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Abstract

Blind estimation of the transmission parameters of orthogonal frequency division multiplexing (OFDM) signal is an
important issue for various civilian and military applications. This paper presents a new cyclostationarity-based
approach to blind estimation of OFDM signal parameters. Analytical expression for extracting transmission
parameters from second-order cyclic cumulant (CC) of OFDM signal is derived first, with the consideration of the
effects of time dispersion and consistent estimator errors on CC. The approach exploits the cyclostationarity of
OFDM both in time delay domain and cyclic frequency domain; a statistic hypothesis testing framework was
formulated to determine the threshold for detecting the presence of cycles of OFDM signal. The simulation results
reveal that the proposed approach is robust for both previous synchronization and channel condition concurrently.

Keywords: OFDM, Blind parameter estimation, Cyclostationarity, Second-order cyclic cumulant
1. Introduction
Blind estimation of communication signal parameters plays
a key role in various civilian and military applications, such
as cognitive radio (CR) and noncooperative communication
[1,2]. The cognitive radio aims at improving the spectrum
utilization by allowing the secondary user to sense and use
the licensed spectrum, which needs to have the intelligence
of dynamically changing its parameters. Therefore, it is
necessary for the blind parameter estimation for CR to
efficiently demodulate the signals in hostile wireless channel.
In noncooperative communication, hostile communication
signal must be detected, estimated, and recognized by its
transmission parameters, which are vital for decisions
involving electronic warfare operations and other tactical
actions. Over the recent decades, orthogonal frequency
division multiplexing (OFDM) has been widely employed
in many wireless communication systems, owing to the
advantages of high spectral efficiency and robustness
against channel fading. OFDM is also a good alternative
transmission scheme for underwater communication
that both remedies the problem of ISI and provides low
complexity solutions. For the OFDM signal, the recognized
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parameters include the symbol periodic, subcarrier spacing,
subcarrier number, and cyclic prefix (CP) length.
The cyclostationarity properties of OFDM signal was

widely exploited for various purposes: signal detection,
classification [3-6], synchronization [7-9], and parameter
estimation [10-13], in which the blind estimation of OFDM
parameters have been investigated only in recent years,
and these literatures generally achieved the estimation
parameters by finding the cycles present in the cyclic
statistics of OFDM signal. The algorithm proposed in
[10] is based on the signal empirical distribution function.
In [11], the cyclic correlation of OFDM signal is used
to estimate the sampling frequency and CP length. A
blind parameter estimation algorithm exploits the
cyclostationary property of OFDM while considering
the effect of time-dispersive channel [12]. The work in
[13] pursues more accurate blindly estimated results by
processing the candidate set of cyclic frequencies with
average idea. However, in all of these literatures, the
detection procedure is overly empirical and not rigorous
for estimation accuracy, e.g., by checking the cycle
presence based on a predefined threshold. In addition,
the exploitation of cyclic statistics only applied in single
domain (time or frequency) does not make full use of the
cyclostationarity properties of OFDM signal [14].
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This paper presents a cyclostationarity-based approach
to the blind estimation of OFDM transmission parameters,
which derives the estimated parameters from both time
(delay) and frequency domain using the second-order
cyclic cumulant (CC) in a similar way as [14]. It is shown
that detection and estimation in two domains can improve
the accuracy probability of estimating evidently. To ensure
the preciseness of the approach, a statistic hypothesis
testing was developed to determine the threshold for
detecting the presence of cycles of OFDM signal, by which
the theoretical relation between the threshold value and
constant false alarm rate (CFAR) was derived. Another
contribution of this paper is that it derived the analytical
expression of second-order CC of OFDM signal in both
additive white Gaussian noise (AWGN) and multipath
channel, and consequently, the condition of estimating
the parameters from second-order CC are achieved with
the consideration of the effects of time dispersion and
consistent estimator errors.
The paper is organized as follows: we first give the

OFDM signal model in AWGN and multipath channels
in Section 2. In Section 3, the analytical expression of
second-order CC of OFDM signal and the condition of
estimating the parameters are derived. The proposed
cyclostationarity-based approach to the blind estimation
of OFDM transmission parameters is given in Section 4.
Simulation results are presented in Section 5, and finally,
conclusions are drawn in Section 6.

2. Signal model
The OFDM signal is transmitted over wireless channel
and impacted by additive white Gaussian noise, timing
offset, and carrier frequency offset; the received continuous
time baseband signal can be represented as

r tð Þ ¼ aejθej2πΔf ct
XK−1

k¼0

Xþ∞

l¼−∞

sk;le
j2πkΔf k t−lT−εTð Þg t−lT−εTð Þ

þ w tð Þ;
ð1Þ

where a is the power factor, K is the number of subcarriers
of the OFDM signal, and ΔfK is the spacing of two
adjacent subcarriers. T is the OFDM symbol period,
T = Tcp + Tu,Tu = ΔfK is the useful symbol duration,
and Tcp is the cyclic prefix duration. Δfc is the carrier
frequency offset, and ε is the time offset introduced
by channel and the inconsistent between transmitter
and receiver. g(t) is the resulting pulse shape with the
transmitting root-raised cosine windowing function and
the receive low-pass filter. The independent identically
distributed symbol (sk,l) is drawn from a M-ary PSK or
M-ary QAMmodulated signal constellation and transmitted
on the kth subcarriers over the l symbol period, with the
zero mean and the variance σ2. As a result, there is
E sk:lð Þ ¼ E s�k;l
� �

¼ E sk:lsk0 l0
� �

¼ 0;E sk:ls
�
k;l

� �

¼ σ2s δ k−k
0h i
δ l−l

0h i
:

ð2Þ

Under the multipath fading channel, the OFDM signal
at the receiver consists of multiple branches accompanied
with channel coefficient h(ξm) at time ξm,m = 1,......M:

r tð Þ ¼ aejθej2πΔf ct
XM
m¼0

XK−1

k¼0

Xþ∞

l¼−∞

sk;le
j2πkΔf k t−ξm−lT−εTð Þh ξmð Þ

�g t−ξm−lT−εTð Þ þ w tð Þ:
ð3Þ

A discrete-time baseband OFDM signal, r(u), can be
obtained by oversampling r(t) at a sampling frequency
fs = ρK/Tu, with ρ as the oversampling factor per
subcarrier.

3. Second-order cyclostationarity of OFDM signal
3.1. Derivation for second-order cyclic cumulant
The cyclostationarity of OFDM signals has been proved
in previous literature [7], which could be introduced by
CP, symbol, or pilot. In the following, we derived the
analytical expressions for the second-order cyclostationarity
features of OFDM signal, which is specifically used by
the blind parameter estimation approach proposed in
Section 3. Basically, the higher-order cumulant needs
the more computation complexity; hence, we only take
the second-order cyclic cumulant of OFDM signal as
our reference target, on which transmission parameter
extraction executes under both AWGN and multipath
channels.
According to the definition of the cumulant in [15,16],

the second-order time-varying cumulant of OFDM signal
in (1) is expressed as

cr
�
t; τ

� ¼ E r t þ τ=2ð Þr� t−τ=2ð Þ½ �

¼ a2cs;2;1e−j2πΔf cτ
XK−1

k¼0

ej2πkΔf kτ

�g tð Þg� t þ τð Þ⊗
X∞
l¼−∞

δ t−lT−εTð Þ þ cw t; τð Þ;

ð4Þ

where ⊗ represents convolution operation and δ(t) is the
Dirac delta function. cs,2,1 represents the second-order
cumulant of the signal constellation, cs,2,1 = E[sk,lsk,l + τ/T].
cw(t; τ) is the second-order cumulant of Gauss noise. Due
to the wide-sense stationary of the noise, the cumulant of
the noise does not depend on time; for simplicity, we omit
the noise term in the following analysis.
When applying the Fourier transform to the second-order

time-varying cumulant in (4), we can obtain
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I cr t; τð Þf g ¼ a2cs;2;1e−j2πΔf cτ
Z∞

−∞

½
XK−1

k¼0

e j2πkΔf kτ

�g tð Þg� t þ τð Þ⊗
X∞
l¼−∞

δ t−lT−εTð Þ�e−j2πβtdt:

ð5Þ
Using the property of Fourier transform for the Dirac

delta function: I ∑
l
δ t−lTð Þ

� �
¼ T−1∑

l
δ β−lT−1� �

, we can

rewrite (5) into

I cr t; τð Þf g ¼ a2cs;2;1T−1e−j2πΔf cτe−j2πβεT
XK−1

k¼0

e j2πkΔf kτ

Z∞

−∞

g tð Þg� t þ τð Þe−j2πβtdt�
X
l

δ β−lT−1� �
:

ð6Þ
On the other hand, the second-order CC is defined by

Fourier series expansion of the second-order time-varying
cumulant when the latter is viewed as an almost periodic
function of time [15,16]:

cr t; τð Þ ¼
X
β∈κ2;1

Cr β; τð Þe j2πβt : ð7Þ

According to (7), we can derive the second-order CC at
cyclic frequency (CF) β and delay τ by taking the inverse
Fourier transform on (6):

Cr β; τð Þ ¼ a2cs;2;1T−1e−j2πΔf cτe−j2πβεT
XK−1

k¼0

e j2πkΔf kτ

Z∞

−∞

g tð Þg� t þ τð Þe−j2πβtdt:

ð8Þ

The set of CFs is given by κOFDM
2;1 ¼ β Cr β; τð Þ≠0gjf ,

and it can be proved by [4]:

κOFDM
2;1 ¼ β : β ¼ lT−1; l ¼ 1; 2; 3…

� 	
: ð9Þ

For a discrete-time OFDM signal r(u), its second-order
CC is given by

Cr β; τð Þ ¼ Cr βf s ; τ f
−1
s

� �
: ð10Þ

By substituting (8) into (10), the second-order CC for
the discrete-time OFDM signal at CF β and delay τ and
the set of CFs can be respectively obtained:

Cr β; τð Þ ¼ a2cs;2;1D
−1e−j2πβεDe−j

2π
ρKΔf cTuτ � ΓK τð ÞΛ τð Þ

ð11Þ
and
κOFDM
2;1 ¼ β∈ −1=2; 1=2½ Þf jβ ¼ lD−1; l ¼ 1; 2; 3…g;

ð12Þ

where ΓK τð Þ ¼ ejπ K−1ð Þτ=ρK sin πτð Þ=sin πτ=ρKð Þ;Λ τð Þ ¼
X∞
u¼−∞

g

uð Þg� uþ τð Þe−j2πβu; and D = ρK(1 + Tcp Tu
−1) represents

the number of samples over an OFDM symbol.
Using the same derivation process, we can extend the

result of the derivation of second-order CCs of OFDM
signal in AWGN channel to multipath channel. Due to the
limitation of the manuscript, we present the second-order
CCs of OFDM signal in multipath channel directly:

Cr β; τð Þ ¼ a2Cs;2;1D−1e−j2πβερe
−j
2π
ρK

Δf c f s
−1τ

ΓK τð Þ

�
X∞
n¼−∞

XM
m1¼1

h ξm1

� �
g u−ξm1

� �XM
m2¼1

h� ξm2

� �

�g� u−ξm2
þ τ

� �
e−j2πβn:

ð13Þ
Similarly, the result in (13) omits the term for noise

cumulant.

3.2. Analytical expression of CC properties for parameter
extraction
This section will elaborate on the analysis on the CC
properties in both delay and CF domain in order to effi-
ciently extract and estimate the transmission parameters.
From (11) and (13), it is easily concluded that Cr(β; τ) ≠ 0

only when β = lT −1, with l as a positive integer. The
conclusion implies that, in theory, the second-order
CCs are discrete in cyclic frequency domain, which consists
of a set of finite-strength additive components. However,
in practice, because the specific cyclostationarity property
is not known as a priori, the consistent estimator for
Cr(β; τ) is used:

Ĉ r β; τð Þ ¼ 1
T0

XT 0

t¼0

r tð Þr� t þ τð Þ exp −j2πβtð Þ ð14Þ

when T0⇒ +∞, the estimator is close to theoretical Cr

(β; τ) asymptotically. However, because of the limitation of
the sample amount, the CC magnitude is seldom exactly
zero even if β is not a cyclic frequency.
In Figure 1, we demonstrate the simulating results of

the second-order CC of OFDM signal verse delay and
CF under AWGN channel, for which the following
parameters are used: subcarriers number 128, CP ratio
1/4, and oversampling factor 4. The samples over 2,000
OFDM symbols are collected for formulating the result.
It can be seen that in the frequency axis direction, the
magnitude of CC is nonzero even if β ≠ 0 and 512, which
supports the conclusion mentioned above.



Figure 1 Second-order CC of OFDM signal versus delay and CF, AWGN channel.
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Now let us discuss (13) in terms of the delay. As we
know, the delay less than Tu/K OFDM signal in (1) does
not produce the inter-subcarrier interference. If we
assume the delay equals to integral multiple of Tu/K but
not integral multiple of Tu, which can be represented as
τ =mTu/K, m is a positive integer and [m/K] ≠ 0. In this

condition, the item
XK−1

k¼0

ej2πkΔf K τ in (13) can be rewritten as

XK−1

k¼0

e j2πkΔf kτ ¼
XK−1

k¼0

e j2πkΔf km= K�Δf kð Þ ¼
XK−1

k¼0

e j2πkm=N ¼ 0:

ð15Þ

When the delay is equivalent to the integral multiple
of Tu, which is represented as m × Tu, there is

XK−1

k¼0

e j2πkΔf kτ ¼
XK−1

k¼0

e j2πmTukΔf k ¼
XK−1

k¼0

e j2πkm≠0: ð16Þ

From (15) and (16), the property of second-order CC
of OFDM signal in time domain is concluded to be
equal to zero unless when the delay is m × Tu. Note that
the estimation error because of limitation of the sample
number also results in (15) being almost not established
in practice. Apart from that, the effect of time dispersion
came from multipath propagation which also appeared
around τ =m × Tu.
Figure 2 depicts the simulation result under multipath

channel with the same parameter setting. By comparing
Figures 1 and 2, we can find that multipath propagation
leads to time dispersion, which behaves that multiple
nonzero values arise around the peak position. Although
these values are usually lower than the peak value, these
introduce the amount of interference for searching for
the peak. In Section 4, we demonstrate how to eliminate
these interferences in practice.
The analysis above employs the CC for continuous-time

OFDM signal. For discrete-time OFDM signal, the
derivation above and the conclusions for which the
second-order CC still holds on are valid except that CF and
delay should use the discrete expression. In other words,
the τ = ± ρK only when β = lD−1, and (16) establishes
when τ = ± ρK.
4. Joint delay and CF domain estimation for
OFDM parameters
Based on the analysis of the second cyclic statistics of
OFDM signal in Section 3, the number of subcarriers K
can be estimated by searching the peak of second-order
CC at delay domain, while the estimation of the duration
of CP can utilize the discrete behaviors of CC in the
cyclic frequency domain. Hence, the approach proposed
for the joint blind estimation of the OFDM signal
transmission parameters is comprised of two steps.
We assume that the parameter estimation is applied
after the process of signal detection, so the signal is
already oversampled based on an estimate of the signal
bandwidth. Moreover, we assume that sampling does not
yield aliasing in the spectral and cyclic frequency domains.
For the case of aliasing existing, it can be referred to [4]
for an elimination method.



Figure 2 Second-order CC of OFDM signal versus delay and CF, multipath channel.
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4.1. Estimation of subcarrier number K and symbol
duration Tu
The number of subcarriers of the OFDM signal, K, is
estimated by exploiting the presence of the CP-induced
peak in the CC magnitude at delay ρK and zero CF.
On the condition of β = 0, the CC magnitude of the

baseband-received OFDM signal is checked over the delay
range [ρKmin, ρKmax]. Herein, Kmin and Kmax represent the
minimum and maximum number of subcarriers to be
estimated, respectively. The parameter ρKmax should be
chosen large enough to cover the largest candidate peak
while avoiding introducing more amount of unnecessary
calculation process. The parameter ρKmin should be
chosen far from τ = 0 in order to reduce the influence
caused by the channel time dispersion (See Figure 2), but
larger ρKmin leading to some small candidate peak cannot
be covered. With respect to the consideration, we propose
an approach to estimating the number of subcarrier K as
follows.
Firstly, we should set a predefined threshold Tth for

checking the presence of nonzero second-order CC at
interest delay, and the determination of the threshold
value will be derived in Section 4.3. Next, we search the
candidate second-order CC for the amplitude value
larger than the threshold over the [ρKmin, ρKmax] delay
range. Among the set of the discrete values larger than
the threshold, we choose that with the largest delay
value, depicted by τK. This delay value is exactly what we
will utilize to extract the number of subcarriers K.
If all of the second-order CC amplitudes over the

[ρKmin, ρKmax] are smaller than the threshold, we should
only find the CC magnitude reaching a local maximum
over the range; the corresponding delay value is used to
calculate the number of subcarriers K. This seeking
process can be formulated as:

τK ¼

max τ ∈CrOFDM 0; τð Þ≥Dthf g;
∃ τ ∈ ρK min; ρK max½ �; satisfying CrOFDM 0; τð Þ > T th

arg max
τ

crOFDM 0; τð Þ2;1



 


n o

;

CrOFDM 0; τð Þ < T th for all τ∈ ρK min; ρK max½ �

8>>>><
>>>>:

9>>>>=
>>>>;
:

ð17Þ
Finally, let τK divided by the oversampling factor ρ; the

nearest integer power of 2 to the result is the estimated
subcarrier number K, which is represented as

K ¼ argmin
2i

τK=ρ−2i


 

� 	

; i ¼ 0; 1; 2…: ð18Þ

The duration of OFDM symbol is also calculated as
Tu = ρK/fs accordingly.

4.2. Estimation of CP duration and OFDM symbol period T
The duration of the CP, L, is estimated based on the
CP-induced peaks in the CC magnitude at delay ρK
and CFs other than zero. In order to estimate the CP
length efficiently, we export the CC magnitude value
at fixed delay τK and over a certain range of candidate CFs.
This CF range should be initialized as small as possible to
reduce the amount of calculation. The significant CC
magnitude values are adopted only at a small number of
CFs greater than zero, and the CF can be represented as
β = bρ(K + L)− 1, with b as a positive integer and CP as
unknown. We set the maximum value of b as bmax.
When taking into account the condition 0 < L < K, we
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can define that the CF range used to estimating the CP
length is [1/(2ρK), bmax(ρK)], and the CF for which the CC
magnitude reaches a local maximum, βcp , is selected by

βcp ¼ argmax
β

fjCr β; τKð Þg; β∈
1

2ρK
;
bmax

ρK

� �
; ð19Þ

where K is estimated in Section 3.1. Accordingly, the CP
duration is estimated as

L ¼ βcpb=ρ−K ; ð20Þ
where b is the minimum integer between 1 and bmax

for which a positive value is obtained for CP. Note
that although the maximum peak is achieved for b = 1
theoretically, another peak may be actually selected under
both small observation intervals and low signal-to-noise
ratio (SNR) conditions.
In the above analysis, we can see that the proposed

algorithm requires neither carrier, waveform, and symbol-
timing recovery nor estimation of noise and signal power.
It means that the proposed algorithm is robust for both
channel fading and synchronization results.

4.3. Determination of threshold value Tth
In the proposed approach to estimate the OFDM
parameters, the extremely significant step is to exploit the
presence of the CP-induced peak in the CC magnitude at
delay ρK and zero CF. Basically, this decision-making
problem can be formulated into the following hypothesis
testing framework:

H0 : τK=ρ≠K
H1 : τK=ρ ¼ K :

ð21Þ

Because of the existence of noise and estimation error
for CC, the CC amplitude is almost not a zero value
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Figure 3 Second-order CC versus delay, at β = 0.
even under the condition of (15). For this cause, it needs
to preparedly set up a threshold for the test problem.
However, the threshold relied on the experiment, and
the observation (e.g., in [11-13]) is not rigorous, for
which it lacks the relationship with the correct recognizing
probability. In the following, by referring to the result in
[17,18], we give a method to determine the threshold,
by which the threshold value will be derived from the
constant false alarm rate.
Similarly in [17], we firstly define a statistic testing

function:

F st ¼ Ĉ r Σrð Þ−1 Ĉ r

� �T
; ð22Þ

where Ĉ r is the consistent estimator of second-order CC
given by (14), and Σr is the asymptotic covariance matrix

of Ĉ r . (Σr)
− 1 and Ĉ r

� �T
represent the matrix inverse of Σr

and transpose of Ĉ r . Hence, the hypothesis testing problem
in (21) can be reformulated as a CFAR-based testing
problem:

H0 : τK=ρ≠K ; Fst ≤ ηth
H1 : τK=ρ ¼ K ; Fst > ηth:

ð23Þ

ηth is to be determined as threshold for Fst. In order
to design a decision strategy, the distribution of Fst is
required to be derived. In our discussion, the difference

between Ĉ r and Cr(β; τ) is the estimation error:

εr ¼ Ĉ r−Cr β; τð Þ: ð24Þ
The distribution of εr is unknown, and it is close to

zero when T0→∞. In [17], it is stated that T 0Ĉ r is an
asymptotical complex Gaussian variable, and Cr(β; τ)
is nonrandom. Therefore, it can be proved that the
independent distribution of r(t), which is the distribution of
0 200 400 600 800
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Figure 4 Second-order CC versus CF, at τ = ρK.

Table 1 Accuracy rate of estimation of subcarrier number K

K/CP 1/4 1/8 1/16 1/32

128 0.96 1.00 1.00 1.00

256 1.00 1.00 1.00 1.00

512 1.00 1.00 1.00 1.00

1,024 1.00 1.00 1.00 1.00
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εr, is asymptotical Gaussian with zero mean. Consequently,
for hypothesis H0 in (23), Fst can be viewed as a chi-square
distribution variable with 2N degrees of freedom, where
N is the number of collected samples with different
delay used by outputting the consistent estimator in (14).
Hence, the constant false alarm rate in the testing of

(23) is given by

Pf ¼ PrfF st > ηthjH0g: ð25Þ

In other words, the threshold ηth is uniquely determined
by the given CFAR probability Pf, by which the theoretical
relation between the threshold value and constant false
alarm rate was achieved.

5. Simulation results
In the simulation, the OFDM useful symbol duration K
is set to 128, 256, 512, and 1,024, and the CP is set to 1/4,
1/8, 1/16, and 1/32. The OFDM subcarrier features a
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Figure 5 Probability of correct parameter estimation for
different thresholds.
quadrature phase shift keying constellation and a bandwidth
of 800 KHz. At the transmitter side, a root-raised cosine
pulse shape with a roll-off factor of 0.025 is employed
before the A/D converting. In addition, the oversampling
frequency fs is set to 3.2 MHz, ΔfK to 320KHz, and bmax

to 4. All results are simulating under multipath fading
channels.
The magnitude of second-order CC of OFDM signal

(K = 128, CP = 1/4, ρ = 4, 2,000 symbols) is plotted
versus the delay and at CF = 0 in Figure 3. Apart from
the maximum peak at τ = 0, there is another CP-induced
peak appeared at about τ = 512, which is used in the
proposed estimation method for estimating the subcarrier
number K. Around the CC peak, the CC value is not
zero due to the time dispersion, which introduces the
interference for searching for the CC peak accurately.
Furthermore, the CC magnitude estimate at delay ρK is
depicted in Figure 4. Significant values can be seen
around β = 0 and β = lD−1.
Based on the threshold determination algorithm in

Section 4.3, we can derive the optimal theoretical threshold
value to minimize the constant false alarm rate. In order
to evaluate the derivative result, we compare the correct
estimation probability in terms of different threshold
values: the theoretical optimal, larger and smaller than the
optimal value, respectively. From Figure 5, we can conclude
that the estimation with the theoretical optimal threshold
can achieve the best correct probability, especially on low
SNR condition, which proved the algorithm proposed in
Section 4.3 in effect.
The simulation results for the blind parameter estimation

under the vehicular B channel are presented in Tables 1
and 2. Table 1 shows the accuracy rate of estimation of
subcarrier number K, and the accuracy rate of CP detection
is depicted in Table 2. From Tables 1 and 2, we can see
that the proposed algorithm can estimate the OFDM signal
parameters precisely even at the condition of SNR = 0.
However, we also should note that when the CP length is
Table 2 Accuracy rate of estimation of CP length

K/CP 1/4 1/8 1/16 1/32

128 1.00 1.00 - -

256 1.00 1.00 1.00 -

512 1.00 1.00 1.00 0.82

1,024 1.00 1.00 0.99 0.98
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too short, the cyclostationarity of OFDM signal will be
affected significantly, and the algorithm performance
will also decrease.

6. Conclusions
This paper has investigated the blind estimation of OFDM
parameters based on the signal’s cyclostationarity. Firstly,
the possibility of extracting the transmission parameters
from second-order CC is derived theoretically, which
analyzes both the continuous and discrete signal models
under the AWGN channel and multipath channel,
respectively. The proposed estimation approach jointly
exploits the delay and cyclic frequency domain properties
of second-order CC and develops a CFAR-based statistic
hypothesis testing framework to detect the presence
of CP-introduced cyclostationarity. The approach only
assumes that the OFDM signal have the cyclic prefix
and does not require any priori condition, so it can be
easily extended to most cases that need blind estimation
of OFDM parameters.
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