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Abstract

Track-before-detect (TBD) based on the particle filter (PF) algorithm is known for its outstanding performance in
detecting and tracking of weak targets. However, large amount of calculation leads to difficulty in real-time
applications. To solve this problem, effective implementation of the PF-based TBD on the graphics processing units
(GPU) is proposed in this article. By recasting the particles propagation process and weights calculating process on
the parallel structure of GPU, the running time of this algorithm can greatly be reduced. Simulation results in the
infrared scenario and the radar scenario are demonstrated to compare the implementation on two types of the
GPU card with the CPU-only implementation.
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1. Introduction
Classical target detection and tracking is performed on
the basis of pre-processed measurements, which are
composed of the threshold output of the sensor. In
this way, no effective integrations over time can be
taken place and much information is lost. To avoid
this problem, the track-before-detect (TBD) technique
is developed to use directly the un-threshold or low
threshold measurements of sensors to utilize the raw
information. The TBD-based procedures jointly process
more consecutive measurements, thus can increase the
signal-to-noise ratio (SNR), and realize the detection
and tracking of weak targets simultaneously.
The scenarios faced by TBD are almost nonlinear and

non-Gaussian, so the particle filter (PF) [1] is a reason-
able solution. The PF is a Monte Carlo simulation
method and widely used in target tracking of linear or
nonlinear dynamic systems [2,3]. Salmond and coauthors
[4,5] first introduced the PF implementation of TBD
(PFTBD) in infrared scenario. Then, Rutten et al. [6-8]
proposed several improved PFTBD algorithms. Boers
and Driessen [9] extended the work of PFTBD into the
radar targets detection and the tracking application.
PFTBD algorithms have demonstrated the improved
track accuracy and the ability to follow the low SNR
* Correspondence: tangxu@uestc.edu.cn
Department of Electronic Engineering, University of Electronic Science and
Technology of China, Chengdu, People’s Republic of China

© 2013 Tang et al.; licensee Springer. This is an
Attribution License (http://creativecommons.or
in any medium, provided the original work is p
targets but at the price of an extreme increase of the
computational complexity.
In recent years, the field programmable gate array

(FPGA) and the graphics processing unit (GPU) are the
most important architectures in parallel computing. As
the rapid development of GPU technology, GPU is fam-
ous for its significant ability in parallel computing for
both the graphic processing and the general-purpose
computing. Moreover, the compute unified device archi-
tecture (CUDA) [10] is introduced to facilitate a hybrid
utilization of GPU and central process unit (CPU) [11].
FPGA has been used to implement PFs, such as in
[12,13]. However, with the increasing of number of
particles, GPU is expected to obtain a better perform-
ance than FPGA. More specifically, the PF algorithms
have been implemented on GPU [14-16], and achieve
significant speedup ratio over the implementations on
the traditional CPU fashion but with no losing the per-
formance for its float point computation ability.
From the best of the authors’ knowledge, no PFTBD

algorithm implemented on GPU is given in the litera-
ture. In this article, we propose a novel implementation
of PFTBD algorithm on GPU by the CUDA program-
ming. Concerned with the difficulty of PFTBD beyond
the PF, new scheme to dispatch the GPU resources for
particles are developed and the programming about the
likelihood ratio area are considered carefully.
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Simulations in both the infrared scenario and the radar
scenario are given. Two types of the GPU card are
utilized. The implementations of PFTBD algorithm on
both of them achieve significant speedup over the CPU-
only implementation. The initial version of this research
first appeared in [17].
This article is organized as follows. Section 2 reviews

the theory about PFTBD. In Section 3, we discuss the
details about the parallel implementation of PFTBD on
GPU and CUDA programming. The simulations results
and discussions can be found in Section 4. Finally, we
conclude this article in Section 5.

2. PFTBD theory
In this article, the single target recursive TBD algorithms
are presented. The way to process raw measurement of
sensor in TBD is different from the classical target
tracking methods. The measurement model and the way
of data processing vary with the sensor type. The models
are set mathematically with a summary of the infrared
scenario and the radar scenario. The simulations in
Section 4 are based on these models.

2.1. Target model and measurement model of infrared
sensor
Consider an infrared sensor that collects a sequence of
two-dimensional images of the surveillance region, as in
[7]. When the target presents, the state of the target is
evolving as a constant velocity (CV) model. The time
evolution model of the target used here is a linear
Gaussian process

Xk ¼ F⋅Xk�1 þQ⋅Vk ð1Þ

where Xk ¼ xk �xk yk �yk Ik
� �T

is the state vector of the
target. xk and yk are the positions of the target and �xk ;�yk
are the velocity of the target. Ik is the returned unknown
intensity from the target. The process noise Vk is the
standard white Gaussian noise. A CV process model is
used, which is defined by the transition matrix and the
process noise covariance matrix

F ¼
Fs 0 0

0 Fs 0

0 0 1

264
375; Fs ¼

1 T

0 1

� �
;

Q ¼
Qs 0 0

0 Qs 0

0 0 q2T

264
375; Qs ¼ q1

T 3=3 T 2=2

T 2=2 T

� �
ð2Þ

where T is the period of time between measurements, q1
and q2 denote the variance of the acceleration noise and
the noise in target return intensity, respectively.
The variable Ek∈ e;�ef g denotes the existence or non-
existence of the target and evolves according to a two-
state Markov chain. The transitional probability matrix

is defined by
Y

ij
¼ 1� Pb Pb

Pd 1� Pd

� �
, where P(Ek = 1|

Ek−1 = 0) = Pb is the probability of target birth and P(Ek =
0|Ek−1 = 1) = Pd is the probability of target disappearance.
The measurement zk at each time is a two-

dimensional intensity image of the interested region
consisting of the n × m resolution cells. The measure-
ment of each cell zk

(i,j) with i = 1, . . ., n, j = 1, . . .,m is as

z i;jð Þ
k ¼ h i;jð Þ Xkð Þ þW i;jð Þ

k ; Ek ¼ e

W i;jð Þ
k ; Ek ¼ �e

(
ð3Þ

where h(i,j)(Xk) is the intensity of the target in the cell (i,j).
h(i,j)(Xk) is also the spread reflection form of target and is
defined for each cell by

h i;jð Þ Xkð Þ ¼ ΔxΔyIk
2π
P2 exp � xk � iΔxð Þ2 þ yk � iΔy

� 	2
2
P2

 !
ð4Þ

where Δx and Δy denote the size of a resolution cell in each
dimension. The parameter

P
represents the extent of

blurring. Then the likelihood function during the presence
and absence of the target, respectively, in each cell can be
written as

p
�
z i;jð Þ
k



Xk ; Ek ¼ 1
	 ¼ 1ffiffiffiffiffiffiffiffiffiffi

2πσ2
p exp �
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k � h i;jð Þ Xkð Þ

h i
2σ2
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1CA

p
�
z i;jð Þ
k



Xk ;Ek ¼ 0
	 ¼ 1ffiffiffiffiffiffiffiffiffiffi

2πσ2
p exp �

z i;jð Þ
k

h i2
2σ2
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ð5Þ

Therefore, the likelihood ratio for cell (i, j) is giving as

ℓðz i;jð Þ
k Xk ; Ekj Þ ¼

pðz i;jð Þ
k Xk ; Ek ¼ ej Þ

pðz i;jð Þ
k Ek ¼ �ej Þ

; Ek ¼ e

1; Ek ¼ �e

ð6Þ

8><>:
where

ℓðzk Xk ;Ek ¼ 1j Þ≈
Y

i∈Cx Xkð Þ

Y
j∈Cy Xkð Þ

exp
�h i;jð Þ Xkð Þ h i;jð Þ Xkð Þ � 2z i;jð Þ

k

h i
2σ2

0@ 1A
ð7Þ

and Cx(Xk), Cy(Xk) are the index sets of cells that are
affected by the target in the x and y dimensions, named
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as the likelihood ratio area. The size of them is
determined by the application parameter, such as the
resolution of the observation area and the intensity of
the target. The bigger likelihood ratio area, the more la-
tent target information can be utilized.
The measurement noise Wk

(i,j) in each cell is assumed
as the independent white Gaussian distribution with
zero mean and variance σ2. The SNR for the target is
defined by

SNR ¼ 10 log IkΔxΔy=2πΣ
2

� 	
=σ

� �2
dBð Þ ð8Þ

2.2. Target model and measurement model of radar
sensor
Different from infrared sensor, the raw measurement data
of radar sensor are always based on range-Doppler-bearing
of the signal, as in [9]. The time evolution model of the tar-
get used here is also a linear Gaussian process:

Xk ¼ F⋅Xk�1 þQ⋅Vk ð9Þ

where Xk ¼ xk �xk yk �yk
� �T

is the state vector of the target.
xk and yk are the positions of the target and �xk ;�yk are the
velocity of the target. If we make T as the update time, then
the transition matrix and the process noise covariance
matrix can be defined as

F ¼
1 0 T 0
0 1 0 T
0 0 1 0
0 0 0 1

2664
3775;

Q ¼
1=2 amaxx=3ð ÞT2 0

0 1=2 amaxy=3
� 	

T 2

1=2 amaxx=3ð ÞT 0
0 1=2 amaxy=3

� 	
T

2664
3775

ð10Þ

where amaxx, amaxy is the maximum accelerations and the
process noise Vk is the standard white Gaussian noise.
At each discrete time k, the measurement zk is the

reflected power of target. zk is based on the presence of
the target and is defined by

zk ¼ h Xkð Þ þWk ; Ek ¼ e
Wk ; Ek ¼ �e

�
ð11Þ

In this article, the measurements are modeled as
power levels in range-Doppler-bearing Nr × Nd × Nb
sensor cells. Thus, zk can be defined by zk ¼ fzði;j;lÞk : i =
1, . . .,Nr, j = 1, . . .,Nd, l = 1, . . .,Nb}. The power mea-
surements per range-Doppler-bearing cell can be defined
as zk

(i,j,l) = |zA,k
(i,j,l)|2, where zA,k

(i,j,l) represents the complex
amplitude data of the target, which is

z i;j;lð Þ
A;k ¼ Akh

i;j;lð Þ
A Xkð Þ þ nk ; Ek ¼ e

nk ; Ek ¼ �e

�
ð12Þ

where Ak is the complex amplitude and Ak ¼eAkeiφk ;φk∈ 0; 2πð Þ . nk is complex Gaussian noise defined
by nk = nIk + inQk, where nIk and nQk are independent,
zero mean white Gaussian noise with variance σn

2. They
are related to Wk as Wk = |nIk + nQk|

2. hA
(i,j,l)(Xk) is the re-

flection form that is defined for every range-Doppler-
bearing cell by

h i;j;lð Þ
A Xkð Þ ¼ exp � ri � rkð Þ2

2R
Lr �

dj � dk
� 	2

2D
Ld � bl � bkð Þ2

2B
Lb

 !
ð13Þ

where i = 1,. . .,Nr, j = 1,. . .,Nd, and l = 1,. . .,Nb with

rk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2k þ y2k

q
dk ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2k þ y2k

q xk�xk þ yk�yk
� 	

bk ¼ arctan yk=xkð Þ

:

8>>>><>>>>: ð14Þ

Lr, Ld, and Lb are constants of power losses. R, D,
and B are related to the size of a range, a Doppler,
and a bearing cell. In summary, the power in every
range-Doppler-bearing measurement cell can be de-
fined as

z i;j;lð Þ
k ¼ z i;j;lð Þ

A;k




 


2
¼ Akh

i;j;lð Þ
A Xkð Þ þ nIk þ inQk




 


2 Ek ¼ e

nIk þ inQk


 

2 Ek ¼ �e

8<:
ð15Þ

These measurements are suppose to be exponentially
distributed [10],

pðz i;j;lð Þ
k Xk ;Ekj Þ ¼ 1

μ i;j;lð Þ
0

exp � z i;j;lð Þ
k

μ i;j;lð Þ
0

 !
ð16Þ
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where

μ i;j;lð Þ
0 ¼ EnIk ;nQk z i;j;lð Þ

k

h i
¼ EnIk ;nQk

"( eAkeiφk h i;j;lð Þ
A Xkð Þ þ nIk þ inQk




 


2
nIk þ inQk


 

2

#

¼
( eAk

2 h i;j;lð Þ
A Xkð Þ


 �2
þ 2σ2n

σ2
n

¼ Ph i;j;lð Þ
P Xkð Þ þ 2σ2n Ek ¼ e

σ2n Ek ¼ �e

�
ð17Þ

with

h i;j;lð Þ
P Xkð Þ ¼ h i;j;lð Þ

A Xkð Þ

 �2

¼ exp

(
� ri � rkð Þ2

R
Lr �

dj � dk
� 	2

D
Ld

� bl � bkð Þ2
B

Lb

)
ð18Þ

which generalizes the power of the target in every range-
Doppler-bearing cell.
The process of the likelihood ratio in the measurement

model of radar sensor is the same with that in the meas-
urement model of infrared sensor of (6).
The SNR for the radar model is defined by

SNR ¼ 10 log P=2σ2
� 	

dB½ � ð19Þ

2.3. PF solution for TBD
Different from PF, the posteriori filtering distribution is
calculated with a mixture of two parts of particles.

(1) One part is the birth particles X bð Þi
k ; ew bð Þi

k

n o
, which

did not existed in the previous time and are
sampled from proposal distribution, when E bð Þi

k�1 ¼ �e,
but Ek

(b)i = e.
(2) The other part is the continuing particles

X cð Þi
k ; ew cð Þi

k

n o
, which keep existence and are sampled

from state transition probability density, when
Ek−1
(c)i = e, but Ek

(c)i = e.

The algorithm routine of PFTBD is given as follows [6]:
Sample a set of Nb birth particles from the proposal

density X bð Þi
k ∼qb Xk Ek ¼ e;Ek�1 ¼ �e; zkj Þð and calculate
the unnormalized weights of birth particles from the
likelihood ratio:

ew bð Þi
k ¼ lðzk jX bð Þi

k ;E bð Þi
k ¼ eÞpðX bð Þi

k jE bð Þi
k ¼ e;E bð Þi

k�1 ¼ �eÞ
Nbq X bð Þi

k E bð Þi
k ¼ e;E bð Þi

k�1 ¼ �e; zk



 �

;



ð20Þ

where qb X bð Þi
k E bð Þi

k ¼ e; E bð Þi
k�1 ¼ �e




 �

is the prior density

of the target.
Sample a set of Nc continuing particles from state

transition probability density Xk
(c)i ∼ qc(Xk|Ek = e, Ek−1 =

e, zk). The unnormalized weights of continuing particles
are given as

ew cð Þi
k ¼ 1

Nc
l zk X cð Þi

k ;E bð Þi
k ¼ e




 �

ð21Þ

where qc(Xk|Ek = e, Ek−1 = e, zk) is the state transition
density of the target.
Calculate the probability of existence about the target

according to the unnormalized weights of particles

P̂k ¼
eMb þ eMceMb þ eMc þ PdP̂k�1 þ 1� Pb½ � 1� P̂k�1

� � ð22Þ

with
eMb ¼ Pb 1� P̂k�1

� �XNb

i¼1

ew bð Þi
k ; eMc ¼ 1� Pd½ �P̂k�1

XNc

i¼1

ew cð Þi
k :

Normalize the weights of particles as w bð Þi
k ¼

Pb 1�P̂ k�1½ �eMbþeMc

ew bð Þi
k ; w cð Þi

k ¼ 1�Pb½ �P̂ k�1eMbþeMc

ew cð Þi
k and resample Nb +

Nc particles down to Nc particles {Xk
i , 1/Nc}. Give the es-

timate of the target state at time k and calculate the
root mean square error (RMSE) of location error by:

LRMSE ¼
Xn
i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xi
k � X̂

i

k


 �2r
=Nc:

The main difference of PFTBD from the general PF in
both the infrared scenario and the radar scenario is that
a product of cell’s intensity in the observation area is
needed in the calculation of particle weight, as in (6).
Moreover, this operation is the main body that
contributes the high time complexity of PFTBD. Sup-
pose that the time complexity in weight process of PF is
O(m) with m particles. Then in PFTBD, the time com-
plexity of weight process is O(m × n2 × n) for a sequen-
tial algorithm with n × n cells and m particles. Thus,
some efficient parallel implementations should be
introduced to relief this overhead.



Figure 1 The process of computing states and weights of particles on GPU.

Figure 2 Implementation of multiplication in the shared memory.
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3. The implementation of PFTBD on GPU
3.1. Parallel processing on CUDA
In the modern GPUs, there are hundreds of processor
cores, which are named as the stream multiprocessor
(SM). Each SM contains many scalars stream processors
(SP) and can perform the same instructions simultan-
eously. CUDA is a general purpose parallel computing
architecture that makes GPUs to solve complex
problems in a more efficient way than on a CPU. In
CUDA programming, GPU can be responsible for the
parallel computationally intensive parts and CPU can ac-
complish the other parts. On GPU, each task schedule
unit, named as the kernel, is performed in the thread on
the SP. The threads are organized into the block that is
performed on the SM [18]. Threads can communicate
with the other threads in the same block by using the
shared memory efficiently. Moreover, two thumb rules
should be noted: (1) Overhead data transferring between
the GPU and the CPU should be avoided. (2) Access
data in the shared memory is much cheaper than in the
global memory of GPU [18].

3.2. PFTBD on GPU
Obviously, in both implementations of PF and PFTBD,
the particles propagation process and weights computing
process have the high computational cost but with high
concentration of parallelizability. Considering the imple-
mentation of PF on GPU, both processes above can be
realized in one kernel because there are regular
operations in individual threads. However, in PFTBD,
different from the particles propagation process in PF,
there are two kinds of particles, Xk

(c)i and Xk
(b)i. The way

to get the states of this two kinds of particles is different,

as the difference of qb X bð Þi
k E bð Þi

k ¼ e;E bð Þi
k�1 ¼ �e




 �

and qc

(Xk|Ek = e, Ek−1 = e, zk) in Section 2.3. Besides that,
there are product operations among threads in the cal-
culation of particle weight which is also different from
PF. Therefore, we schedule PFTBD with two CUDA
kernels named as the birth kernel and the continue
kernel, respectively, onto GPU. The birth kernel cal-
culates the state and weight of birth particles. The
continue kernel do the same calculations with con-
tinue particles.
The input data of both kernels, which is transferred

from the CPU memory to the GPU global memory, are
the measurement data in the current time step. For con-
tinue kernel, the state of continuing particles in the pre-
vious time step is also needed. GPU blocks and threads
are allocated according to the number and state of
particles. The state of continuing particles Xk

(c)i updates
by the prior density of target. Meanwhile, the state of
birth particles Xk

(b)i samples from the proposal density
q(•) with uniform distribution on GPU. The noise with
Gaussian distribution is generated on GPU by the
CUDA library functions.
After obtained the states of the particles, both kernels

calculate the weights of the particles. During the process of
weights computing in (20) and (21), the states of particles
are needed. On this point, the process of getting the states
of particles and weights computing are combined into one
kernel to overcome excessive data transmission between
CPU and GPU. This part of kernel can be designed as vari-
ous forms according to different size of Cx(Xk) and Cy(Xk)
in (7). The number of blocks is equal to the number of
particles and the size of threads is equal to the size of likeli-
hood ratio area cells. In our implementation, depending on
the size of surveillance region, we extend Cx(Xk) and Cy

(Xk) from all the sets of cell indices to part. According to
this approach, we can extend the application background



Figure 3 The programming on GPU for the likelihood ratio area of large scene.
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from small scenes to large scenes. This problem is made a
farther discussion in Section 3.3.
Figure 1 shows that both kernels need current

measurements zk as the inputs. Meanwhile, to update
the continuing particles, the previous states of continu-
ing particles Xk−1

(c)i are also needed. After computing state
and weight of particles on GPU, the state and weights of
both parts of particles, as the outputs, are transferred
back to CPU.
Other operations, such as calculating the probability of

detection, resampling, and estimating the state of the
target which needs interaction for all state of particles
and their weights cannot be implemented in parallel, are
arranged on CPU.
Table 1 Benchmark systems

System 1 System 2 System 3

Software Visual studio 2010 professional with
CUDA 4.1 SDK

MATLAB 2010a

Hardware Nvidia GeForce
GT9500

Nvidia GeForce
240GT

Pentium(R) Dual-Core
E5800 @ 3.20 GHz

32 cores @ 550
MHz

96 cores @ 550
MHz

16.0 GB/s GDDR2 54.4 GB/s GDDR3
3.3. Likelihood ratio area programming
The likelihood ratio function is a multiplication over all
the contributions of likelihood ratio area cells. For a
scale of n2 array of likelihood ratio area cells with m
particles are used, the computing of weight will entail m
blocks and resulting n2 threads in each block. The value
of n2 should be smaller than the maximum number of
threads limited by the hardware. Under this condition,
the calculating of likelihood ratio in each cell can be
parallelized in every thread, but the process of product
cannot be parallelized.
In order to alleviate the time complexity caused by the

multiplication, the reduction algorithm is adopted in the
shared memory of each block to do the product as
illustrated in Figure 2. In this way, running time of the
multiplication can be reduced significantly. As a result,
the time complexity of weight process in PFTBD could
be O(log2n) comparing to O(n) without using the shared
memory.
For larger application scenarios, such as in radar appli-

cation, the likelihood ratio area includes a 3D array of
dimension R × D × B, which always exceeds the max-
imum available threads in one block. Thus, some strat-
egies must be applied to resolve the massive parallelism
in large scene. According to the number of threads in
one block, the likelihood area is divided into small areas
as illustrated in Figure 3. The multiplications of each
area A1, A2,. . .,Alast are calculated on GPU at the same
time and other areas are sequentially calculated. Then
the result of the likelihood ratio area is the product of
all the small areas.
Obviously, the operations in Figure 3 are complex.

From algorithm aspect, Torstensson and Trieb [19] have
made a research on different size of likelihood ratio
areas in radar application. Its scheme is to use small
likelihood ratio areas to obtain the tradeoff between the
performance and the extremely high computational cost.
In the GPU implementation, we can follow the idea of
[19] to sidestep the complex operations discussed above.
More specifically, by using likelihood ratio areas with
sizes that are just lower than the block, we can obtain
better performance but with little computational cost in-
crease. The simulations on different size of likelihood
ratio areas are given in Section 4.2.

4. Simulation results
4.1. Simulations in infrared scenario
The simulation in infrared scenario is based on the
model in [7]. The length of observation time is 30 and a
target presents from frames 7 to 21. The observation
area is divided into n × m = 20 × 20 cells and the cell
size is Δx = Δ = 1. The probability of birth and death is



Figure 4 The existence probability with different number
of particles.
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set as Pb = 0.05 and Pd = 0.05. The initial state of the
target is X7 = [4.2 0.45 7.2 0.25 20]T. The SNR is 3 dB.
More information about the parameters can be seen in
[7]. Various numbers of particles are adopted with each
100 Monte Carlo trials. To verify the effect of different
implementation, simulations are performed on three
systems, which are given in Table 1.

4.1.1. The performances with different numbers of particle
The performances of the existence probability and the
location error on System 2 with different number of
particles are compared in Figures 4 and 5, respectively.
Figure 4 shows that with the increase in the number of

particles, the probability of detection improves signifi-
cantly. When the number of particle is 100, the exist-
ence probability is always below the detection threshold,
so the target cannot be detected. However, with 1,00,000
particles, not only the target can be detected faster, but
also the detection probability is increased rapidly. With
the time accumulation, when the target appears, the
Figure 5 The location error with different number of particles.
detection probability can eventually reach more than 0.8.
Therefore, the number of particles is one of the key
factors of the detection performance in PFTBD. From
the other side, Figure 5 shows that the location error
decreases efficiently with the increase in the number of
particles. Note that both the results are consistent with
the theory algorithm and have faint difference with the
results of System 3, which are not given here for
simplicity.

4.1.2. The speedup ratio of GPU to CPU
For larger likelihood region, the parallel computing is
more complex and hence GPU achieves higher efficiency
than CPU. As the likelihood region reducing, the
speedup ratio of GPU to CPU decreases but the
processing time on the GPU is still faster than the CPU.
A further analysis of the time spent in different part of
the algorithm by the hybrid implementation of GPU and
CPU is shown in Figure 6.
Figure 6 shows that most of the time is spent on the

two kernel: Birth particle(∙ ) and Continue particle(∙ ).
Eighty percentage of executive time is cost on GPU. It
means that GPU has fully been utilized.
The running time on GT9500, 240GT, and CPU, re-

spectively, in different number of particles is given in
Figure 7.
From Figure 7, we can find that with the growing

number of particles, the speedup ratio between GPUs
and CPU improves significantly. Moreover, Figure 7
shows that the speedup ratio of 240GT is quadruple
than GT9500. It is consistent with the specifications in
Table 1 that 240GT has the number of CUDA cores
triple than that in GT9500 and the memory interface
width is much larger than that in GT9500.

4.2. The simulation in radar scenario
The simulation in radar scenario is based on the model
in [19]. Length of observation time is 30 and target
presents from frames 7 to 21. Initially, the range and
Doppler cells of particles are uniformly distributed be-
tween [85, 90]km, [−0.22, −0.10]km/s in x direction, and
Figure 6 Relative time spent in different parts of GPU and
CPU implementation.



Figure 9 The location error with different size of sub areas in
radar scenario.

Figure 7 Time comparison between CPU and GPU with
different numbers of particles.
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[−0.1, 0.1]km, [−0.10, 0.10]km/s in y direction. The
measurements are consisting of Nr × Nd × Nb = 50 ×
16 × 1 sensor cells in each time. The initial state of the
target is X7 = [89.6 0.2 0 0]T. The SNR is 3 dB. The
number of both the birth particles and continue particles
is 10,000. More information about the parameters can
be seen in [19]. In this simulation, the same benchmark
systems with Section 4.1 are used.
From the algorithm routine in Section 2, we know that

there are no remarkable differences in the implementa-
tion of PFTBD on GPU between infrared scenario and
radar scenario. Here, we emphasize the results for differ-
ent size of likelihood ratio areas. The probability of de-
tection and the location error with various sizes of
likelihood ratio areas on System 2 are given in Figures 8
and 9, respectively.
Figures 8 and 9 show that with the increasing in the

size of sub areas, the probability of detection improves
and the location error decreases. The simulation results
Figure 8 The existence probability with different size of sub
areas in radar scenario.
in the size of sub areas 3 × 3 performs much better than
in sub areas of 1 × 1. However, when the size of sub
areas extends larger, the existence probability has not
improved significantly. From Table 2, we can see that
the computational cost is greatly increased as the sub
areas increasing in System 3. Nevertheless, in System 2,
the increase in running time is so mild for they are all
processed in the share memory. Moreover, when the size
of sub areas is bigger than 5 × 5, the advantage of the
parallelism in GPU can be seen. To our consideration, in
the GPU-implemented PFTBD, the size of likelihood
areas should be adjusted not only by the application
scenario, but also by the amount of share memory on
specified hardware.

5. Conclusions
In this article, we propose an efficient implementation of
PFTBD algorithm on GPU by CUDA programming.
Since the parallel part of the PFTBD algorithm bears the
main computation, the running time of the GPU-
implemented PFTBD algorithm is greatly reduced by ef-
fectively dealing with the particles and the likelihood
ratio computations. The implementations are tested on
two types of GPU card for the infrared scenario and the
radar scenario. As a result, the performance of the GPU-
implemented PFTBD algorithm can significantly be
improved by employing much more particles in GPU
than in CPU.
Table 2 Running time for various sub areas compared
between systems 2 and 3

Condition Sub areas

1 × 1 3 × 3 5 × 5 7 × 7 13 × 13 15 × 15

System 3 time(s) 3.422 6.070 10.025 16.171 41.322 50.853

System 2 time (s) 10.343 10.436 10.578 10.976 15.972 20.446
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