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Abstract

In this paper, the challenging problem of joint channel estimation and data detection for multiple-input
multiple-output orthogonal frequency division multiplexing systems operating in time-frequency dispersive channels
under unknown background noise is investigated. Based on two different but equivalent signal models, two
expectation-maximization algorithm-based iterative schemes for joint data detection and channel and noise variance
estimation are proposed. The first scheme jointly detects data and estimates the channel and noise variance, but the
computational complexity is high, owing to the simultaneous detection and estimation for all antennas. To reduce
the computational complexity, a complexity-reduced scheme that is detecting data and estimating channel for only
one antenna during each iteration and holding the unknown quantities of other antennas to their last values is
proposed, whose performance only slightly degrades compared to the first scheme. Moreover, both schemes are
derived as closed-form expressions, and therefore, our proposed schemes are free of exhaustive search. Simulation
results demonstrate quick convergence of the proposed algorithm, and after convergence, the performance of the
proposed algorithm is close to that of the optimal channel estimation and data detection case, which assumes full
training and perfect channel state information.

Keywords: Multiple-input multiple-output (MIMO); Orthogonal frequency division multiplexing (OFDM);
Time-frequency (TF) dispersive channels; Unknown noise variance; Expectation-maximization (EM)

1 Introduction
Multiple-input multiple-output (MIMO) communication
[1] can significantly increase the throughput without
increasing the transmit power and additional bandwidth.
Orthogonal frequency division multiplexing (OFDM)
[2] can provide high data rate transmission capabil-
ity and is robust against multipath (time-dispersive)
fading channels. MIMO combined with OFDM (MIMO-
OFDM) [3] has been adopted in various interna-
tional standards such as 3GPP-LTE, WiMAX, and
IMT-Advanced.
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Meanwhile, vehicles with increased speeds, such as
high-speed cars, subways, and trains which exceed 350
km/h, play an increasingly important role in peoples’
lives.
Consequently, mobility support is widely regarded as

one of the key features in current and future wireless
communication systems. High mobility causes the trans-
mission channel to change rapidly in time, which results in
frequency dispersion of the channel. For coherent detec-
tion in MIMO-OFDM systems, channel state information
(CSI) is indispensable [3].
CSI acquisition is particularly challenging in time-

frequency (TF) dispersive channels because channel
responses vary sample by sample, and therefore, the
number of unknown channel parameters in an OFDM
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symbol period increases significantly (much greater than
in frequency-nondispersive channels). Furthermore, in
practical communication scenarios, the knowledge of
the power of background noise is required to per-
form many signal processing algorithms, such as chan-
nel estimation [4] and decoding [5] in MIMO-OFDM
systems.
In this paper, joint data detection and channel and

noise variance estimation for MIMO-OFDM systems
operating in TF dispersive channels under unknown
background noise are investigated. We employ the
expectation-maximization (EM) algorithm [6,7], which
is an iterative numerical method employed to com-
pute the maximum likelihood (ML) estimates, to
develop an iterative algorithm to solve this challenging
problem.
For MIMO systems, the literature along these lines can

be categorized as follows:
EM for channel estimation and data detection

assuming the noise variance is known: EM-based joint
channel estimation and data detection algorithms
in time-nondispersive and frequency-nondispersive
channels (TnDFnD channels) are proposed in [8-10],
and in time-dispersive and frequency-nondispersive
channels (TDFnD channels) are proposed in [11-13],
respectively. However, the maximization step (M-step)
for data detection proposed in these papers is not
obtained as a closed-form solution, and therefore, a
brute-force searching over all of the possibilities is
required.
EM for channel and noise variance estimation: In

TnDFnD channels, EM-based joint channel and noise
variance estimation algorithms are proposed in [14-16].
However, data detection is obtained by an extra ML esti-
mator and a maximizing a posteriori probabilities (APP)
detector in [14,15], respectively.
In [16], a full training sequence is adopted to

perform the proposed EM algorithm, and there-
fore, no data detection is addressed. In TDFnD
channels, EM-based joint channel and noise vari-
ance estimation algorithms are proposed in [17-19].
However, data detection is not addressed in these
papers.
EM for data detection and noise variance estimation:

In TnDFnD channels, an EM-based joint data detection
and noise variance estimation algorithm is proposed in
[20]. However, the channel estimate is only obtained by
pilot symbols and is not included in the EM updating
process.
EM only for data detection assuming the noise vari-

ance is known: In TnDFnD channels, EM-based data
detection algorithms are proposed in [21,22]. How-
ever, channel estimation is not addressed in [21], and
the channel knowledge is assumed ideally known at

the receiver in [22]. In TF channels, an EM-based
data detection algorithm is proposed in [23] to solve
a maximum a posteriori probability (MAP) detection
problem. However, the data estimate is not given by
a closed form, and therefore, the exhaustive search is
required.
EM only for channel estimation assuming the noise vari-

ance is known: In TnDFnD channels, EM-based channel
estimation algorithms are proposed in [24-28]. How-
ever, the data estimates are obtained by extra MAP
estimators in [24-26] and APP estimators in [27,28],
respectively. In TDFnD channels, EM-based channel
estimation algorithms are proposed in [29-32]. How-
ever, the data estimates are obtained by an extra
BI-GDFE detector in [29], a minimum mean-squared
error (MMSE) detector in [30], a trellises approach in
[31], respectively, and data detection is not addressed
in [32].
In this paper, based on two different but equiva-

lent signal models, two EM algorithm-based iterative
schemes which integrate data detection and channel
and noise variance estimation are proposed in a con-
sistent way so as to iteratively improve the system
performance.
The first scheme jointly detects data and estimates

the channel and noise variance, but the computational
complexity is high, owing to the simultaneous detec-
tion and estimation for all antennas. To reduce the
computational complexity of the first scheme, another
scheme that performs data detection and channel esti-
mation for only one antenna during each iteration and
holding the unknown quantities of other antennas to their
last values is proposed, whose performance only slightly
degrades compared to the first scheme. Furthermore,
the estimates of data, channel, and noise variance are
all obtained as closed-form results, and therefore, the
proposed schemes are free of exhaustive search. Sim-
ulation results demonstrate quick convergence of the
proposed algorithm, and after convergence, the per-
formance of the proposed iterative algorithm is close
to that of the optimal channel estimation and data
detection case, which assumes full training and perfect
CSI.
The remainder of this paper is organized as follows. The

systemmodel for MIMO-OFDM systems operating in TF
dispersive channels under unknown background noise is
introduced in Section 2.
In Section 3, an EM-based scheme for joint data

detection and channel and noise variance estimation
is proposed. In Section 4, a reduced complexity EM-
based scheme is proposed. Section 5 gives some simu-
lation results that demonstrate the effectiveness of the
proposed schemes. Finally, conclusions are drawn in
Section 6.
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Notation: Matrices and vectors are represented by
boldface uppercase and lowercase letters, respectively.
A hat over a variable (e.g., x̂) indicates an estimate

of the variable. E{·} denotes the expectation. Super-
scripts [·]T , [·]−1, and [·]H denote the transpose, the
matrix inversion, and the Hermitian operations, respec-
tively. IN is an identity matrix with dimension N. diag{x}
and Blkdiag{·} stand for the diagonal matrix with vec-
tor x on its diagonal and the block diagonal concate-
nation of input arguments, respectively. The symbol �
denotes convolution, and ⊗ stands for the Kronecker
product. Tr{X} and |X| are the trace and the determi-
nant of a square matrix X, respectively. �{·} is the real
part of the element in the bracket. < · >K denotes
the mode K operation. The matrix F is the normal-
ized fast Fourier transform (FFT) matrix with [F]m,n =
1√
N
e−j2πmn/N .

2 Systemmodel
2.1 Transmitted MIMO-OFDM systems with scattered

pilots
We consider a MIMO-OFDM system with NT transmit
andNR receive antennas. For the ith transmit antenna, the
time domain signal si = [si(0), si(1), ..., si(N − 1)]T is gen-
erated by taking the N-point inverse FFT of the source
signal in the frequency domain xi = [xi(0), xi(1), ..., xi(N−
1)]T as si = FHxi.
In general, the elements of xi can be categorized into:

xi(m) =
{
xid(m) ∀ m ∈ Iid
xip(m) ∀ m ∈ Iip

(1)

where Iid is the index set of subcarriers allocated for data
symbols (withNd elements), and Iip is the index set of sub-
carriers allocated for pilot symbols (with Np elements),
respectively. Notice that N = Nd + Np. From (1), we have
xi = Ei

dxid + Ei
pxip, where Ei

d and Ei
p denote the matri-

ces collecting columns of IN corresponding to Iid and Iip,
respectively, and xid = [xid(0), x

i
d(1), ..., x

i
d(Nd − 1)]T and

xip = [xip(0), xip(1), ..., xip(Np − 1)]T denote the data and
pilot vectors, respectively.
A cyclic prefix (CP) with length Ncp larger than that

of the longest channel response is inserted at the begin-
ning of each OFDM symbol to prevent intersymbol
interference.

2.2 TF dispersive channels under unknown background
noise model

At the receive antenna j, assuming perfect timing and fre-
quency synchronization are achieved, the nth sample of
the received signal is given by:

yj(n) =
NT−1∑
i=0

hji(n, l) � si(n) + wj(n), (2)

where hji(n, l) is the TF dispersive channel of the lth path
with length L at time n, associated with the ith transmit
antenna and the jth receive antenna, andwj(n) denotes the
unknown background noise and is assumed to obey com-
plex Gaussian distribution with zero mean and unknown
variance σ 2, which is assumed to be the same across all
receive antennas.
After discarding the CP and stacking all N samples, the

received signal for a whole OFDM symbol at the receive
antenna j can be expressed in a vector form as:

yj =
NT−1∑
i=0

Hjisi + wj, (3)

where yj = [yj(0), yj(1), ..., yj(N − 1)]T and wj =
[wj(0),wj(1), ...,wj(N − 1)]T denote the received signal
at the receive antenna j and the corresponding noise,
respectively.
Hji represents the corresponding TF dispersive channel

matrix and is expressed as:

Hji =

⎡
⎢⎢⎢⎢⎢⎢⎣

hji(0, 0) 0 . . . hji(0, L − 1) . . . hji(0, 1)
...

...
. . .

...
hji(L − 1, L − 1) hji(L − 1, L − 2) . . . hji(L − 1, 0) 0 . . .

...
...

. . .
...

0 . . . hji(N − 1, L − 1) hji(N − 1, L − 2) . . . hji(N − 1, 0)

⎤
⎥⎥⎥⎥⎥⎥⎦

(4)
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It is observed from (4) that the number of unknowns
in Hji is NL, which is much larger than the num-
ber of received samples. Therefore, direct estimation of
Hji is almost impossible (i.e., this will give rise to the
identifiability problem).
To overcome this problem, in this paper, a parsimo-

nious (low-dimensional) representation of hji(n, l) using
the basis expansion model (BEM) [33,34] is adopted, i.e.,
using an expansion with respect to time n of each path l of
hji(n, l) into a basis {bn,q}Qq=0 as:

hji(n, l) =
Q∑

q=0
β
ji
q,lbn,q, (5)

where β
ji
q,l is the qth BEM coefficient of the lth path asso-

ciated with the channel between the ith transmit antenna
and the jth receive antenna; bn,q is the basis that cap-
tures channel time variations, and Q + 1 is the number of
the basis. BEM is motivated by the observation that the
temporal (n) variation of h(n, l) is usually rather smooth
due to the channel’s limited Doppler spread and therefore
{bn,q}Qq=0 can be chosen as a small set (i.e., Q � N) of
smooth functions.
Below, two equivalent expressions for the received sig-

nal will be derived, from which closed-form solution for
data detection and channel estimation can be obtained, as
will be shown in the following sections.
Notice that (3) can be rewritten as:

yj =
NT−1∑
i=0

G[si]hji + wj, (6)

whereG[si]= [diag{sics,0}, diag{sics,1}, ..., diag{sics,L−1}] with
sics,l representing cyclically shifts (cs) si by l posi-
tions and hji = [(hji0)T , (h

ji
1)

T , ..., (hjiL−1)
T ]T with hjil =

[hji(0, l), hji(1, l), ..., hji(N − 1, l)]T . (6) can be put into a
more compact form as:

yj = G[s]hj + wj, (7)

whereG[s]= [G[s0] ,G[s1] , ...,G[sNT−1]] and hj= [(hj0)T ,
(hj1)T , ..., (hj(NT−1))T ]T . Using (5), hjil can be expressed in
a vector form as

hjil = Bβ
ji
l , (8)

where B = [b0, b1, ..., bQ] with bq = [b0,q, b1,q, ..., bN−1,q]T

and β
ji
l = [β ji

0,l, β
ji
1,l..., β

ji
Q,l]

T . Substituting (8) into (7), we
obtain:

yj = G[s] (INTL ⊗ B)β j + wj, (9)

where
β j = [(β j0)T , (βj1)T , ..., (βj(NT−1))T ]T with β ji= [(β ji

0)
T ,

(β
ji
1)

T , ..., (βji
L−1)

T ]T . By stacking the received signals from
all NR receive antennas into a single vector using (9)
and (3), two equivalent expressions of the received sig-
nal which explicitly show the dependence of the unknown
BEM coefficient and unknown signal can be obtained,
respectively, as:

y = �[s]β + w (10a)
= �[β]s + w, (10b)

where �[s]= INR ⊗ (G[s] (INTL ⊗B)), β = [(β0)T , (β1)T ,
. . . , (βNR−1)T ]T , �[β]= [H0,H1, . . . ,HNT−1] with Hi =
[(H0i)H , (H1i)H , . . . , (H(NR−1)i)H ]H , y = [(y0)T , (y1)T , . . .,
(yNR−1)T ]T , s = [(s0)T , (s1)T , . . . , (sNT−1)T ]T and w =
[(w0)T , (w1)T , . . . , (wNR−1)T ]T . Notice that �[s] repre-
sents a function of s and can be reconstructed by s through
(6), (7), (8) and (9). Similarly, �[ β] represents a func-
tion of β and can be reconstructed by β through (3), (4)
and (5).

3 Iterative data detection and channel and noise
variance estimation

The ML solution of all unknown quantities in (10), i.e.,
s, β , and σ 2 of w, involves multidimensional searches
that pose prohibitively high computational complexity. In
this and the next sections, the EM algorithm is employed
to iteratively compute the ML estimates, with the differ-
ent accuracy versus complexity trade-offs, respectively. As
will be seen, our proposed schemes provide not only com-
putationally affordable but also closed-form solutions that
are free of exhaustive search.
Using the EM terminology, we take y as the incomplete

data, β as the unobservable or missing data, and (σ 2, s)
as parameters of interest. The iterative algorithm includes
two steps (the E-step and the M-step) at each iteration.
In the E-step, an expectation is taken with respect to β

conditional on the observed data y and the previous esti-
mates of (σ 2, s), and an objective function depending only
on (σ 2, s) is obtained. In the M-step, through maximizing
the function obtained in the E-step, the effect of channel
can be compensated, and the current updated estimates of
(σ 2, s) can be obtained.
The two steps at the kth iteration are detailed as follows:
E-step: computeQ(σ 2, s|σ̂ 2

k−1,ŝk−1)=E{logf (y, β|σ 2,s)|y,
σ̂ 2
k−1, ŝk−1}.
M-step: solve (σ̂ 2

k , ŝk) = argmaxσ 2,sQ(σ 2, s|σ̂ 2
k−1, ŝk−1).

Note that conditioned upon y, the only unknown or
random component in the complete data (y, β) is β ; the
expectation is takenwith respect to the conditional proba-
bility density function f (β|y, σ̂ 2

k−1, ŝk−1), while (σ̂ 2
k , ŝk) are

the estimates of σ 2 and s at the kth iteration.
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More specifically, for the E-step: using Bayes’s rule, we
have:

f (y, β|σ 2, s) = f (y|β , σ 2, s)f (β), (11)

where the fact that β is independent of s and σ 2 has been
used. From (11), the function Q(σ 2, s|σ̂ 2

k−1, ŝk−1) in the
E-step can be expressed as:

Q(σ 2, s|σ̂ 2
k−1, ŝk−1) = E{log f (y|β , σ 2, s)|y, σ̂ 2

k−1, ŝk−1}
+ E{log f (β)|y, σ̂ 2

k−1, ŝk−1},
(12)

where the second term can be ignored in the following
derivations, since it is not a function of parameters of
interest, i.e., not a function of (σ 2, s) and therefore will
not affect the followingM-step. Using (10a), the likelihood
function f (y|β , σ 2, s) is obtained as:

f (y|β , σ 2, s) = 1
(πσ 2)NRN

× exp
(
− 1

σ 2 (y−�[s]β)H(y−�[s]β)

)
.

(13)

Substituting (13) into (12), we have:

Q(σ 2, s|σ̂ 2
k−1, ŝk−1) ∝ −NNRlog(πσ 2)

− 1
σ 2
(yHy − 2�{yH�[s]E{β|y, σ̂ 2

k−1, ŝk−1}
}

+E{βH�H [s]�[s]β|y, σ̂ 2
k−1, ŝk−1}

)
.

(14)

Notice that the following equation holds true for any
matrix A and vector a with compatible dimension:

aHAHAa = Tr{AHAaaH}. (15)

Define the conditional mean of β in (14) as β̂k =
E{β|y, σ̂ 2

k−1, ŝk−1}, and using (15), we obtain:

Q(σ 2, s|σ̂ 2
k−1, ŝk−1) ∝ −NNRlog(πσ 2)

− 1
σ 2

(
yHy − 2�{yH�[s]β̂k}

+Tr{�H [s]�[s] (ϒ̂k + β̂kβ̂
H
k )}
)
,

(16)

where ϒ̂k = E{(β−β̂k)(β−β̂k)
H |y, σ̂ 2

k−1, ŝk−1} represents
the corresponding conditional covariance matrix of β . It

is shown in Appendix 1 that the conditional mean and
covariance matrix are approximately given by:

β̂k = (�H [ŝk−1]�[ŝk−1] )−1�H [ŝk−1] y, (17)

ϒ̂k = σ̂ 2
k−1

(
�H [ŝk−1]�[ŝk−1]

)−1 . (18)

M-step: in this step, we aim to maximize
Q(σ 2, s|σ̂ 2

k−1, ŝk−1) with respect to σ 2 and s. Differenti-
ating (16) with respect to s and setting the result to zero,
neglecting those irrelevant terms we have:

∂Q(σ 2, s|σ̂ 2
k−1, ŝk−1)

∂s
× ∝ ∂

∂s
{
2�{yH�[s] β̂k}−Tr{�H [s]�[s] (ϒ̂k+β̂k β̂

H
k )}
}
.

(19)

It is noted that since (19) depends on s in an
implicit way, direct maximization of (19) with respect
to s is difficult since multidimensional search is
required. In what follows, an alternative expression for
Q(σ 2, s|σ̂ 2

k−1, ŝk−1) will be derived from which a closed-
form solution for the maximizing value of s can be
obtained. Since ϒ̂k is a NTNR(Q + 1)L × NTNR(Q +
1)L Hermitian matrix, based on eigen-decomposition,
we have ϒ̂k = ∑NTNR(Q+1)L−1

m=0 λm,kμm,kμ
H
m,k , where

λm,k is the mth eigenvalue of ϒ̂k , and μm,k is the
mth eigenvector, associated with λm,k . Substituting the
eigendecomposition on ϒ̂k into (19) and using the
two equivalent equations derived in (10a) and (10b),
we have:

2�{yH�[s]β̂k} − Tr{�H [s]�[s] (ϒ̂k + β̂kβ̂
H
k )}

= yH�[β̂k]s + sH�H [β̂k] y −
NTNR(Q+1)L−1∑

m=0
λm,ksH�H [μm,k]

× �[μm,k]s − sH�H[β̂k]�[β̂k] s.
(20)

Notice that �[·] and �[·] defined in (10a) and (10b) are
not only applicable to s and β but also applicable to any
vectors with compatible dimension.
Since (20) is a quadratic form of s, by setting the first

derivative of (20) with respect to s to zero, the kth signal
estimate is then given by:

s̃k =
⎛
⎝NTNR(Q+1)L−1∑

m=0
λm,k�

H [μm,k]�[μm,k]

+�H [β̂k]�[β̂k]

⎞
⎠

−1

�H [β̂k] y. (21)
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Note that s̃k = [(s̃0k)T , (s̃1k)T , ..., (s̃
NT−1
k )T ]T . After OFDM

demodulation, the symbol from the ith transmit antenna
can be obtained as:

x̃ik = Fs̃ik. (22)

Since x̃ik is discrete, belonging to a symbol constella-
tion point, it must be quantized to its nearest constellation
point in each iteration. Consequently, constellation map-
ping is carried out to obtain the discrete symbol estimate
as: x̂ik = Qant{x̃ik}, whereQant{·} operation denotes quan-
tization on the element in the bracket. The data symbol
estimate is thus obtained by collecting the elements of x̂ik
corresponding to Iid.
Finally, putting ŝik = FH x̂ik , i = 0, 1, ...,NT − 1 into (16)

and setting the first derivative of Q(σ 2, s|σ̂ 2
k−1, ŝk−1) with

respect to σ 2 to zero, the kth estimate of the unknown
noise variance can be obtained as

σ̂ 2
k = 1

NNR

(
yHy − 2�{yH�[ŝk] β̂k}

+Tr{�H[ŝk]�[ŝk] (ϒ̂k + β̂kβ̂
H
k )}
)
.
(23)

In summary, starting from a suitable initial value, the
proposed iterative EM-based scheme alternates among
the explicitly closed-form results (17), (18), (21), (22), and
(23) until convergence, i.e., until no significant changes are
observed in the updates.

4 A reduced computational complexity scheme
The computational complexity of the EM-based itera-
tive scheme proposed in Section 3 is summarized in
Table 1. Notice that the computational burden mainly
comes from the joint detection and estimation simultane-
ous for all transmit antennas. If in each iteration, detec-
tion, and estimation can be completed one antenna by one
antenna, the computational burden will be significantly
reduced.

Table 1 Computational complexity of the proposed
scheme in Section 3

Computation Complexity

Matrix inversion in (17) O((NTNR(Q + 1)L)3)

Eigendecomposition on (18) O((NTNR(Q + 1)L)3)

Matrix inversion in (21) O((NTN)3)

Recalling (6) and (3), two alternating but equivalent
expressions for y can be derived as:

y = �[s]β + w =
NT−1∑
i=0

�[si] (INRL ⊗ B)β i
rc + w

(24a)

= �[β] s + w =
NT−1∑
i=0

H[β i
rc] si + w, (24b)

where �[si] = INR ⊗ G[si], H[βi
rc]= [ (H0i)H , (H1i)H , ...,

(H(NR−1)i)H ]H , the BEM coefficients associated with the
channel from the transmit antenna i to NR receive
antennas is represented by β i

rc = [(β0i)T , (β1i)T , ...,
(β(NR−1)i)T ]T with β ji = [(β ji

0)
T , (β ji

1)
T , ..., (βji

L−1)
T ]T .

The subscript ‘rc’ is short for ‘reduced complexity’
to distinguish it from the β j defined in Section 3,
which represents the BEM coefficients associated with
the channel from NT transmit antennas to the receive
antenna j.
From (24a) and (24b), it is observed that by applying

the mathematical framework of EM, an alternative way to
choose the complete data, defined as ψ in this scheme,
is by decomposing the observed data y into its signal
components. The complete data ψ is obtained as:

ψ =

⎡
⎢⎢⎢⎣

ψ0

ψ1

...
ψNT−1

⎤
⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎣

�[s0] (INRL ⊗ B)β0
rc

�[s1] (INRL ⊗ B)β1
rc

...
�[sNT−1](INRL ⊗ B)βNT−1

rc

⎤
⎥⎥⎥⎦+

⎡
⎢⎢⎢⎣

w0

w1

...
wNT−1

⎤
⎥⎥⎥⎦
(25a)

=

⎡
⎢⎢⎢⎣

H[β0
rc]s0

H[β1
rc]s1
...

H[βNT−1
rc ]sNT−1

⎤
⎥⎥⎥⎦+

⎡
⎢⎢⎢⎣

w0

w1

...
wNT−1

⎤
⎥⎥⎥⎦ , (25b)

whereψ i = �[si] (INRL ⊗B)β i
rc +wi = H[βi

rc] si+wi, i =
0, 1, ...,NT − 1, and wi, i = 0, 1, ...,NT − 1 are circularly
symmetric and statistically independent Gaussian vectors
satisfying w =∑NT−1

i=0 wi.
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Similar to the E-step in Section 3, for the kth itera-
tion, we need to compute the conditional expectation of
the log-likelihood function for the complete data ψ . More
specifically, for the
E-step: using (25a), the likelihood function can be

expressed as:

f (ψ |βrc, s) = 1
(π)NNRNT |ϒψ |

× exp
(
−(ψ − �)Hϒ−1

ψ (ψ − �)
)
,

(26)

where βrc = [(β0
rc)

T , (β1
rc)

T , ..., (βNT−1
rc )T ]T , ϒψ =

Blkdiag{ς0σ 2INNR , ς1σ 2INNR , ..., ςNT−1σ 2INNR } with
E{wi(wi)H} = ς iσ 2INNR and the ς i’s being arbitrary non-
negative and real-valued scalars satisfying

∑NT−1
i=0 ς i = 1,

� = [(�[s0] (INRL ⊗ B)β0
rc)

T ,(�[s1] (INRL ⊗ B)β1
rc)

T , ...,
(�[sNT−1] (INRL ⊗ B)βNT−1

rc )T ]T . Notice that in this
scheme, we take (βrc,s) as parameters of interest.
Using (26) and neglecting those irrelevant terms,
E{logf (ψ |βrc, s)|y, β̂rc,k−1, ŝk−1} can be expressed as:

E{logf (ψ |βrc, s)|y, β̂rc,k−1, ŝk−1}
× ∝ �Hϒ−1

ψ ψ̂k + ψ̂
H
k ϒ−1

ψ � − �Hϒ−1
ψ �,

(27)

where ψ̂k , the conditional mean of ψ , can be derived as:

ψ̂k = E{ψ |y, β̂rc,k−1, ŝk−1}
= �̂k−1 + ϒψ�

H(�ϒψ�
H)−1(y − ��̂k−1),

(28)

where � = [INNR , INNR , ..., INNR] is a matrix with dimen-
sion NNR × NNRNT that connects y and ψ as y =∑NT−1

i=0 ψ i = �ψ . Substituting the corresponding com-
ponents into the right-hand side of (28), after some
manipulations we obtain:

Substituting (29) into (28), finally we obtain:

E{logf (ψ |βrc, s)|y, β̂rc,k−1, ŝk−1}

∝ −
NT−1∑
i=0

(
ψ̂

i
k − �[si] (INRL ⊗ B)β i

rc

)H

×
(
ψ̂

i
k − �[si] (INRL ⊗ B)β i

rc

)
,

(30)

where

ψ̂
i
k = �[ŝik−1](INRL ⊗ B)β̂

i
rc,k−1

+ ς i(y −
NT−1∑
i=0

�[ŝik−1] (INRL ⊗ B)β̂
i
rc,k−1).

(31)

It is noted from (30) that in the following M-step,
the maximization of E{logf (ψ |βrc, s)|y, β̂rc,k−1, ŝk−1}with
respect to βrc and s is equivalent to the minimization
of each of the single terms in (30), i.e., minimization of
(ψ̂

i
k−�[si] (INRL⊗B)β i

rc)
H(ψ̂

i
k−�[si] (INRL⊗B)β i

rc)with
respect to β i

rc and si for each i, separately.
Notice that the multidimensional minimization for each

of the terms in (30) still remains a formidable task. To
solve this problem, substituting (24a) and (24a) into (31),
we obtain:

ψ̂
i
k = ς i�[si](INRL ⊗ B)β i

rc + χ i
k (32a)

= ς iH[β i
rc]si + χ i

k , (32b)

where

χ i
k = �[ŝik−1](INRL ⊗ B)β̂

i
rc,k−1

+ ς i

⎛
⎝ NT−1∑

g=0,g 	=i
�[sg](INRL ⊗ B)β

g
rc + w

−
NT−1∑
i=0

�[ŝik−1](INRL ⊗ B)β̂
i
rc,k−1

)
.

(33)

ψ̂k =

⎡
⎢⎢⎢⎢⎢⎢⎣

�[ŝ0k−1](INRL ⊗ B)β̂
0
rc,k−1 + ς0

(
y −∑NT−1

i=0 �[ŝik−1](INRL ⊗ B)β̂
i
rc,k−1

)
�[ŝ1k−1](INRL ⊗ B)β̂

1
rc,k−1 + ς1

(
y −∑NT−1

i=0 �[ŝik−1](INRL ⊗ B)β̂
i
rc,k−1

)
...

�[ŝNT−1
k−1 ](INRL ⊗ B)β̂

NT−1
rc,k−1 + ςNT−1

(
y −∑NT−1

i=0 �[ŝik−1](INRL ⊗ B)β̂
i
rc,k−1

)

⎤
⎥⎥⎥⎥⎥⎥⎦
. (29)
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Set ς i = 1, for the ith transmit antenna we have:

ψ̂
i
k = �[si](INRL ⊗ B)β i

rc + χ i
k (34a)

= H[β i
rc]si + χ i

k . (34b)

Recalling that
∑NT−1

i=0 ς i = 1, and by using (31), for the
transmit antennas {g}NT−1

g=0,g 	=i we have:

ψ̂
g
k = �[ŝgk−1](INRL ⊗ B)β̂

g
rc,k−1. (35)

Using (34) and (35), (30) can be decomposed into NT
terms, each of which can be solved as follows:
M-step: for the ith transmit antenna, we have:

[
β̂
i
rc,k , ŝik

]
= arg min

β i
rc,si

{(
ψ̂

i
k−�[si](INRL ⊗ B)β i

rc

)H
×
(
ψ̂

i
k−�[si](INRL ⊗ B)β i

rc

)}
,

(36)

and for the transmit antennas {g}NT−1
g=0,g 	=i, we have:

[
β̂
g
rc,k , ŝgk

]
=
[
β̂
g
rc,k−1, ŝgk−1

]
. (37)

Therefore, the proposed iterative scheme starts from
k = 0, 1, 2, ... and during the kth iteration, i is set as i =
< k >NT . It can be seen that we have split the estimation
and detection problem for the MIMO case of Section 3
into estimation and detection problem forNT single-input
and multiple-output (SIMO) cases, where, during each
iteration, parameters and data from only one transmit
antenna are estimated and detected. Note that χ i

k given
in (33) is a disturbance term that accounts for the back-
ground noise and residual interference after the kth iter-
ation, where the interference is linearly related to the sig-
nals of all transmit antennas. Then, assuming the interfer-
ence is i.i.d with zeromean, from the central limit theorem
[35], it can be seen that the entries of χ i

k are nearly Gaus-
sian distributed with zero mean and some variance σ 2

χ i ,k .
Under the above assumption, it turns out that the mini-
mization problem in (36) is equivalent to the ML estima-
tion of β i

rc, si and the unknown variance σ 2
χ i starting from

the observation ψ̂
i
. Comparing (34a) and (34b) with (10a)

and (10b), it is easy to see that the same EM procedure
proposed in Section 3 can be directly adopted to solve
the optimization problem of (36), with details shown in
Appendix 2.
The computationally feasible EM scheme is

summarized as follows:

Iteration until convergence:
for the kth iteration do
Set the transmit antenna as i =< k >NT
1. Updating ψ i:

ψ̂
i
k = y −

NT−1∑
g=0,g 	=i

�[ŝgk−1](INRL ⊗ B)β̂
g
rck−1.

2. Updating β i
rc, ϒi

rc, si and σ 2
χ i until convergence

(assume the convergence occurs at the Lth iteration):

for the lth iteration do
Updating β i

rc and ϒ i
rc:

β̂
z,i
rc,k−1,l = ((Bz)HGH[ŝik−1,l−1]G[ŝik−1,l−1]Bz)−1

× (Bz)HGH [ ŝik−1,l−1] ψ̂
z,i
k ,

ϒ̂
z,i
rc,k−1,l = σ̂ 2

χ i ,k−1,l−1
(
(Bz)HGH [ŝik−1,l−1]

G[ŝik−1,l−1]Bz)−1 ,

where ŝik−1,0 = ŝik−1, σ̂ 2
χ i ,k−1,0 = σ̂ 2

χ i ,k−1, ψ̂
i
k =

[(ψ̂
0,i
k )T , (ψ̂

1,i
k )T , ..., (ψ̂

NR−1,i
k )T ]T and Bz � IL ⊗ B.

Then, β̂
i
rc,k−1,l can be obtained as β̂

i
rc,k−1,l =

[(β̂
0,i
rc,k−1,l)

T ,(β̂
1,i
rc,k−1,l)

T , ...,(β̂
NR−1,i
rc,k−1,l)

T ]T and
ϒ̂

i
rc,k−1,l can be obtained as ϒ̂

i
rc,k−1,l =

Blkdiag{ϒ̂0,i
rc,k−1,l, ϒ̂

1,i
rc,k−1,l, ..., ϒ̂

NR−1,i
rc,k−1,l}.

Updating si:

ŝik−1,l= FHQant

⎧⎨
⎩F
⎛
⎝NR(Q+1)L−1∑

m=0
λirc,m,k−1,lHH [μi

rc,m,k−1,l]

× H[μi
rc,m,k−1,l]+HH [β̂

i
rc,k−1,l]

×H[β̂
i
rc,k−1,l]

⎞
⎠

−1

HH [β̂
i
rc,k−1,l] ψ̂

i
k

⎫⎪⎬
⎪⎭,

where ϒ̂
i
rc,k−1,l = ∑NR(Q+1)L−1

m=0 λirc,m,k−1,lμ
i
rc,m,k−1,l

(μi
rc,m,k−1,l)

H represents the eigendecomposition of

ϒ̂
i
rc,k−1,l.

Updating σ 2
χ i :

σ̂ 2
χ i ,k−1,l = 1

NNR

(
(ψ̂

i
k)

H ψ̂
i
k − 2

{
(ψ̂

i
k)

H�[ŝik−1,l]

× (INRL⊗ B)β̂
i
rc,k−1,l

}
+ Tr

{
(INRL⊗ B)H

× �H[ŝik−1,l]�[ŝik−1,l] (INRL⊗ B)

×
(
ϒ̂

i
rc,k−1,l + β̂

i
rc,k−1,l(β̂

i
rc,k−1,l)

H
)})

.

end for
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3. Set [β̂i
rc,k , ŝik , σ̂ 2

χ i,k]= [β̂
i
rc,k−1,L, ŝik−1,L, σ̂

2
χ i,k−1,L] for

the transmit antenna i.
Set [β̂

g
rc,k , ŝgk , σ̂ 2

χg ,k]= [β̂
g
rc,k−1, ŝgk−1, σ̂

2
χg ,k−1] for the

transmit antennas {g}NT−1
g=0,g 	=i.

end for

The computational complexity of the proposed iter-
ative EM-based scheme with reduced complexity is
summarized in Table 2.
Note that compared to Table 1, the computational com-

plexity of the proposed iterative EM-based scheme with
reduced complexity is significantly lower than that of
the EM-based scheme proposed in Section 3. However,
this significant computational complexity reduction is not
obtained without price. As will be shown in Section 5,
there is a minor performance degradation compared to
the EM-based scheme proposed in Section 3. This per-
formance degradation is due mainly to two reasons. First,
the disturbance term in (34a) and (34b) contains the back-
ground noise as well as the residual interference from
other transmit antennas, whereas in (10a) and (10b), only
the background noise is contained. Second, the separate
estimation and detection for each antenna is seen as a
suboptimal estimation and detection method compared
to the joint estimation and detection for all antennas,
which is optimal in the sense of estimation and detection
theory [36].

4.1 Initialization
The EM algorithm is guaranteed to obtain at least a local
maximum after convergence [6,7].
To provide an initial value, a least square (LS) algorithm

based on pilot symbols is utilized to provide a good initial
estimate which will be demonstrated in the simulations.
Recalling (1), (10a), and (10b), we have:

y = �[	pxp]β + �[β]	dxd + w, (38)

where 	p = Blkdiag{FHE0
p, FHE1

p, ..., FHENT−1
p }, 	d =

Blkdiag{FHE0
d, FHE1

d , ..., FHE
NT−1
d }, xp = [(x0p)T , (x1p)T , ...,

(xNT−1
p )T ]T , and xd = [(x0d)T , (x1d)T , ..., (x

NT−1
d )T ]T . By

Table 2 Computational complexity of the proposed
scheme in Section 4

Computation Complexity

Matrix inversion in (56) O(((Q + 1)L)3)

Eigendecomposition on (57) O(((Q + 1)L)3)

Matrix inversion in (53) O(N3)

treating the term containing xd as interference, the LS
estimate of β is obtained as:

β̂0 = (�H [	pxp]�[	pxp]
)−1

�H[	pxp] y. (39)

Substituting (39) into (10b), the initial signal detection
is obtained as:

ŝ0 = (INT ⊗ FH)Qant
{
(INT ⊗ F)

(
�H[β̂0]�[β̂0]

)−1

× �H[β̂0] y
}
.

(40)

Finally, for the initial variances σ̂ 2
0 and {σ̂ 2

χ i ,0}NT−1
i=0 , they

are all set to 0.

5 Simulation results and discussions
In this section, the performance of the proposed algo-
rithm is demonstrated by Monte Carlo simulations. In
the simulations, transmit and receive antennas are set as
NT = NR = 2, each OFDM symbol has 64 subcarriers
(N = 64) and communicates over a bandwidth of 20MHz.
The sampling interval Ts is thus 50 ns. The length of the
CP is Ncp = 8.
The normalized maximal Doppler shift is set asNfdTs =

0.075 and 0.15, respectively, where fd represents the max-
imum Doppler frequency.
The channel has three taps (L = 3) with an exponen-

tial power delay profile, namely σ 2
l = exp(−κ l)((1 −

exp(−κ))/(1−exp(−κL))), l = 0, 1, ..., L−1with κ = 1/3.
In typical communication scenarios, only a few signifi-
cant paths dominate the effect of the wireless channel
[4]. Therefore, L = 3 is a reasonable setting. Each
tap coefficient follows a complex Gaussian distribution.
The data are modulated by quadrature phase shift key-
ing (QPSK) and 16 quadrature amplitude modulation
(16 QAM), respectively, with unit power. The pilot clus-
ter follows the structure in [37], and more specifically,
seven pilot clusters are used for each transmit antenna.
The clusters are equal-spaced among subcarriers, and in
each cluster, one nonzero pilot is guarded by one zero pilot
on each side. The nonzero pilots are generated as zero-
mean complex Gaussian random variables with power
three times that of data symbols. Furthermore, the gen-
eralized complex exponential BEM (GCE-BEM) [34] is
adopted.

5.1 Convergence of the proposed schemes
Figures 1, 2, and 3 present the convergence perfor-
mance of the proposed EM-based scheme in Section 3
(marked as scheme 1) and the proposed EM-based
scheme in Section 4 (marked as scheme 2) with signal-
to-noise ratio (SNR) equal to 10, 20, and 30 dB. It
can be seen that both the mean-square error (MSE)
and bit error rate (BER) improve significantly in the
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Figure 1 Convergence of channel estimation, QPSK,
NfdTs = 0.075. Convergence performance of the proposed
EM-based scheme in Section 3 (marked as scheme 1) and the
proposed EM-based scheme in Section 4 (marked as scheme 2) with
signal-to-noise ratio (SNR) equal to 10, 20, and 30 dB.

first few iterations and converge to stable values within
eight iterations. Channel estimation with full training and
data detection with perfect CSI are shown for compar-
ison. Furthermore, according to [38], the Cramer-Rao
bound is also shown for comparison. It can be seen

Figure 2 Convergence of data detection, QPSK,NfdTs = 0.075.
Convergence performance of the proposed EM-based scheme in
Section 3 (marked as scheme 1) and the proposed EM-based scheme
in Section 4 (marked as scheme 2) with signal-to-noise ratio (SNR)
equal to 10, 20, and 30 dB.

Figure 3 Convergence of data detection, QPSK,NfdTs = 0.15.
Convergence performance of the proposed EM-based scheme in
Section 3 (marked as scheme 1) and the proposed EM-based scheme
in Section 4 (marked as scheme 2) with signal-to-noise ratio (SNR)
equal to 10, 20, and 30 dB.

from Figure 1 that after convergence, the channel esti-
mation performance of both schemes greatly improve
that of the initial estimation (marked as iteration = 0),
which indicates the ability of the proposed algorithm to
cancel the interference from unknown data to channel
estimation through iterations. The channel estimation
performance of scheme 1 is very close to that of the
Cramer-Rao bound and the full training case. The chan-
nel estimation performance of scheme 2 suffers a minor
performance degradation compared to that of the scheme
1, which is the price we have to pay for the reduced com-
putational complexity. Similar results can be observed for
the performance of data detection in Figures 2 and 3,
which indicates that the updated channel estimate can
in turn greatly improve the data detection through iter-
ations. Similar convergence results are also observed for
the 16 QAM case, and figures are not presented here due
to space limitations.

5.2 Performance of the proposed schemes
Figures 4, 5, and 6 show the MSE and BER performance
achieved by the proposed iterative algorithm versus SNRs.
It can be seen from Figure 4 that the performances of the
proposed schemes 1 and 2 both performmuch better than
that of the initial value and close to that of the Cramer-Rao
bound and the full training case after convergence.
Similarly, it can be seen from Figure 5 that for the case

where NfdTs = 0.075, the BER performance of the pro-
posed iterative algorithm is very close to that of the ideal
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Figure 4 Performance of channel estimation, QPSK,
NfdTs = 0.075.MSE performance achieved by the proposed
iterative algorithm versus SNRs.

case which assumes perfect CSI after convergence. For
the severe case where NfdTs = 0.15, it can be seen from
Figure 6 that the proposed iterative algorithm can still deal
with such a highly TF dispersive channel and performs
well. Moreover, from Figures 5 and 6, it can be seen that
for signals with both amplitude and phase variations such
as 16 QAM, the proposed algorithm also performs well.

Figure 5 Performance of data detection, QPSK and 16 QAM,
NfdTs = 0.075. BER performance achieved by the proposed iterative
algorithm versus SNRs.

Figure 6 Performance of data detection, QPSK and 16 QAM,
NfdTs = 0.15. BER performance achieved by the proposed iterative
algorithm versus SNRs.

Finally, we investigate how the proposed schemes are
affected by different channel lengths. A severe case
where the channel length is equivalent to the number
of embedded pilots (marked as case 2) is shown in
Figure 7. As can be seen from the figure, compared
to the originally-presented case where the channel
length is 3 (marked as case 1), there is an obvious

Figure 7 Performance of data detection for different channel
length, QPSK,NfdTs = 0.075. BER performance achieved by the
proposed iterative algorithm versus SNRs.
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performance degradation of the proposed schemes for
the severe case 2. The reason can be explained according
to the estimation theory [36] that when the channel
length increases, more parameters need to be estimated,
which leads to a decreased performance. On the con-
trary, if the channel length decreases, less parameters
need to be estimated and that leads to an increased
performance.

6 Conclusions
In this paper, two EM-based iterative data detection
and channel and noise variance estimation schemes
for MIMO-OFDM systems operating over TF disper-
sive channels under unknown background noise have
been proposed. The resulting schemes achieve conver-
gence in a few iterations and can effectively estimate
TF dispersive channels and obtain reliable data detec-
tion under unknown background noise environments.
The first scheme iteratively detects data and estimates the
channel and noise variance simultaneously for all anten-
nas, and moreover, the updating expressions of these esti-
mates are all derived as closed-form results. Simulation
results showed that after convergence, the performance of
the first scheme is very close to that of the optimal case
which assumes full training and perfect CSI. To reduce
the computational complexity of the first scheme, another
EM-based scheme that detecting data and estimating
channel for only one antenna during each iteration and
holding the unknown quantities of other antennas to their
last estimates has been proposed, which is also derived
as closed-form results. Simulation results showed that its
performance only slightly degrades compared to the first
scheme, but the computational complexity is significantly
reduced.

Appendices
Appendix 1
Derivation of (17) and (18)
Using Bayes’s formula, the conditional pdf of β is given by:

f (β|y, σ̂ 2
k−1, ŝk−1) = f (y|β , σ 2, s)f (β)

f (y|σ 2, s)

∣∣∣∣
σ 2=σ̂ 2

k−1,s=ŝk−1

,

(41)

where the fact that β is independent of s, and σ 2

has been used. The BEM coefficient β can be shown to
be complex Gaussian variable [33] with zero mean and
covariance matrix Rβ , that is:

f (β) = 1
π(Q+1)NTNRL|Rβ |exp(−βHR−1

β β). (42)

Note that:

f (y|σ 2, s) =
∫

f (y|β , σ 2, s)f (β)dβ . (43)

With f (y|β , σ 2, s) given by (13), putting (13) and (42) into
(43), we have:

f (y|σ 2, s) = |ϒ̂k|
(πσ 2)NNR |Rβ |
× exp

(− 1
σ 2 (yHy − σ 2β̂

H
k ϒ̂

−1
k β̂k)

)
. (44)

Substituting (13), (42), and (44) into (41), after some
manipulations we have:

f (β|y, σ̂ 2
k−1, ŝk−1) = 1

π(Q+1)NTNRL|ϒ̂k |
× exp

(−(β − β̂k)
Hϒ̂

−1
k (β − β̂k)

)
,

(45)

where

β̂k = (�H[ŝk−1]�[ŝk−1]+ σ̂ 2
k−1R−1

β

)−1
�H [ŝk−1] y,

(46)

ϒ̂k = σ̂ 2
k−1
(
�H [ŝk−1]�[ŝk−1]+ σ̂ 2

k−1R−1
β

)−1. (47)

Thus, the pdf f (β|y, σ̂ 2
k−1, ŝk−1) is a Gaussian distri-

bution. In addition, β̂k and ϒ̂k given in (46) and (47),
respectively, are in fact its conditional mean and covari-
ance. To show that we have no prior information on β , we
take the limit ||Rβ || → +∞, which leads to (17) and (18).
In this paper, we set R−1

β to zero to show we have no prior
information for β . Indeed, there will be a performance
degradation by assuming R−1

β to zero. However, this is a
typical complexity versus performance trade-off. More-
over, as can be seen from simulation results in Section
5, even we set R−1

β to zero, the proposed algorithm also
performs well, and its performance is acceptable.

Appendix 2
Solving (36)
Comparing (34a) and (34b) with (10a) and (10b), referring
to Section 3, we take ψ̂

i
k as the incomplete data, β i

rc as the
unobservable or missing data, and (σ 2

χ i , si) as parameters
of interest. The two steps at the kth iteration are detailed
as follows:
E-step: compute Q(σ 2

χ i , si|σ̂ 2
χ i ,k−1, ŝik−1) = E{logf (ψ̂ i

k ,

β i
rc|σ 2

χ i , si)|ψ̂ i
k , σ̂ 2

χ i ,k−1, ŝik−1}.
M-step: solve (σ̂ 2

χ i ,k , ŝik) = arg maxσ 2
χ i
,siQ(σ 2

χ i , si|σ̂ 2
χ i ,k−1,

ŝik−1).
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Note that conditioned upon ψ̂
i
k , the only unknown or

random component in the complete data (ψ̂
i
k , βi

rc) is β i
rc,

the expectation is taken with respect to the conditional
probability density function f (β i

rc|ψ̂
i
k , σ̂ 2

χ i,k−1, ŝik−1), while
(σ̂ 2

χ i ,k , ŝik) are the estimates of σ 2
χ i , and si at the kth itera-

tion. More specifically, for the E-step: Using Bayes’s rule,
we obtain:

f (ψ̂
i
k , β

i
rc|σ 2

χ i , si) = f (ψ̂
i
k |β i

rc, σ
2
χ i , si)f (β i

rc). (48)

Using (48), the function Q(σ 2
χ i , si|σ̂ 2

χ i ,k−1, ŝik−1) can be
expressed as:

Q(σ 2
χ i , si|σ̂ 2

χ i ,k−1, ŝik−1)

= E{logf (ψ̂ i
k |β i

rc, σ
2
χ i , si)|ψ̂ i

k , σ̂
2
χ i ,k−1, ŝik−1}

+ E{logf (β i
rc)|ψ̂

i
k , σ̂

2
χ i,k−1, ŝik−1},

(49)

where the second term can be ignored in the following
derivations, since it is not a function of parameters of
interest, i.e., not a function of (σ 2

χ i , si). Using (34a), the

likelihood function f (ψ̂
i
k |β i

rc, σ 2
χ i , si) is obtained as:

f (ψ̂
i
k|β i

rc,σ
2
χ i , si) = 1

(πσ 2
χ i)

NNR

× exp
(
− 1

σ 2
χ i

(
ψ̂

i
k − �[si] (INRL ⊗ B)β i

rc
)H

× (ψ̂ i
k − �[ si] (INRL ⊗ B)β i

rc
))
.

(50)

Substituting (50) into (49) and referring to (14), (15) and
(16) and Appendix 1, the conditional mean and covariance
matrix are obtained as:

β̂
i
rc,k = ((INRL ⊗ B)H�H[ŝik−1]�[ŝik−1] (INRL ⊗ B)

)−1

× (INRL ⊗ B)H�H[ŝik−1] ψ̂
i
k , (51)

ϒ̂
i
rc,k = σ̂ 2

χ i ,k−1
(
(INRL ⊗ B)H�H[ŝik−1]�[ŝik−1]

× (INRL ⊗ B)
)−1. (52)

It is noted that the matrix �[si] is of dimension NRN ×
NRNL, and the matrix (INRL ⊗B) is of dimensionNRNL×
NR(Q+1)L; theNR(Q+1)L×NR(Q+1)Lmatrix inversion
required in (51) and (52) is only 1

NT
of that needed in (17)

and (18).

M-step: using the two equivalent expressions derived in
(34a) and (34b) and similar to (19), (20), (21) and (22), the
signal updating equation is obtained as:

s̃ik = (NR(Q+1)L−1∑
m=0

λirc,m,kHH [μi
rc,m,k]H[μi

rc,m,k]

+ HH [β̂
i
rc,k]H[β̂

i
rc,k]

)−1HH [β̂
i
rc,k] ψ̂

i
k , (53)

where ϒ̂
i
rc,k = ∑NR(Q+1)L−1

m=0 λirc,m,kμ
i
rc,m,k(μ

i
rc,m,k)

H rep-

resents the eigendecomposition of ϒ̂
i
rc,k . It is noted that

compared to (21) where NTN × NTN matrix inversion is
required, only N × N matrix inversion is needed in (53).
The symbol detection can thus be obtained after OFDM
demodulation as

x̂ik = Qant{Fs̃ik}. (54)

Substituting ŝik = FH x̂ik and (50), (51) and (52) into (49)
and referring to (23), the unknown noise variance for the
disturbance term χ i

k can be obtained as:

σ̂ 2
χ i ,k = 1

NNR

(
(ψ̂

i
k)

H ψ̂
i
k−2�{(ψ̂ i

k)
H�[ŝik] (INRL ⊗ B)β̂

i
rc,k}

+ Tr
{
(INRL ⊗ B)H�H[ŝik]�[ŝik] (INRL ⊗ B)

× (ϒ̂ i
rc,k + β̂

i
rc,k(β̂

i
rc,k)

H)}).
(55)

In summary, (51), (52), (53), (54) and (55) solve the
minimization problem in (36).
Notice that the computational complexity can be further

reduced by observing the diagonal structure of both �[si]
and (INRL⊗B) in (24a). Therefore, (51) and (52) can be fur-
ther split intoNR sub-matrices, each of which is expressed
as:

β̂
z,i
rc,k = ((Bz)HGH [ŝik−1]G[ŝik−1]Bz)−1

(Bz)HGH [ŝik−1] ψ̂
z,i
k ,
(56)

ϒ
z,i
rc,k = σ̂ 2

χ i ,k−1
(
(Bz)HGH[ŝik−1]G[ŝik−1]Bz)−1, (57)

where ψ̂
i
k = [(ψ̂

0,i
k )T , (ψ̂

1,i
k )T , ..., (ψ̂

NR−1,i
k )T ]T . Then, β̂

i
rc,k

is obtained as β̂
i
rc,k = [(β̂

0,i
rc,k)

T , (β̂
1,i
rc,k)

T , ..., (β̂
NR−1,i
rc,k )T ]T ,

and ϒ̂
i
rc,k can be obtained as ϒ̂

i
rc,k = Blkdiag{ϒ0,i

rc,k , ϒ
1,i
rc,k ,

...,ϒNR−1,i
rc,k }. It is noted that the matrix G[si] is of dimen-

sion N × NL, and the matrix Bz � IL ⊗ B is of dimension
NL × (Q + 1)L; the (Q + 1)L× (Q + 1)Lmatrix inversion
required in (56) and (57) is 1

NR
of that needed in (51)

and (52) and therefore only 1
NRNT

of that needed in (17)
and (18).
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