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Abstract

approach based on the conjugated gradient.

The ability to determine in real-time the geographic location of client nodes is an important tool in wireless networks,
allowing instantaneous mobile tracking, implementation of location-aware services and also efficient channel and
power allocation planning. Among existing classical cooperative localization techniques for wireless networks, the
maximum likelihood estimator (MLE) is theoretically the best. However, the gradient-based algorithms that are
commonly used for maximum likelihood estimation are quite sensitive to the initial values and cannot achieve the
theoretical optimal performance. In this paper, we propose a new iterative positioning algorithm based on received
signal strength information that employs a location ordering strategy and a numerical nonlinear optimization
method. The algorithm performance is evaluated through simulation for different network scenarios. A real wireless
network scenario is also implemented in order to demonstrate the algorithm effectiveness. The proposed algorithm,
while presenting a simplified implementation, can achieve better positioning estimates than the classical MLE

Keywords: Wireless networks; Positioning algorithms; Received signal strength

1 Introduction
Wireless networks have found widespread application in
many scenarios including entertainment, medicine, secu-
rity, automation, emergency services, among other uses.
These networks may operate under different architec-
tures, including structured mode using access points
(APs) and unstructured modes using ad hoc and mesh
topologies. The knowledge of node positions in a wireless
network has many applications. In wireless mesh net-
works (WMNs) [1], the positioning information allows
the creation of efficient scheduling algorithms to reduce
collisions and interferences. The positioning information
can be used to estimate the interference a node causes in
other nodes of the network and thus improve the mul-
tiple access strategies, scheduling mechanisms, channel
allocation algorithms, and routing protocols.

In wireless local area networks (WLANS), the position-
ing information can be used for location-based services
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[2], mobile device tracking [3-5], and physical layer
authentication [6]. Even though there exist more pre-
cise location techniques based on the angle-of-arrival
(AoA), time-of-arrival (ToA), and time-difference-of-
arrival (TDoA) [7,8], algorithms based on the received
signal strength (RSS) measurements are still very attrac-
tive from a practical point of view because this metric
is available in every radio interface and does not require
any additional hardware features nor explicit coopera-
tion from the localized node. Among existing classical
localization techniques for wireless networks, the maxi-
mum likelihood estimator (MLE) is theoretically the best.
However, the gradient-based algorithms that are com-
monly used for MLE are quite sensitive to the initial
position estimation of the unknown nodes and can-
not achieve the theoretical optimal performance. The
development of a positioning algorithm less suscepti-
ble to the initial coordinate estimations motivates our
investigation.

In this paper, we propose an iterative positioning
algorithm for localization of client nodes in WLAN:S.
The pairwise range estimation is based on RSS. We
consider a centralized processing unit (central node),
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as usually implemented in many networks for oper-
ation management. It is assumed that each network
node collects received power information and MAC
addresses from neighbor nodes within its transmission
range. Such information is sent to the central node
that executes the localization algorithm. The main con-
tributions of the proposed algorithm are the use of
a selection and ordering strategy for the reference (or
anchor) nodes and also the application of the numeri-
cal nonlinear optimization method of Nelder-Mead [9],
that does not require the derivative of the cost func-
tion. The algorithm performance is evaluated through
computer simulations for different network scenarios. A
real wireless network scenario is implemented in order
to demonstrate the algorithm effectiveness. The pro-
posed algorithm, while presenting a simplified imple-
mentation, can achieve better positioning estimates than
the classical MLE approach based on the conjugated
gradient [10].

The rest of this paper is organized as follows: in Section
2, we present a brief description of the localization tech-
nique principles and describe the path loss channel model
with shadowing which is employed in the algorithms using
RSS. In Section 3, we describe the classical localization
techniques for wireless networks. The proposed algorithm
is presented in Section 4. The performance results are
presented and discussed in Section 5, while Section 6
concludes the paper.

2 Localization techniques overview
Consider a wireless network scenario where a specific
node with unknown position, called unknown node,
should be localized. The other nodes in its vicinity are
assumed to have known positions and are called refer-
ence nodes. It is possible to estimate the unknown node
coordinates by applying a localization technique. This
procedure starts with the reference nodes transmitting
their own coordinates to the unknown node. Then, the
unknown node must estimate its relative distance to each
of the references based on any technique of range esti-
mation. Finally, the unknown node applies a combining
technique over the distances estimates and received coor-
dinates in order to estimate its own position. Alternately, if
the unknown node does not cooperate in the localization
process, the procedure is executed by the set of reference
nodes based on opportunistic measurements collected
when the unknown node transmits. We do not include in
our analysis the class of Bayesian localization algorithms
[11-14] as those assume the cooperation among all nodes.
In our scenario, we consider that the unknown node may
be non-cooperative.

Basically, the location discovery approaches consist of
two phases [15]. In the first phase, the relative distance
between two nodes can be estimated using methods as
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RSS, ToA, TDoA, and AoA [7]. Distance estimation tech-
niques based on RSS measures the signal power at the
receiver. Assuming a known transmit power, the prop-
agation loss is computed using a theoretical or empir-
ical model and this loss is translated into a distance
estimate. This technique is mainly used for radio fre-
quency (RF) signals and is subject to different types of
errors: additive noise, multipath fading, and shadowing.
A time-based method (ToA/TDoA) estimates the relative
distance based on the time or time difference the RF sig-
nal takes to travel from the transmitter to the receiver
node. This technique assumes that the signal propagation
speed is known and can be applied to different signal types
including RF, acoustic, infrared, and ultrasound. Finally,
the AoA technique is applied to estimate the angle at
which signals are received and is generally used in com-
bination with other techniques. An interesting overview
of these algorithms for wireless position estimation is
presented in [16].

In the second phase, the estimated relative distances
should be combined to obtain the node position. The first
combining approach is to use a method called hyperbolic
trilateration, where the node position is estimated cal-
culating the intersection point of three circumferences.
Each of them with a center at one reference, and with
radius equal to the estimated distance between its cen-
ter reference and the unknown node. A second strategy
denoted triangulation can be used if the signal angle-
of-arrival is available instead of the distance. The node
position is computed using simple trigonometry laws. A
third combining method called multilateration calculates
the node position by minimizing the differences between
the noisy measured distances and estimated distances,
using MLE. The multilateration technique is a gener-
alization of the trilateration by using more than three
references [15].

In real-world scenarios, the RSS measurements are
highly dependent of multipath fading and shadowing, so
that RSS is considered a poor range estimator compared
with ToA and AoA [7]. However, the RSS measurement is
an inexpensive technique because the signal power, gen-
erally available at any RF transceiver, can be measured
during normal data communication without additional
transmissions or bandwidth requirements. Therefore, the
technique does not require any additional hardware setup
nor extra energy consumption. Technically, the random
shadowing behavior of the wireless channel becomes the
most relevant source of error for a RSS-based location
system. Measurement errors affects the TOA distance
measurement in an additive way while RSS is affected
in a multiplicative way [7]. Finally, even though it is less
precise, due to its low cost and ease of practical deploy-
ment, the RSS technique is used for range estimation in
the proposed localization framework.
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3 Problem formulation
Consider a receiver i and a transmitter j separated by dis-
tance d;;. Assuming the log-distance propagation model

[17,18], the mean received power, PL‘;-B”‘, is predicted as
PdBm dBm dlj
o = PgP" —10 - 1 - log)g A + X (1)

where PgBm is the power received at a reference distance
do from the transmitter. In this model, the signal power
decays exponentially with dj;, where parameter 7, is the
path loss exponent. The mean received power at different
points at the same separation distance from the trans-
mitter may vary significantly. This effect is caused by the
randomness of shadowing and is statistically modeled as
a random variable x. The variable y has normal distribu-
tion in dB with zero mean and variance relatively constant
with distance [7] so that we assume a constant variance.
The received power PgBm at a reference distance dp can
be predicted by measurement or obtained analytically, for
instance, using the free space propagation model

4rrdy\?
piEm — pdBm _ 10 . log,, [(7;(’) } , 2)

where P78 is the transmit power, A = c/f is the signal
wavelength, f is the carrier frequency and ¢ = 3x 10% m/s.

Consider a wireless ad hoc network with m reference
nodes and # unknown nodes. The positioning algorithm
aims to locate the » unknown nodes as close as possible
to their real position based on peer-to-peer range estima-
tion and on the known coordinates of the references. The
core algorithm mechanism is the atomic multilateration.
Because of the shadowing effect, the trilateration in a real
scenario will not have a unique intersection point.

Figure 1 presents a generic triangulation scenario,
including the symbolic notation used in the problem for-
mulation. The scenario shows three reference nodes iden-
tified by R;, j = 1,2,3. The circumference surrounding
each reference node has radius representing the distance,
Zli,', that an unknown node U; estimates to be from the
reference R;. The distance estimation is computed using
the path loss model. The intersections of the circumfer-
ences define an area where the unknown node is expected
to be. The unknown node real position is denoted by
w; = (uf, u{ ) and is identified by the square in the inter-
section area in Figure 1. A possible candidate position for
the unknown node is identified by the triangle in the same
figure and is denoted by @; = (i}, 17:3’ ). The coordinate of
reference node R; is defined as r; = (rl’.“, r]y ). The distance
between the unknown node candidate position and each
of the references is represented by dj. Additionally, the
distance between a reference node R; and the real position
of unknown node U; is denoted by dj;.
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Figure 1 A generic trilateration scenario.

Ideally, consider the log-distance model in (1) without
the shadowing effect,

. A
PgPm = PGP —10 - 7 - log), (gg) . 3)

Therefore, it is straightforward to compute the estimated

A~

distance, djj, from the received power measurement,
DdBm ;

Pi/. , as being

R P(ﬂ)le_IﬁgBm

d,’j =dy-10 01 (4)

From another point of view, we can think that f’gB’” is
derived from the real distance, dj;, plus a shadowing error.
In this case, we can derive the following relation

dBm _ pdBm
P0 7P§§ +x

dj=do-10" 00 )

Following the derivation of [10] and combining (4) and (5)
we obtain

A~ X

dij = djj - 10707, ©6)
in which becomes clear that the estimated distance d:;
is affected by the shadowing in a multiplicative way, or
equivalently, that the estimation error (cily — di/) is pro-
portional to the range.

In a practical localization framework, the nodes par-
ticipating in the localization process should deal with
power measurements. Therefore, it is convenient to refor-
mulate the problem based directly on this metric. Then,
assume that an unknown node U; is able to monitor signal
transmissions from a set of reference nodes in the neigh-
borhood, denoted by R. The mean power that unknown
node U; experiences from transmissions originated by
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node Rj € R is f’ij = Pj + x, where P; is the power
that should be received at real position of node U; in an
ideal propagation scenario (no shadowing). Additionally,
we define the mean theoretical received power at a can-
didate location of node U; with respect to transmissions
from nodes R; € R as being T)ij. The proposed algo-
rithm considers a cost function given by the squared error
between RSS measurements and estimated powers from
references at the candidate position,

f@) = Z Py — Py)*. (7)

RieR

The use of a weighting factor for the cost function
that reinforces the contribution to the location from the
closest references was suggested in [15], providing more
precise range estimation. The proposed algorithm takes
advantage from this observation and includes into the cost
function a weighting factor. The weighting factor between
unknown node U; and reference node R; reinforces the
contribution from closer references and increases the
location precision. The positioning algorithm evaluates
as many candidate positions as required to find the one
which satisfies a predefined criteria. Whenever a candi-
date position for node U; is guessed, ; = (i, 12?), its
distances to nodes R; € R are in turn defined as

&y = o @+ o] @y ®

The estimated receiver power at the current candidate
position, w;, can then be computed as

PP = PgP" — 10 - logyo(dy). ©)

The candidate position that minimizes f(u;) is the esti-
mated position of the unknown node.

4 Proposed algorithm

In this section, we present the details of the proposed
localization algorithm, but first we discuss the influence
of ordering in the localization accuracy.

4.1 The Influence of ordering
As discussed in the previous section, the localization error
is proportional to the range. In order to demonstrate this
effect, it was computed the mean location error for a node
placed in different predefined positions, as enumerated in
Figure 2. We applied the cost function defined by (7). The
results for each predefined position are shown in Figure 3.
The positions 1 to 8 correspond to a vertical movement
of the node from the center and positions 9 to 15 corre-
spond to a diagonal movement. The results clearly show
that the error in range estimation is significantly reduced
when the node approaches the reference R4. Therefore,
given that the real node position is determinant for the
error in range estimation, it is reasonable to assume that
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Figure 2 Scenario for evaluating the location error as a function
of the node position.

the location ordering may affect the mean location error.
Based on this assumption, we derived a metric which
is a function of the node position. This metric should
consider the power measurements and the correspond-
ing estimated distances dA,',», which is the only information
available for the positioning algorithm. Moreover, the pro-
posed algorithm first locates the node which is in the
proximity of the largest number of references. Therefore,
ametric is proposed to quantify the proximity of any given
node to the reference nodes so that the algorithm can esti-
mate which is the node closest to the largest number of
references. In particular, the proximity factor of a node U;
is computed as

Fproximity(i) = Z d\ij: (10)

R]'ER

where R is the set of reference nodes in the neighborhood,
which also includes the unknown nodes already localized.
Computing the proximity factor for nodes in the scenario
in Figure 2, we obtain the values shown in Table 1. The
first column, denoted target location sequence, presents
the nodes in ascending order of location error. That is
the resultant error location considering the localization of
that node only. This column in Table 1 is used only as a
reference, as this would be the ideal order in which the
nodes should be located in case of sequential node local-
ization (the node that is located with the smallest error
should be located first, then it becomes a reference for the
other nodes, and so on). The second and third columns,
show the Fyroximity value for each node i. A selection met-
ric should be defined in order to define the localization
sequence of the unknown nodes. The selected sequence
must be as close as possible to the target sequence pre-
sented in the first column of Table 1 because the node
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Figure 3 Mean location error for different node positions.
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positions associated with lower location errors should be
localized first. Comparing the target sequence and the
sequence obtained using Fyroximity» We can verify that this
goal is not fully achieved. For example, the node in posi-
tion 8 has a mean location error about 2 m greater than the
node in position 15. We can observe in Figure 2 that when
a node moves along the vertical or diagonal directions, it
approaches some references and moves away from others.
However, when the node is closer to a specific reference,

Table 1 Taget localization sequence and the localization
sequences given by the Fproximity and Rproximity factors

Target Fproximity (i) Estimated  Rproximity (i) Estimated
location location location
sequence sequence sequence
15 47.6830 8 81.2738 15

14 46.6297 15 63.4042 14

13 46.1839 7 51.9312 13

12 455853 14 43.9526 12

8 44.9661 6 39.1365 8

7 44.6653 13 38.2657 7

6 440120 5 38.0920 1

5 43.8848 12 36.8669 6

1 43.2998 4 35.1000 5

4 43.2586 1 33.6129 10

10 42.8085 3 33.1326 4

9 42.8002 10 31.1058 3

3 425210 2 30.0848 9

2 42.5205 9 29.1206 2

1 424264 1 27.2395 1

its mean location error achieves a lower value. Based on
this observation, a new metric was empirically derived,
called proximity relation, which is a function of Fyroximity
and the lowest distance dAi/ estimated (measured) by the
unknown node UJ; to a reference R; or an already localized
node. The set of unknown nodes already localized will be
denoted by L. The proximity relation is defined as

Foroximity()) -« + ¥

Rproximity(i) = X ’ Vj e{RU L}
min (dl‘,‘)
(11)
where
1.15, forl <j
o= 5 forl<j<m (12)

1, forj > m.

Based on simulation experiments, we identified that the
distance estimates between two unknown nodes not yet
localized can be used to improve the sequence ordering
used by the localization algorithm. This is done by adding
to Fproximity the constant parameter y = (n—|L|) ~max(5),
where 7 is the number of unknown nodes, |£] is the car-
dinality of £, and D = [dj] is the matrix of estimated
distances. The scaling factor « has the objective to locate
unknown nodes that are closer to a great number of ref-
erence nodes. Therefore, if there are two unknown nodes
with the same value of Rpyroximity(d), the one that has a
larger number of closer reference nodes will be localized
first. This procedure is a strategy to give a localization
reliability metric for each of m reference nodes. The per-
formance was evaluated for values 1 < @ < 3 and the best
result obtained through simulations was with « = 1.15.
The Rproximity values for a node at the different positions
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indicated in Figure 2 are also presented in Table 1. Note
that the estimated location sequence obtained based on
Rproximity is very close to the target location sequence.

As another example, consider the network topol-
ogy of Figure 4. By applying the Rproximity factor to
determine the localization ordering of the unknown
nodes, they will be located in the following order:
{9,3,7,12,13,15,11,8,14,1,4,5,2,6,10}. Each located
node that becomes a reference node affects the metric for
the next nodes. This means that unknown nodes closer
to already located nodes will be localized first. Figure 5
presents a comparison between the performance of the
location algorithm with and without node ordering, as a
function of the number of unknown nodes in the network.
It should be pointed out that the location error can be sig-
nificantly reduced when the number of unknown nodes
increases, which we consider to be a quite interesting
feature.

4.2 Algorithm

The proposed algorithm locates nodes individually, fol-
lowing the sequence ordering obtained using the Rproximity
factor, where the node with the highest Rpoximity factor is
located first. The pseudocode is presented in Algorithm 1.
The set of reference nodes, R, have known coordinates,
rj. These nodes collect the power measurements from
unknown neighbor nodes to form matrix P. The refer-
ence power PgB”’ and the pathloss exponent 7 are pre-
defined parameters. Based on the power measurements,
the Rproximity factor is computed for all unknown nodes.
Then, the iterative localization procedure is started, where
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the unknown nodes are localized in the order based on
the Rproximity factor. The coordinates are estimated by
minimizing the cost function f (). The localized node
becomes part of the reference set for the next iteration of
the algorithm.

Algorithm 1:

1.1 Input Parameters:
12 P= [1333”’] : Matrix of power measurements
13 1= (r]’.“, rjy), VR; € R : Reference nodes
coordinates
1.4 PgB’” : Reference power at a reference distance dj
15  1n:Path loss exponent
1.6 Compute Rproximity (i), YU; € U
1.7 Define the empty set, £ = {¢}}
1.8 While |£| < |U]
1.9 Select unknown node Uy € U, where
k= arg max Rproximity(i)
L

110 Select an initial candidate position for
unknown node Uy, 0 = (i, ﬁ%)
L11 min f(y) = Y B Py — Pry)?
W jelRU L}
112 Set iy = @ and update set £ = {£|J Uy}

113 end

Note that in the proposed algorithm, we include a scale
factor B;; for the cost function terms (please compare step
(1.11) of Algorithm 1 and (7)). The inclusion of the scale

20 r
R, R,
15 | B
o o
6
O (%7
10+ 14
@)
2
8 © o
11 O
5t @)
1
13 1
0° o° ©
R R
1 12 3
or O o o O
-5 I I I I i
-5 0 5 10 15 20
Figure 4 Example of network topology with » = 15 unknown nodes and m = 4 reference nodes.
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Figure 5 Comparison between ordered and unordered localization.
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factor is based on the fact that the error in the estima-
tion of relative distance dj; increases for greater distances
between i and j. The scaling factor § uses the relation
between Fyroximity (i) in (10) and the estimated distance d;;
between unknown node i and reference node j as a way to
attribute a higher scale factor to an unknown node closest
to the reference. The parameter f; is computed as

F, roximity(i)
dyj
where p is a constant which benefits the proximity of an

unknown node to any reference and whose optimal value
obtained through extensive simulations is?

27,
r=11

In Figure 6, we present a comparison between the per-
formance of the proposed algorithm with and without the
proposed scale factor g;; in the cost function, considering
the same scenario with four reference nodes presented in
Figure 4. It is clear that the inclusion of the scaling factor
is beneficial in terms of performance.

Moreover, in our implementation, we use of the Nelder-
Mead nonlinear optimization numerical method [9] for
minimizing the weighted cost function, therefore without
requiring the derivative of the cost-function, as is the case
of MLE methods based on the conjugate gradient [10].

forl <j<
or(_]_m (14)
forj > m.

4.3 Initial candidate position problem

For practical implementations of localization algorithms,
the best strategy to select the initial candidate positions
for unknown nodes is to apply the method proposed in
[19], which selects the initial candidate position based on
estimated distances from reference nodes. Consider the
scenario shown in Figure 7, with reference nodes ri, ro,
and r3. The circumferences surrounding each reference
node represent the estimated distances for unknown node
k and are defined as

(it — r))? + (i, — r)? = dik (15)
(i — r3)* + (i1, — r})? = doyo (16)
(it — r5)* + (i), — r})* = dax. (17)

By combining (15) and (16), we obtain
f+ (g =) i = (A%k Ay + (15 = D)’
+ (- 0)?)2

(ry — ) it

(18)

which is the equation that represents the straight line
defined by the two intersection points of circles defined by
(15) and (16). Similarly, by combining (15) with (17) and
(16) with (17), we obtain the other two line equations:

05— i+ 0= )i =(8 — B+ 09— 0D?
+ 0P -0D)2 9
75 =) i+ 0 = ) i =(By — B+ 09 - 09)?

+ 02— )2 o)
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Figure 6 Effect of the scaling factors in the location error.

15 20 25 30

Number of Unknown Nodes

The intersection of these three straight lines defines the
initial candidate position of unknown node & for the local-
ization algorithm, as marked by the triangle in Figure 7. In
a specific scenario, where the three references are aligned,
the lines are parallel. In such case, the initial candidate
position is defined as the mean computed among the
coordinates defined by the intersection of the line defined
by the references with the parallel lines [19].

5 Practical results

The design of the proposed algorithm is heavily based
on extensive computer simulations. Therefore, in order
to evaluate the effectiveness of our approach, we tested
the proposed localization algorithm in a real wireless
network scenario implemented in an outdoor environ-
ment, as shown in Figure 8. The scenario consists of one
unknown node designated by i and three reference nodes

‘

Wz

Figure 7 Initial candidate position estimation.
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Figure 8 Real wireless network setup implemented in an
outdoor environment.

denoted by R;, j = 1,2,3. The wireless nodes consist
of mobile devices equipped with IEEE802.11b interfaces,
operating in channel number 4 (carrier frequency 2,417
MHz). This channel was selected because it was the free
available frequency band without co-channel and adjacent
channel interferences at the moment.

The path loss exponent required by the algorithm, 7,
was determined from RSS measurements in a range dis-
tance from 10 to 100 m, in steps of 10 m. At each distance,
d, a set of 1,000 RSS samples were collected to determine
the average values in the downlink and uplink channels.
These average values are plotted in Figure 9. The aver-
age noise power in the wireless interfaces was measured
as —100 dBm. The estimated value of 7, using the mini-
mum mean squared error (MMSE) method, was obtained
as 7 = 2.4 for downlink and n = 2.2 for uplink. In the
positioning algorithm, we used the mean value, n = 2.3.In
the practical survey, five scenarios were considered. The
configuration parameters and measured powers of each
scenario are summarized in Table 2. The localization algo-
rithm considers the average power values, P;, measured

80 ‘
£ n=2.4
€ 60l i
= o)

o)
a ° 6
I 40
g P
& 20
)
o
0 0 : 1 - 2
10 10 10
Distance (m)

80 T
~ n=22
[=
5 601 (e} o 1
= o)

I
— 40t
3 o
% 20t
o
10° 10' 10°
Distance (m)
Figure 9 Estimated path loss exponent.
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Table 2 Power measurements in each scenario

Scenario d;; di diz P UI%I P orI%2 Py 0133

(m) (m) (m) (dBm) (dBm?) (dBm) (dBm?) (dBm) (dBm?)
A 5 5 5 -3784 080 -3804 066 -4183 132
B 10 10 10 -4538 057 -4557 063 -5031 132
C 20 20 20 -5093 148 -5065 049 -5470 1.16
D 50 50 50 -5486 104 -5547 064 -57.76 154
E 20 10 50 5101 169 -4442 078 -5603 062

at each reference node j, as shown in Table 2, which also
shows the variance of the collected power samples, agj .

In order to apply the proposed localization algorithm,
it is necessary to first determine the received reference
power, Py, at a reference distance, dy, from the transmit-
ter. The received signal power at reference distance d is
computed using

piBm — pdbm 4 GdBi  GdBi _ 5. 1B _ 4B (21)

where LgB is the free space path loss for a reference dis-
tance dp = 1 m. The parameters used in (21) were
obtained from equipment specifications and are pre-
sented in Table 3.

In order to evaluate the performance of the proposed
algorithm, we compared it with the classical MLE [10]
which is based on the conjugated gradient optimization
methodP. The practical results in terms of location error
are presented in Figure 10 using the weighted cost func-
tion with parameter B as defined by (13). The results
show that the use of a weighted cost function can lead to
considerable reductions in localization errors in all prac-
tical network scenarios. For scenario E, this reduction
may reach approximately 30%. Even for scenarios A and
B, a low but significant reduction around 3% is achieved.
When the 8 scale factor is applied to the cost function,
the higher reported RSS receives a higher weight because
they correspond to more precise measurements obtained
from reference nodes closer to the unknown node. This
explains the best result obtained for scenario E, where the
distances from the three reference nodes to the unknown
node are different.

Some additional insights can be obtained analyzing
the data shown in Table 4 and Figure 10. For each sce-
nario, this table presents the real distances d;; among the

Table 3 Wireless interface parameters

pasm 15 Transmission power
b 4 Transmitter antenna gain
G 4 Receiver antenna gain
19 2 Cable loss

fo (GHz) 2417 Carrier frequency (channel 4)
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Figure 10 Location error and error reduction obtained with the
proposed algorithm for the real world scenarios.

unknown node arLd the reference nodes, as well as the esti-
mated distances dj;. For scenarios A, B, and C, the mean
reported RSS values caused a positive error in distance
estimation, mainly for the values measured with respect
to reference R3. It means that the unknown node is sensed
to be farther away from this reference than it really is. The
more distant are nodes i and j, the lower is the weight
of its RSS value in the cost function and therefore the
erroneous RSS measures have less influence in the opti-
mization. This can lead to error reductions of up to 12%
in these scenarios with respect to the MLE algorithm, as
seen in Figure 10. Scenario D presents large values of neg-
ative errors in distance estimation, so the unknown node
seems to be closer to reference nodes than it really is. The
relative distance estimation to R3 was more accurate with
respect to real distance d;3 = 50 m. By observing Figure 8,
we can verify that node i is positioned exactly between
Ry, and Rj. Therefore, even if the RSS values between

Table 4 Actual and estimated distances

Scenario Distance Ry Ry R3
A dj 5 5 5
8,/ 4.5521 4.6815 5.8643
B dj 10 10 10
9,, 9.5012 10.2626 13.6512
C dj 20 20 20
8,-/ 15.8156 16.1516 23.2995
D dj 50 50 50
dj 243975 23.7469 316195
E dj 20 10 50
8,/ 17.2376 8.6479 27.7609

Page 10 of 11

node i and references Ry and Ry are inaccurate, there is
a tendency of the algorithm to optimize the location of i
equidistant to R; and Rj since then the average reported
powers to these references have similar values, as was the
case. The weighting factor B reduces the localization error
even more when it attributes higher weights to RSS values
reported from R; and Ry, because reference R3 reported a
lower RSS value, even though more precise.

6 Conclusions

In this paper, we present a new localization strategy based
on RSS measurements. The algorithm is centralized and
iterative: centralized because a node must accumulate the
RSS measurements and run the location algorithm for all
the other nodes; iterative because each node is localized
one at a time and once located it becomes a reference to
the location of other unknown nodes in the next itera-
tions. The Nelder-Mead nonlinear optimization numeri-
cal method is employed to find the candidate coordinates
for the unknown node, by minimizing the cost function.
It is shown that the proposed algorithm can achieve bet-
ter practical position estimates than the classical MLE
strategy that employs gradient-search-based methods.

Endnotes

®There are two constants that are used in our proposed
algorithm and that were numerically obtained (« and p).
These values were obtained after several tests
considering up to #n = 30 unknown nodes randomly
located within an area of 15 x 15 m? (the node positions
are random and follow a uniform distribution). For each
number of unknown nodes, an ensemble of topologies
were generated and several values of & and p were tested.
The impact of p in the performance of the proposed
algorithm is larger than the impact of «.

> Among existing classical cooperative localization
techniques for wireless networks, the MLE is theoretically
the best in the sense that it asymptotically achieves the
Cramer-Rao bound (CRB). However, the gradient based
iterative algorithms that are commonly used to achieve
MLE positions are quite sensitive to the initial values and
cannot achieve the theoretical optimal performance [14].
In this case the optimum solution is the minimum mean
square error (MMSE) algorithm, which requires the prior
distribution on the location of the nodes.
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