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Abstract

In this paper, we derive a performance comparison between two training-based schemes for multiple-input
multiple-output systems. The two schemes are the time-division multiplexing scheme and the recently proposed
data-dependent superimposed pilot scheme. For both schemes, a closed-form expression for the bit error rate (BER) is
provided. We also determine, for both schemes, the optimal allocation of power between the pilot and data that
minimizes the BER.
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1 Introduction
The use of multiple-input multiple-output (MIMO)
antenna systems enables high data rates without any
increase in bandwidth or power consumption. However,
the good performance of the MIMO systems requires
a priori knowledge of the channel at the receiver. In
many practical systems, the receiver estimates the chan-
nel by time division, multiplexing pilot symbols with the
data. Although high quality of the channel estimation
could be achieved especially when using a large number
of pilot symbols [1], this method may entail a waste of
the available channel resources. An alternative method
is the conventional superimposed training. It consists in
transmitting pilots and data at the same time. However,
since during channel estimation, the data symbols act
as a source of noise, the channel estimation is affected.
In the literature, the impact of channel estimation error
upon the performance indexes has been investigated. In
[2] and [3], a comparison between the performance of
the conventional superimposed training scheme and the
time-multiplexing-based scheme has been carried out.
The optimal power allocation between pilot and data that
maximizes a lower bound of the maximum mutual infor-
mation criterion has been provided. It has been shown
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that the use of the optimal conventional superimposed
training scheme entails a gain in terms of channel capacity
only in special scenarios (many receive antennas and/or
short coherence time). In other scenarios, the superim-
posed training scheme suffers from high channel estima-
tion errors, and its gain over the time-multiplexing-based
scheme is often lost. For this reason, many alternatives
to the conventional superimposed training scheme have
been proposed in recent works.
In [4], Ghogho and Swami proposed to introduce a dis-

tortion to the data symbols, prior to adding the known
pilot in such a way to guarantee the orthogonality between
pilot and data sequences. It is shown that the channel
estimation performance is by far enhanced as compared
to the standard superimposed scheme. This technique is
referred to as the data-dependent superimposed training
(DDST).While the DDST scheme exhibits the same chan-
nel performance as its time-division multiplexed training
(TDMT) counterpart, the effect of the introduced distor-
tion may considerably affect the detection performance.
The aim of this paper is thus to study the BER perfor-
mance of the DDST and TDMT schemes, and to evaluate
to which extent the performance of the DDST scheme is
altered.
In the literature, the few works focusing on BER per-

formance have been based on unrealistic assumptions like
the uncorrelation between the noise and channel esti-
mation error [5,6]. These assumptions make calculations
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feasible for fixed size dimensions but are far away from
being realistic. Tomake derivations possible while keeping
realistic conditions, we will relax the assumption of finite
size dimensions by allowing the space and time dimen-
sions to grow to infinity at the same rate.Working with the
asymptotic regime allows us to simplify the derivations,
and at the same time, we observe that the obtained results
apply as well to usual sample and antenna array sizes. We
show also that the obtained expressions can be used to
determine the optimal power allocation that minimizes
the BER.
The remainder of this paper is as follows: in the next

section, we introduce the system model. After that, we
review in section 3 the channel estimation and data
detection processes for the TDMT and DDST schemes.
Section 4 is dedicated to the derivation of the asymptotic
BER expressions. Based on these results, we determine the
optimal allocation of power between data and training for
both schemes. Finally, simulation results are provided in
section 7 to validate the analytical derivation.
The following notations are used in this paper: Super-

scripts H, #, and Tr(.) denote Hermitian, pseudo-inverse,
and trace operators, respectively. The statistical expecta-
tion and the Kronecker product are denoted by E and ⊗.
The (K × K) identity matrix is denoted by IK , and the
(Q × Q) matrix of all ones by 1Q. The (i, j)th entry of a
matrix A is denoted by Ai,j.

2 Systemmodel and problem setting
2.1 Time-division multiplexing scheme
We consider aM × K MIMO system operating over a flat
fading channel. Two phases are considered:

First phase: In the first phase, each transmitting
antenna sends N1 pilot symbols. The received symbol
Y1 writes as:

Y1 = HPt + V1,

where Pt is the K × N1 pilot matrix, and

Assumption 1. H is the M ×K channel matrix with
independent and identically distributed (i.i.d.)
Gaussian variables with zero mean and variance 1

K .

Assumption 2. V1 is the M × N1 matrix whose
entries are i.i.d. with variance σ 2

v .

Second phase: In the second phase, N2 data symbols
with power σ 2

wt are sent by each antenna so that the
received signal matrix Y2 writes as:

Y2 = HWt + V2,

where

Assumption 3. Wt is the K × N2 data matrix with
i.i.d. bounded data symbols of power σ 2

wt , and V2 is
the M × N2 additive Gaussian noise matrix with
entries of zero mean and variance σ 2

v . Moreover,Wt
is independent of V1 and V2.

2.2 Data-dependent superimposed training scheme
Another alternative to the TDMT-based schemes is to
send the training and data sequences at the same time.
Since the data is transmitted all the time, these schemes
allow efficient bandwidth efficiency but may suffer from
the interference caused by the training sequence. Ghogho
and Swami [4] proposed thus to distort the data so that
is becomes orthogonal to the training sequence. The pro-
posed distortion matrix D is defined as:

D = IN − J,

where J = K
N 1N

K
⊗ IK , (we assume that N

K is the integer
valued, N being the sample size). This distortion matrix
was shown to be optimal in the sense that it minimizes the
averaged Euclidean distance between the distorted and
non-distorted data [7]. The received signal matrix at each
block is therefore given by:

Y = HWd(IN − J) + HPd + V,

where

Assumption 4. Wd is the data matrix with i.i.d.
bounded data symbols of power σ 2

wd
, and V is the

M × N matrix whose entries are i.i.d. zero mean
with variance σ 2

v .

Moreover, Pd is the K × N training matrix. The chosen
pilot matrix Pd should fulfill two requirements. It should
be orthogonal to the distortion matrix D, thus satisfy-
ing DPH

d = 0, and also verify the orthogonality relation
PdPH

d = Nσ 2
Pd IK in order to minimize the channel esti-

mation error subject to a fixed training power. A possible
pilot matrix that meets these requirements is

Assumption 5.

Pd(k, n) = σPd exp
(
j2πkn/K

)
with k = 0, · · · ,K − 1

and n = 0, · · · ,N − 1.
(1)

3 Channel estimation and data detection
3.1 TDMT scheme
In the first phase, we assume that the receiver estimates
the channel in the least-square sense. Hence, the channel
estimate is given by
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Ĥt = Y1PH
t
(
PtPH

t
)−1

= H + V1PH
t
(
PtPH

t
)−1

= H + �Ht ,

where �Ht = V1PH
t
(
PtPH

t
)−1. Thus, the mean square

error (MSE) is written as

MSEt = Mσ 2
v tr

(
PtPH

t
)−1 .

As it has been shown in [1], the optimal training matrix
that minimizes the MSE under a constant training energy
N1σ

2
Pt should satisfy

Assumption 6.

PtPH
t = N1σ

2
Pt IK ,

where σ 2
Pt denotes the amount of power devoted to the

transmission of a pilot symbol. The optimal minimum
value for the MSEt is then given by

MSEt = KMσ 2
v

N1σ
2
Pt
.

In the data transmission phase, the linear receiver uses
the channel estimate in order to retrieve the transmitted
data. After channel inversion, the estimated data matrix is
given by

Ŵt = (Ĥt
)# Y2,

where
(
Ĥt
)# denotes the pseudo-inverse matrix of Ĥt .

Assuming that the channel estimation error is small, the
pseudo-inverse of the estimated matrix can be approxi-
mated by the linear part of the Taylor expansion as [8]:

(
Ĥt
)# = H#−H#�HtH#+H#(H#)H�Ht

(
IM − HH#) .

(2)

SubstitutingH# by
(
HHH

)−1HH in (2), we obtain

(
Ĥt
)# = H# − H#�HtH# + (HHH

)−1
�HH

t �,

where � = IM − H
(
HHH

)−1HH is the orthogonal pro-
jector on the null space of H. Hence, the zero-forcing
estimate of the transmitted matrix can be expressed as

Ŵt =Wt − H#�HtWt + (H# − H#�HtH#)V2

+ (HHH
)−1

(�Ht)
H�V2.

Consequently, the effective post-processing noise �Wt =
Ŵt − Wt could be written as

�Wt = − H#�HtWt +
(
H# − H#�HtH#

+ (HHH
)−1

(�Ht)
H �
)
V2.

3.2 DDST scheme
The LS channel estimate is obtained by multiplying Y by
PH
d
(
PdPH

d
)−1, thus giving

Ĥd = YPH
d
(
PdPH

d
)−1 = H+VPH

d
(
PdPH

d
)−1 = H+�Hd,

where �Hd = VPH
d
(
PdPH

d
)−1 denotes the channel esti-

mation error matrix for the DDST scheme. As aforemen-
tioned above in Assumption 5, the optimal trainingmatrix
that minimizes the MSE should satisfy

PdPH
d = Nσ 2

Pd IK .

The MSE is thus given by:

MSEd = Mσ 2
v tr

(
PdPH

d
)−1 = KMσ 2

v
Nσ 2

Pd
.

For the DDST scheme, we consider a zero-forcing receiver
which, prior to inverting the channel matrix, cancels the
contribution of the training symbols by right multiplying
Y by (I − J), where

Y = HWd (IN − J) ,

the matrixWd being the sent data matrix. Thus, the zero-
forcing estimate ofWd is given by

Ŵd = (Ĥd
)# Y (I − J)

=
(
H# − H#�HdH# + (HHH

)−1
�HH

d�
)

× (HWd (I − J) + V (I − J))
= (I − H#�Hd

)
Wd (I − J)

+ (H# − H#�HdH#)V (I − J)

+ (HHH
)−1

�HH
d�V (I − J)

=Wd (I − J) − H#�HdWd (I − J)
+ (H# − H#�HdH#)V (I − J)

+ (HHH
)−1

�HH
d�V (I − J)

=Wd + (−Wd J − H#�HdW (I − J)
+ (H# − H#�HdH#)V(I − J)

)
+ (HHH

)−1
�HH

d�V (I − J) .
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Hence,

�Wd = − Wd J − H#�HdWd (I − J)
+ (H# − H#�HdH#)V (I − J)

+ (HHH
)−1

�HH
d�V (I − J) .

4 Bit error rate performance
4.1 TDMT scheme
In order to evaluate the bit error rate performance, we
need to evaluate the asymptotic behavior of the post-
processing noise observed at each entry of matrix �Wt .
Using the ‘characteristic function’ approach, we can prove
that conditioned on the channel matrix, the noise behaves
asymptotically like a Gaussian random variable. This
result is stated in the following theorem, but its proof is
shown in Appendix 1.

Theorem 1. Under Assumptions 1, 2, 3, and 6, and under
the asymptotic regime defined as

M,K ,N1,N2 → + ∞ with

K
N1 + N2

→ c1, 0 < c1 < 1
M
K

→ c2 > 1 and
N2
N1

→ r,

the post-processing noise experienced by the ith antenna at
each time k, �Wt(i, k), for the TDMT scheme behaves in
the asymptotic regime as a Gaussian random variable.

E

[
e j�(z∗�Wt(i,k))

]
− e−

σ2wt δt
[
(HHH)

−1
]
i,i

|z|2

4 −−−−−→
K→+∞ 0,

where

δt = c1(1 + r)
σ 2
v

σ 2
Pt

+ σ 2
v

σ 2
wt

+ c1(1 + r)(c2 + 1)σ 4
v

σ 2
wtσ

2
Pt (c2 − 1)

,

and K → + ∞ refers to this asymptotic regime.

Remark 1. Note that as compared to the results in [9],
our results make appear a new additive term of order σ 4

v .

With the Gaussianity of the post-processing noise being
verified in the asymptotic case, we can derive the bit error
rate for QPSK constellation and Gray encoding as [10]

BER = EQ(
√
x), (3)

where the expectation is taken with respect to the prob-
ability density function of the post processing SNR at the
ith branch defined as

γt = 1
δt
[
(HHH)−1]

i,i
.

From [11] and [12], we know that 1[
(HHH)

−1
]
i,i

is a weighted

chi-square distributed random variable with 2(M−K +1)
degrees of freedom, whose density function is given by

f (x) = KM−K+1xM−Ke−Kx

(M − K)!
1[0,+∞[,

where 1[0,+∞[ is the indicator function corresponding
to the interval [0,+∞[. Hence, the probability density
function of γt is given by

fγt (x) = (Kδt)M−K+1xM−K exp(−Kδtx)
(M − K)!

1[0,+∞[. (4)

Plugging (4) into (3), we get:

BERt = (Kδt)M−K+1

(M − K)!

∫ +∞

0
xM−K exp(−Kδtx)Q(

√
x)dx.

(5)

To compute (5), we use the following integral function:

J(m, a, b) = am

�(m)

∫ +∞

0
exp(−ax)xm−1Q(

√
bx)dx.

(6)

The BER is, therefore, equal to

BER = J(M − K + 1,Kδt , 1). (7)

The integral in (6) has been shown to have, for c > 0,
the following closed-form expression [13]:

J(m, a, b) =
√
c/π�(m + 1

2 )

2(1 + c)m+ 1
2 �(m + 1) 2

× F1(1,m + 1
2
;m + 1;

1
1 + c

), c = b
2a

,

where 2F1(p, q; n, z) is the Gauss hypergeometric function
[14]. If c = 0 equivalently b = 0, it is easy to note
that J(m, a, 0) is equal to 1

2 . When m is restricted to pos-
itive integer values, the above equation can be further
simplified to [15]

J(m, a, b) = 1
2

[
1 − μ

m−1∑
k=0

(
2k
k

)(
1 − μ2

4

)k]
, (8)

where μ =
√

c
1+c .
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Plugging (8) into (7), we get

BERt = 1
2

[
1 − μt

M−K∑
k=0

(
2k
k

)(
1 − μ2

t
4

)k]
, (9)

where μt =
√

1
2Kδt+1 .

4.2 DDST scheme
Unlike the TDMT scheme, the asymptotic distribution of
entries of the post-processing noise matrix is not Gaus-
sian. Actually, we prove that

Theorem 2. Under assumptions 4, 5, and under the
asymptotic regime defined as

K
N

→ c1, 0 < c1 < 1 with
M
K

→ c2 > 1,

the post-processing noise experienced by the ith antenna at
each time k behaves asymptotically as a Gaussian mixture
random variable, i.e.,

E
[
exp
(
j� (z∗ [�Wd]i,k

))]
−

Q∑
i=1

pi exp
(
j� (z∗αi

))

× exp

⎛⎜⎝−
|z|2δdσ 2

wd

[(
HHH

)−1
]
i,i

4

⎞⎟⎠ −−−−→
K→∞ 0,

(10)

where

δd = (1 − c1)
(
c1σ 2

v
σ 2
Pd

+ σ 2
v

σ 2
wd

+ c1σ 4
v (c2 + 1)

(c2 − 1)σ 2
Pdσ

2
wd

)
,

(11)

and Q is the cardinal of the set of all possible values of[
W
]
i,k = c1

∑ 1
c1
k=1 [Wd]i,k, and pi is the probability that[

W
]
i,k takes the value αi.

We can also prove that conditioning on the fact that

[W]i,k = ε1

√
σ 2
wd
2 +jε2

√
σ 2
wd
2 , where ε1 = ±1 and ε2 = ±1,

the post-processing noise satisfies

E

⎡⎣exp (j� (z∗[�Wd]i,k
)) |[W]i,k = (ε1 + jε2)

√
σ 2
wd

2

⎤⎦
−

Q′∑
i=1

p
′
i exp

⎛⎝j�
⎛⎝z∗

⎛⎝−c1 (ε1 + jε2)

√
σ 2
wd

2
+ α

′
i

⎞⎠⎞⎠⎞⎠
× exp

⎛⎜⎝−
|z|2δdσ 2

wd

[(
HHH

)−1
]
i,i

4

⎞⎟⎠ −−−−→
K→∞ 0,

(12)

where Q′ is the cardinal of the set of all possible values

Wi = c1
∑ 1

c1
−1

l=1 [W]i,l, and p′
i is the probability that Wi

takes the value α
′
i .

Proof. See Appendix 2.

The assumption of the Gaussianity of the post-
processing noise has been always assumed. For time-
division multiplexed training, this assumption is well
founded, since the post-processing noise converges to
a Gaussian distribution in the asymptotic regime (see
Theorem 1).
In the superimposed training case, the distortion caused

by the presence of data symbols affects the distribution
of the post-processing noise which becomes asymptot-
ically Gaussian mixture distributed. To assess the sys-
tem performance in this particular case, we will start
from the elementary definition of the bit error rate. Let
�Wi,k denote the post-processing noise experienced at
the ith antenna at time k (we omit the subscript d for
ease of notations). As it has been previously shown that
�Wi,k behaves as a Gaussian mixture random variable.
Let σ 2

d be the asymptotic variance of �Wi,k , i.e., σ 2
d =

σ 2
wd

δd
[(
HHH

)−1
]
i,i
.

Using the symmetry of the transmitted data, the BER
expression at the ith branch under QPSK constellation
and for a given channel realization is given by

BERi = 1
2
P

⎡⎣� (Ŵi,k
)

> 0|� (Wi,k
) = −

√
σ 2
w
2

⎤⎦
+ 1

2
P

⎡⎣� (Ŵi,k
)

< 0|� (Wi,k
) =

√
σ 2
w
2

⎤⎦
= 1

2
P

⎡⎣� (�Wi,k
)

>

√
σ 2
w
2

⎤⎦
+ 1

2
P

⎡⎣� (�Wi,k
)

< −
√

σ 2
w
2

⎤⎦
In the asymptotic regime,

(
�Wi,k

)
converges to a

mixed Gaussian distribution with the probability density
function

f (x) = 1√
πσ 2

d

√
Q′∑

s=1
ps exp

⎛⎜⎜⎝−
(x + c1ε

√
σ 2
wd
2 − �(αs))2

σ 2
d

⎞⎟⎟⎠ .



Kammoun and Abed-Meraim EURASIP Journal onWireless Communications and Networking 2013, 2013:227 Page 6 of 14
http://jwcn.eurasipjournals.com/content/2013/1/227

Hence, conditioned on the channel, the asymptotic bit
error rate can be approximated by

BERi,d = 1
2

1√
πσ 2

wd

∫ +∞√
σ2wd
2

√
Q′∑

s=1
p

′
s

× exp

⎛⎜⎜⎝−
(x − c1

√
σ 2
wd
2 − �(αs))2

σ 2
wd

⎞⎟⎟⎠ dx

+ 1
2

1√
πσ 2

wd

∫ −
√

σ2wd
2

−∞

√
Q′∑

s=1
p

′
s

× exp

⎛⎜⎜⎝−
(x + c1

√
σ 2
wd
2 − �(αs))2

σ 2
wd

⎞⎟⎟⎠ dx.

Finally, the proposed approximation of the BER can
be obtained by averaging with respect to the channel
realizationH, thus giving

BERd =E
1
2

√
Q′∑

s=1
p

′
sQ

⎛⎜⎜⎝
√

σ 2
w

σ 2
wd

(1 − c1) − �(αs)√
σ 2
wd
2

⎞⎟⎟⎠

+ 1
2

√
Q′∑

s=1
p

′
sQ

⎛⎜⎜⎝
√

σ 2
wd

σ 2
wd

(1 − c1) + �(αs)√
σ 2
wd
2

⎞⎟⎟⎠ .

For QPSK constellations, it can be shown that
√
Q′ =

1
c1 , where

1
c1 = N

K is assumed to be integer. Moreover, the
set S of the values taken by �(αs) can be given by

S =
⎧⎨⎩�(αs) = c1

√
σ 2
wd

2
(
1
c1

− 2s − 1), s ∈
{
0, · · · , 1

c1
− 1
}⎫⎬⎭ .

with probability ps = (
1
c1 −1
s )

2
1
c1 −1

.

Let γd = σ 2
wd
σd

, then the BER expression becomes

BERd = E

1
c1

−1∑
s=0

( 1
c1

−1
s
)

2
1
c1

−1
Q(2sc1

√
γd), (13)

where the expectation is taken over the distribution of γd
given by

fγd (x) = (Kδd)
M−K+1xM−K

(M − K)!
exp(−Kδdx).

The computation of the BER can be treated similarly to
the TDMT scheme, thus leading to

BERd = 1

2
1
c1

−1

1
c1

−1∑
s=0

( 1
c1 − 1

s

)
J(M−K+1,Kδd, 4s2c21).

(14)

5 Optimal power allocation
So far, we have provided the approximations of the BER
for the TDMT and DDST schemes. As it has been pre-
viously shown, these expressions depend on the power
allocated to data and training, in addition to other param-
eters. While the system has no control over the noise
power or the number of transmitting and receiving anten-
nas, it still can optimize the power allocation in such a
way tominimize this performance index. Next, we provide
for the TDMT and DDST schemes the optimal data and
training power amounts that minimize the BER under the
constraint of a constant total power.

5.1 Optimal power allocation for the TDMT scheme
Referring to the expressions of BER, we can easily see
that the optimal amount of power allocated to data
and pilot for the TDMT scheme is the one that min-
imizes δt . Let c̃1 = (1 + r)c1, then minimizing δt
with respect to σ 2

wt and σ 2
Pt under the constraint that

N1σ
2
Pt +N2σ 2

wt = (N1+N2)σ
2
T (σ 2

T being the mean energy
per symbol) results in the following lemma:

Lemma 1. The optimal power allocation minimizing the
BER under

σ 2
wt =

(1 + r)σ 2
T

√
r
(
(1 + r)σ 2

T + c̃1σ 2
v (c2+1)
c2−1

)
r
(√

r
(
(1 + r)σ 2

T + c̃1σ 2
v (c2+1)
c2−1

)
+
√
c̃1(
(
(1 + r)σ 2

T + rσ 2
v (c2+1)
c2−1

)) , (15)

σ 2
Pt =

r(1 + r)σ 2
T

√
c̃1
(
(1 + r)σ 2

T + rσ 2
v (c2+1)
c2−1

)
r
(√

r
(
(1 + r)σ 2

T + c̃1σ 2
v (c2+1)
c2−1

)
+
√
c̃1
(
(1 + r)σ 2

T + rσ 2
v (c2+1)
c2−1

)) . (16)
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5.2 Optimal power allocation for the DDST scheme
For the DDST scheme, we can deduce from (13) that maximizing γd leads to minimize the BER. To maximize γd, we
need to optimize δd as a function of σ 2

wd
and under the constraint that σ 2

Pd + (1 − c1)σ 2
wd

= σ 2
T . After straightforward

calculations, we can find that the optimal values for σ 2
wd

and σ 2
Pd are given by

Lemma 2. Under the data model, the optimal power allocation minimizing the BER under a total power constraint σ 2
T

is given by

σ 2
wd

=

√
(1 − c1)

(
σ 2
T + c1(c2+1)σ 2

v
c2−1

)
σ 2
T

(1 − c1)
(√

(1 − c1)
(
σ 2
T + c1(c2+1)σ 2

v
c2−1

)
+
√
c1σ 2

T + c1(c2+1)(1−c1)σ 2
v

c2−1

) , (17)

σ 2
Pd =

√
c1σ 2

T + c1(c2+1)(1−c1)σ 2
v

c2−1 σ 2
T√

(1 − c1)
(
σ 2
T + c1(c2+1)σ 2

v
c2−1

)
+
√
c1σ 2

T + c1(c2+1)(1−c1)σ 2
v

c2−1

. (18)

6 Discussion
To get more insight into the proposed analysis, we provide
here some comments and workouts on the theoretical
results derived in the previous sections.

6.1 High SNR behavior of the BER
At high SNRs, the error variance parameters δt and δd
are close to zero, and hence, using a first-order Taylor
expansion of the BER expressions in (9) and (14), we
obtain

BERt ≈ 1
2M−K+1 (Kδt)

M−K+1
(
2(M − K) + 1
M − K + 1

)
(19)

BERd ≈ 1

2
1
c1

+ O((Kδd)
M−K+1), (20)

where O(x) denotes a real value of the same order of mag-
nitude as x. From these approximated expressions, one
can observe that the BER at the TDMT scheme is a mono-
mial function of the estimation error variance parameter
δ and the number of transmitters K. For example, if the
noise power is decreased by a factor 2, then the BER will
decrease by 2M−K+1. The diversity gain is thus equal to
M − K + 1, which is in accordance with the works in
[16] and [5]. Also, we observe that for the DDST case,
we have a floor effect on the BER (i.e., the BER is lower
bounded by 1

2
1
c1
) due to the data distortion inherent to this

transmission scheme.

6.2 Gaussian vs. Gaussian mixture model
In our derivations, we have found that the post-processing
noise in the DDST case behaves asymptotically as a Gaus-
sian mixture process, while in most of the existing works,
the noise is assumed to be asymptotically Gaussian dis-
tributed. In fact, one can show that for large sample sizes
(i.e., when c1 −→ 0), the Gaussian mixture converges to

a Gaussian distribution, allowing us to retrieve the stan-
dard Gaussian noise assumption. However, for small or
moderate sample sizes, the considered Gaussian mixture
model leads to a much better approximation of the BER
analytical expression than the one we would obtain with
a post-processing Gaussian noise model. In other words,
Theorem 2 results allow us to derive closed-form expres-
sions for the BER that are valid for relatively small sample
sizes.

6.3 Workouts on the optimal power allocation
expressions of the TDMT scheme

We consider here two limit cases: (1) The high SNR case,
where σ 2

v � σ 2
T and (2) the case of high-dimensional sys-

tem (the number of transmit antennae is of the same order
of magnitude as the number of receiver antennae), where
c2 − 1 � 1. From (16), the data-to-pilot power ratio can
then be approximated by

case (1)
σ 2
wt

σ 2
Pt

≈ N1√
N2K

(21)

case (2)
σ 2
wt

σ 2
Pt

≈ N1
N2

. (22)

Equation (21) shows that the optimal power allocation
in the high SNR case realizes a kind of trade-off between
the pilot size and its power, such that the total energy
N1σ

2
Pt is kept constant. This suggests us to use the smallest

possible pilot size that meets the technical constraint of
limited transmit power, to increase the effective channel
throughput without loss of performance.
Equation (21) shows that in the difficult case of large

dimensional system, one needs to allocate the same total
energy to pilots and to data symbols, i.e., N1σ

2
Pt ≈

N2σ 2
wt . In other words, we should give similar importance
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(in terms of power allocation) to the channel estimation
and to the data detection.

6.4 Workouts on the optimal power allocation
expressions of the DDST scheme

A similar workout is considered here for the DDST
scheme. We consider the two previous limit cases, and we
assume that the sample size is much larger than the num-
ber of transmitters, i.e., N � K . In this context, we obtain
the following approximations for the data-to-pilot power
ratio:

case (1)
σ 2
wd

σ 2
Pd

≈
√
N
K

(23)

case (2)
σ 2
wt

σ 2
Pt

≈ 1. (24)

Again, we observe that for the large-dimensional system
case, one needs to allocate the same total energy to pilot
and to the data. For high SNRs, one observes a kind of
trade-off between the pilot power and size, but in a differ-
ent way than the TDMT case. In fact, if we increase by a
factor of 4 the sample size, one can increase the data-to-
pilot power ratio by a factor of 2 without affecting the BER
performance.

6.5 High SNR BER comparison of the two pilot design
schemes

For the DDST scheme, the BER expression can be lower
bounded as follows (using the convexity of Q(

√
bx) as a

function of b):

BERd = 1

2
1
c1

−1

1
c1

−1∑
s=0

( 1
c1 − 1

s

)
J(M − K + 1,Kδd, 4s2c21)

≥ J(M − K + 1,Kδd ,
1

2
1
c1

−1

1
c1

−1∑
s=0

( 1
c1 − 1

s

)
4s2c21)

= J(M − K + 1,Kδd, 1 − c1)
≥ J(M − K + 1,Kδd , 1),

the latter inequality comes from the fact that J(m, a, b) is a
decreasing function of its last argument. Now, in the high
SNR and large sample size scenario (i.e., for σ 2

v /σ 2
T � 1

and N � N1,K), we have δt ≈ δd and by continuity
J(M − K + 1,Kδd, 1) ≈ J(M − K + 1,Kδt , 1) = BERt .
Consequently, in this context, the TDMT scheme is better
than the DDST in terms of BER, i.e.,

BERd ≥ BERt .

7 Simulations
Despite being valid only for the asymptotic regime, our
results are found to yield a good accuracy even for very
small system dimensions. In this section, we present the

simulation results that compare between the TDMT and
DDST schemes.

7.1 Performance comparison between DDST- and
TDMT-based schemes

In this section, except whenmentioning, we consider a 2×
4 MIMO system (K = 2, M = 4) with a data block size
N = 32.

7.1.1 Bit error rate performance
Figure 1 plots the empirical and theoretical BER under
QPSK constellation for N = 32, K = 2, and M = 4 for
the TDMT- and DDST-based schemes. All comparisons
are conducted in the context when both schemes have the
same total energy. The number of training symbols is set
to N1 = 2 (N2 = 30) for the TDMT scheme.
For low SNR values (SNR below 6 dB), both schemes

achieve approximatively the same BER performance, and
therefore, the DDST scheme outperforms its TDMT
counterpart in terms of data rate, since it has a bet-
ter bandwidth efficiency. For high SNR values, the noise
caused by the data distortion is higher than the addi-
tive Gaussian noise, thus affecting the performance of the
DDST scheme.

7.1.2 Applications
To compare the efficiency of the TDMT and DDST
schemes, we consider applications in which the BER
should be below a certain threshold, say 10−2. This may
be the case for instance of circuit-switched voice applica-
tions. Note that for non-coded systems, a target BER of
10−2 is commonly used.
Application 1. In this scenario, we set the SNR � σ 2

T
σ 2
v
to

15 dB. We then vary the ratio c1 = K
N from 0.01 to 0.5.

Since we considerK = 2 andM = 4,N = K/c1 varies also
with c1. For each value ofN, we compute the BER using (9)
and (14). Figure 2 illustrates the obtained results. We also
superposed in the same plot the empirical results for the
TDMT and the DDST scheme. The results show a good
match, thereby supporting the usefulness of the derived
results.
We note that the DDST scheme may be interesting for

long enough frames (N ≥ 16). For small frames (high dis-
tortion ratio c1), the distortion of the data becomes too
high, thus reducing the interest of the DDST scheme.
Application 2. In this experiment, we propose to deter-

mine for the TDMT scheme (K = 2,M = 4,N = 32)
the optimal ratio N2

N1
that has to be used to meet a certain

quality of service. For that, we consider a scenario where
the BER should be below 10−2. Using (15), (16), and (9),
we determine the minimum number of required training
symbols to meet the BER lower bound requirement. We,
then, plot the corresponding ratio r = N2

N1
with respect to
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Figure 1 Theoretical and empirical BER for the TDMT- and DDST-based schemes.

the SNR. We note that if the SNR is below 2 dB, the BER
requirement could not be achieved. This is to be com-
pared with the DDST scheme where the SNR should be
set at least to 10.5 dB so as to meet the BER lower bound
requirement as it can be shown in Figure 3. Moreover, for
a SNR more than 8.5 dB, the minimum number of pilot
symbols for channel identification (equal toK) is sufficient
to meet the BER requirement.

8 Conclusion
In this paper, we have carried out theoretical studies on
BER for two training-based schemes, namely, the basic
time-division multiplexed training (TDMT) scheme and
the data-dependent superimposed training (DDST)-based
scheme. To make derivations possible, the asymptotic
regime, where all the system dimensions grow to infin-
ity with a constant pace, has been considered. For each
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Figure 2 BER with respect to c1 when K = 2,M = 4, and SNR = 15 dB.
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Figure 3 Required r versus SNR for BER ≤ 10−2.

scheme, we have derived closed-form approximations for
the BER. We have also determined optimal power alloca-
tions of power between data and training that minimize
the asymptotic BER.

Appendices
Appendix 1
Proof of Theorem 1
In the sequel, we propose to determine the asymptotic dis-
tribution of the post-processing noise of each entry of the
matrix �Wt . Actually, the (i, j) entry of �Wt is given by

(�Wt)i,j = − h#i �Htwj + h#i
(
IK − �HtH#) v2, j

+ h̃i(�Ht)
H�v2, j,

where h#i and h̃i denote the ith row of H# and
(
HHH

)−1,
respectively, and wj and v2,j denote the jth columns of
Wt and V2, respectively. Conditioned on H, V1, and Wt ,
(�Wt)i, j is a Gaussian random variable with mean equal
to −h#i �Htwj and variance

σ 2
w,K = σ 2

v

(
h#i − h#i �HtH#+ h̃i(�Ht)

H�
)

×
((
h#i
)H − (H#)H�HH

t
(
h#i
)H + ��Ht

(
h̃i
)H)

.

Since our proof will be based on the ‘characteristic func-
tion’ approach, we shall first recall the expression of the
characteristic function for complex random variables:

Theorem 3. Let Xn be a complex Gaussian random vari-
able with mean mX,n and variance σ 2

X,n, such that E(Xn −
mX,n)2 = 0. Then, Xn can be seen as a two-dimensional

random variable corresponding to its real and imaginary
parts. The characteristic function of Xn is, therefore, given
by

E
[
exp
(
j�(z∗Xn)

)] = exp
(
j� (z∗mX,n

))
× exp

(
−1
4
|z|2σ 2

X,n

)
.

Applying Theorem 3, the conditional characteristic
function of (�W)i,j can be written as

E
[
exp
(
j� (z∗ (�Wt)i,j

)) |V1,H,Wt
]

= exp
(−j� (z∗h#i �Htwj

))
exp
(

−1
4
|z|2σ 2

w,K

)
.

(25)

To remove the condition expectation on V1 and Wt ,
one should prove that σ 2

w,K converges almost surely to a
deterministic quantity. Actually, σ 2

w,K can be expanded as
follows:

σ 2
w,K = σ 2

v h#i
(
h#i
)H + σ 2

v h#i �Ht
(
HHH

)−1
(�Ht)

(
h#i
)

− 2σ 2
v � (h#i �Ht (HH)−1 (h#i ))

+ σ 2
v h̃i�HH

t��Ht
(
h̃i
)H

.

Let

Aσ ,K = σ 2
v h#i �Ht

(
HHH

)−1
(�Ht)

H(h#i )H
Bσ ,K = σ 2

v h̃i�HH
t��Ht

(
h̃i
)H

εσ ,K = h#i �Ht
(
HHH

)−1 (h#i )H.
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The limiting behavior of Aσ ,K can be derived using the
following known results describing the asymptotic behav-
ior of an important class of quadratic forms:

Lemma 3. [17, Lemma 2.7] Let x = [X1, · · · ,XN ]T be a
N × 1 vector, where the Xn are centered i.i.d. complex ran-
dom variables with unit variance. Let A be a deterministic
N × N complex matrix. Then, for any p ≥ 2, there exists a
constant Cp depending on p only, such that

E

∣∣∣∣ 1N xHAx − 1
N
Tr(A)

∣∣∣∣p ≤ Cp
Np

((
E|X1|4Tr

(
AAH))p/2

+E|X1|2pTr
((
AAH)p/2)) .

(26)

Noticing that Tr
(
AAH

) ≤ N‖A‖2 and that
Tr
((
AAH

)p/2) ≤ N‖A‖p, we obtain the simpler inequality

E

∣∣∣∣ 1N xHAx − 1
N
Tr(A)

∣∣∣∣p ≤ Cp
Np/2 ‖A‖p

((
E|X1|2

)p/2
+E|X1|2p

)
.

(27)

Hence, if A and x have finite spectral norm and finite
eight moment, respectively, we can conclude, using
Borel-Cantelli lemma, about the almost convergence of
the quadratic form 1

N xHAx, thus yielding the following
corollary:

Corollary 1. Let x = [x1, · · · , xN ]T be aN×1 vector, where
the entries xi are centered i.i.d. complex random variables
with unit variance and finite eight order. Let A be a deter-
ministic N × N complex matrix with bounded spectral
norm. Then,

1
N
xHAx − 1

N
Tr(A) −→ 0 almost surely.

By Corollary 1, the asymptotic behavior of Aσ ,K is then
given by

Aσ ,K −
σ 2
v

[(
HHH

)−1
]
i,i

N1σ
2
P

Tr
(
HHH

)−1 −→ 0

almost surely.

Since 1
KTr

(
HHH

)−1 converges asymptotically to 1
c2−1 as

the dimensions go to infinity [18], we get

Aσ ,K − c1(1 + r)σ 4
v

(c2 − 1)σ 2
Pt

[(
HHH

)−1
]
i,i

−→ 0.

Note that Theorem 1 can be applied since the smallest
eigenvalue of the Wishart matrix (HH) are almost surely
uniformly bounded away from zero by (1−√c2)2 > 0 [19].

Before determining the limiting behavior of Bσ ,K , we
shall need the following lemma:

Lemma 4. Let Y =
(

1√
K
yi,j
)M,K

i=1,j=1
be a M × K with

Gaussian i.i.d entries. Then, in the asymptotic regime given
by

M,K → ∞ such that
M
K

→ c2 > 1,

we have[(
YHY

)−2
]
i,i

− c2
c2 − 1

([(
YHY

)−1
]
i,i

)2
→ 0.

Proof. Without loss of generality, we can restrict our
proof to the case, where i = 1. Let y1, · · · , yK denote the
columns of Y. Matrix YHY is then given by

YHY =
⎡⎢⎣y

H
1y1 yH1y2 · · · yH1yK
...

...
yHKy1 yHKy2 · · · yHKyK .

⎤⎥⎦
Let vy =

[[(
YHY

)−1
]
1,2

, · · · ,
[(
YHY

)−1
]
1,K

]
. Then, using

the formula of the inverse of block matrices, we get

vy = −
[(
YHY

)−1
]
1,1

yH1 Ỹ
(
ỸỸ
)−1 ,

where Ỹ = [y2, · · · , yK ].
On the other hand,[(

YHY
)−2
]
1,1

=
([(

YHY
)−1
]
1,1

)2
+ vyvHy

=
([(

YHY
)−1
]
1,1

)2
×
(
1 + yH1 Ỹ

(
ỸHỸ

)−2 ỸHy1
)
.

Using Corollary 1, we have

yH1 Ỹ
(
ỸHỸ

)−2 ỸHy1− 1
K
Tr
(
ỸHỸ

)−1 → 0 almost surely.

Since 1
KTr

(
ỸHỸ

)−1 tends to 1
c2−1 almost surely, we get

the desired result.

We are now in position to deal with the term Bσ ,K . Using
Corollary 1, we get

Bσ ,K − σ 4
v (M − K)

N1σ
2
P

[(
HHH

)−2
]
i,i

→ 0 almost surely.

Hence,

Bσ ,K − σ 4
v c1(c2 − 1)(1 + r)

σ 2
P

[(
HHH

)−2
]
i,i

→ 0

almost surely.



Kammoun and Abed-Meraim EURASIP Journal onWireless Communications and Networking 2013, 2013:227 Page 12 of 14
http://jwcn.eurasipjournals.com/content/2013/1/227

Using Lemma 4, we get that

Bσ ,K − σ 4
v c1c2(1 + r)

σ 2
P

([(
HHH

)−1
]
i,i

)2
→ 0

almost surely.

It can be shown that
[(
HHH

)−1
]
i,i

converges almost

surely to 1
c2−1 (its inverse is the mean of independent

random variables [12]). Then,

Bσ ,K − σ 4
v c1c2(1 + r)
σ 2
P (c2 − 1)

[(
HHH

)−1
]
i,i

→ 0 almost surely.

To prove the almost sure convergence to zero of εσ ,K ,
we will be basing on the following result, about the
asymptotic behavior of weighted averages:

Theorem 4. Almost sure convergence of weighted aver-
ages [20] Let a = [a1, · · · , aN ]T be a sequence of N × 1
deterministic real vectors with supN 1

N aTNaN < + ∞. Let
xN = [x1, · · · , xN ] be a N × 1 real random vector with
i.i.d. entries, such that Ex1 = 0 and E|x1| < + ∞. There-
fore, 1

N aTNxN converges almost surely to zero as N tends to
infinity.

This theorem was proven in [20] for real variables. Since
we are interested in the asymptotic convergence of the
real part of εσ ,K , it can be possible to transpose our prob-
lem into the real case. Indeed, let x = VH

1h#i and a =
PH
t
(
HHH

)−1 h#i , then � (εσ ,K
)
is given by

� (εσ ,K
) = 1

N1σ
2
P

�(xHa).

Let ar and xr (ai and xi, respectively) denote, respectively,
the real parts (respectively, imaginary parts) of a and x.
Then,

� (εσ ,K
) = 1

N1σ
2
P
aTr xr − aTi xi.

Referring to Theorem 4, the convergence to zero of
� (εσ ,K

)
is ensured if 1

2N1

(
aTr ar + aTi ai

) = 1
2N1

‖a‖22 is
finite. This is almost surely true, since

1
N1σ

2
P

‖a‖22 = 1
N1σ

2
P
Tr
(
PH
t
(
HHH

)−1 h#i
(
h#i
)H (HHH

)−1 h#i
)

= h#i
(
HHH

)−2 (h#i )H <‖ (HHH
)−2 ‖2

[(
HHH

)−1
]
i,i
.

This leads to

σ 2
w,K − σ̃ 2

w,K −→ 0 almost surely,

where σ̃ 2
w,K is given by

σ̃ 2
w,K = σ 2

v

[(
HHH

)−1
]
i,i

+ c1(c2 + 1)(1 + r)σ 4
v

(c2 − 1)σ 2
P

[(
HHH

)−1
]
i,i
.

Substituting σ 2
w,K by its asymptotic equivalent in (25),

we get

E
[
exp
(
j� (z∗ (�Wt)i,j

)) |H,Wt
]

− E
[
exp
(−j� (z∗h#i �Htwj

)) |W,H
]

× exp
(

−1
4
|z|2σ̃ 2

w,K

)
−→ 0 almost surely.

Also conditioning onWt andH, h#i �Htwj is a Gaussian
random variable with zero mean and variance

σ 2
m,K = σ 2

v
N1σ

2
P
h#iwj

Hwj (hi)# .

Since 1
KwjHwj −→ σ 2

wt almost surely, we get that σ 2
m,K

converges almost surely to σ̃ 2
m,K , where

σ̃ 2
m,K = c1(1 + r)σ 2

v σ 2
wt

σ 2
Pt

[(
HHH

)−1
]
i,i
.

Using the fact that the characteristic function of
h#i �Htwj is

E
[
exp
(−j� (z∗h#i �Htwj

)) |W,H
] = exp

(
−1
4
|z|2σ 2

m,K

)
,

we obtain that conditionally on the channel

E
[
exp
(
j� (z∗ (�Wt)i,j

))]
− exp

(
−1
4
|z|2 (σ̃ 2

m,K + σ̃ 2
w,K
)) −→ 0 almost surely.

We end up the proof by noticing that σ̃ 2
m,K + σ̃ 2

w,K =
σ 2
wtδt

[(
HHH

)−1
]
i,i
.

Appendix 2
Proof of Theorem 2
For the DDST scheme, the post-processing noise matrix
�Wd is given by

�Wd = − WJ − H#�HdW (IN − J)
+ (H# − H#�HdH#)V (IN − J)

+ (HHH
)−1

�HH
d�V (IN − J)

= − WJ − H#�HdW (IN − J) + H#V (IN − J)
− H#�HdH#V (IN − J)

+ (HHH
)−1

�HH
d�V (IN − J) .

Hence,

(�Wd)i,j = − w̃iJj − h#i VPH (PPH)−1 W
(
ej − Jj

)
+ h#i V

(
ej − Jj

)− h#i VPH (PPH)−1 H#V
(
ej − Jj

)
+ h̃i

(
PPH)−1 PVH�V

(
ej − Jj

)
,

where ej and Jj denote the jth columns of IN and J,
respectively, and w̃i denotes the ith row of the matrixW.
Let v1 = V

(
ej − Jj

)
, and v2 = vec(V

(
PPH

)−1 P).
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The vector
[
vT1 , v

T
2
]T is a Gaussian vector. Since

E
[
v1vH2

] = 0, we conclude that v1 and v2 are independent.
Then, v1 and V2 = V

(
PPH

)−1 PH are also independent.
Moreover, E [v1v1] = σ 2

v

(
1 − K

N

)
IN .

Conditioning on V2, H, and W, (�Wd)i,j is a Gaus-
sian random variable with a mean equal to −w̃iJj −
h#i V2W

(
ej − Jj

)
and a variance σ 2

wd ,N equal to

σ 2
wd ,N =E

[(
h#i − h#i V2H# + h̃iVH

2�
)

×v1vH1
((
h#i
)H − (H#)HVH

2
(
h#i
)H + �V2h̃H

i

)
|V2
]

=E

[
h#i v1v1

(
h#i
)H]+ E

[
h#i V2H#v1v1

(
H#)HVH

2
(
h#i
)H]

− 2E
[
�
(
h#i V2H#v1v1

(
h#i
)H)]

+ σ 2
v (1 − K

N
)̃hiV2�V2(̃hi)

H

= (1 − K
N

)σ 2
v

[(
HHH

)−1
]
i,i

+ σ 2
v (1 − K

N
)h#i V2

(
HHH

)−1 V2
(
h#i
)

− 2(1 − K
N

)σ 2
v �
(
h#i V2H#(h#i )H)

+ σ 2
v (1 − K

N
)̃hiV2�V2(̃hi)

H.

Using the same techniques as before, it can be proved
that

(1 − K
N

)σ 2
v h#i V2

(
HHH

)−1 V2
(
h#i
)H

− c1(1 − c1)σ 4
v

(c2 − 1)σ 2
P

[(
HHH

)−1
]
i,i

→ 0

almost surely.

and also that

�
(
h#i V2H#(h#i )H) −→ 0 almost surely.

On the other hand, we have

σ 2
v (1 − c1)̃hiVH

2�V2
(
h̃i
)H

− c1σ 4
v (1 − c1)(M − K)

Nσ 2
P

[(
HHH

)−2
]
i,i

→ 0

almost surely.

Since
[(
HHH

)−2
]
− c2

c2−1

[(
HHH

)−1
]2
i,i

→ 0 by Lemma 4,
we get that

σ 2
v (1 − c1)̃hiVH

2�V2
(
h̃i
)H

− σ 4
v (1 − c1)c1c2

(c2 − 1)

[(
HHH

)−1
]
i,i

→ 0.

Therefore,

σ 2
wd ,N − σ̃ 2

wd ,N −→ 0 almost surely,

where,

σ̃ 2
wd ,N =

(
σ 2
v (1 − c1) + c1(c2 + 1)(1 − c1)σ 4

v
(c2 − 1)σ 2

Pd

)
×
[(
HHH

)−1
]
i,i
.

Consequently,

E
[
exp
(
j� (z∗ (�W)i,j

)) |H,W,V2
]

= E
[
exp
(−j� (z∗w̃iJj + z∗h#i V2W

(
ej − Jj

))) |W, v2
]

× exp
(

−1
4
|z|2σ̃ 2

wd ,N

)
.

Conditioning on W and H, w̃iJj + h#i V2W
(
ej − Jj

)
is a

Gaussian random variable with a mean equal to w̃iJj and a
variance σ 2

wm,N given by

σ 2
md ,N = E

[
h#i V2W

(
ej − Jj

) (
eHj − JHj

)
WHVH

2
(
h#i
)H|W,H

]
= σ 2

v
Nσ 2

Pd

[(
HHH

)−1
]
i,i

(
eHj − JHj

)
WWH (ej − Jj

)
.

Using Corollary 1, we can easily prove that

σ 2
md ,N − σ̃ 2

md ,N −→ 0 almost surely,

where

σ̃ 2
md ,N = (1 − c1)σ 2

wd
σ 2
v

σ 2
Pd

[(
HHH

)−1
]
i,i
.

Conditioning only on H, the conditional characteristic
function satisfies:

E
[
exp
(
j� (z∗ (�Wd)i,j

)) |H]− E
[
exp
(−j� (z∗w̃iJj

))]
× exp

(
−1
4
|z|2
(
σ̃ 2
wd ,N + σ̃ 2

md ,N

))
−→ 0.

Giving the structure of the matrix J, w̃iJj involves the
average of 1

c1 symmetric-independent and identically dis-
tributed discrete random variables, and therefore,

E
[
exp
(−j� (z∗w̃i

))] =
Q∑
i=1

pi exp
(
j� (z∗αi

))
,

where Q is the set of all possible values of Wi,k =
c1
∑ 1

c1
i=1Wi,k , and pi is the probability that Wi,k takes the

value αi.
Consequently,

E
[
exp
(
j� (z∗ (�Wd)i,j

)) |H] =
Q∑
i=1

pi exp
(
j� (z∗αi

))
× exp

(
−1
4
|z|2
(
σ̃ 2
md ,N + σ 2

wd ,N

))
.

We conclude the proof by noting that

σ̃ 2
md ,N + σ 2

wd ,N = σ 2
wd

[
(HH)−1]

i,i δd .
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