size is set to 35. And corresponding average
prediction number of ARIMA model is shown in
Figure 9 Average prediction number of ARIMA model.



Figure 10 Multiple ARIMA model rebuild times.
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Figure 9. We can see that the ARIMA model rebuild
times decreases with the increase of error threshold.
And average prediction number of ARIMA model
increases with the increase of error threshold. The
reason behind this pattern lies in the fact that larger error
threshold implies wider prediction range an ARIMA
model can achieve.
Figure 10 demonstrates the influence of error thresh-

old and historical data length on ARIMA model rebuild
times in an overall view. We can draw the conclusion
that error threshold is inversely proportional to ARIMA
Figure 11 MSE.
model rebuild times. And historical data length has no
prominent influence on ARIMA model rebuild times.
However, larger historical data length implies more com-
putation cycles and memory usage. Hence, we should
adopt large error threshold and small historical data
length in order to increase the network lifetime of wireless
sensor node.
When the predicted value is beyond the fault tolerant

range of the sensed value, the ARIMA model should be
rebuilt and corresponding ARIMA model parameters
should be transmitted to the aggregator. Therefore, the



Figure 12 MAE.
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cost of ARIMA model rebuild is composed of two parts,
the computation cost of ARIMA model and the transmis-
sion cost of ARIMA model parameters. The computation
of ARIMA model is executed in the ordinary sensor node
with the cost of a small number of search times [20]. It is
well known that the communication cost is often several
orders of magnitude higher than that of computation.
Hence, the computation cost of ARIMA model is
relatively low. After that, several bytes of ARIMA model
parameters are transmitted from ordinary sensor to the
aggregator. Compare with the general data and control
message transmission within the network, the cost of
model parameters transmission can be negligible.
Figure 13 MAPE.
To evaluate the prediction accuracy of automatic
ARIMA modeling-based data aggregation scheme, we
measure the prediction error and investigate the following
three prediction accuracy indicators:mean squared error
(MSE), mean absolute error (MAE), and mean absolute
percentage error (MAPE), respectively.

MSE ¼ 1
T
∑T
t¼1e

2
t ð12Þ

MAE ¼ 1
T
∑T
t¼1 etj j ð13Þ
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MAPE ¼ 1
T

XT
t¼1

100� etj j
yt

� �
ð14Þ

In Equations (12), (13), and (14), prediction error et =
yt – pt, where yt is sensed value and pt is predicted value.
The influence of error threshold and historical data length
on MSE, MAE, and MAPE are shown in Figures 11, 12,
and 13, respectively. We can see from the figures that pre-
diction accuracy decreases with the increase of the
predefined error threshold and increases with the increase
of historical data length. The reason behind this property
lies in the fact that larger error threshold implies wider
error tolerance range, which will result in lower prediction
accuracy. Larger historical data length implies more precise
prediction model, which will result in higher prediction
accuracy. Hence, we should adopt small error threshold
and large historical data length in order to improve the
prediction accuracy of our proposed scheme.

5. Conclusion
We have introduced automatic ARIMA modeling-based
data aggregation scheme in this article. Our motivation is
to suppress the unnecessary transmitted data values be-
tween ordinary sensors and aggregator by data prediction.
We first presented the ARIMA prediction model and then
described how the ARIMA prediction model could be
built and applied in data aggregation scheme to decrease
the number of transmitted messages within the network.
Our simulation and analysis indicate that the predicted
values of our proposed scheme fit the real sensed values
very well and fewer messages are required to transmit
between sensor node and aggregator. The relationships
between scheme performance and scheme parameters are
also discussed in this article.
As a future work, we would like to improve our

proposed data aggregation scheme by utilizing spatial
and temporal data correlation characteristics to-
gether. Furthermore, we would like to implement
automatic ARIMA modeling-based data aggregation
scheme into a WSN testbed and evaluate its per-
formance too.
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