
RESEARCH Open Access

Mashing up the Internet of Things: a framework
for smart environments
Edgardo Avilés-López* and J Antonio García-Macías

Abstract

Along with the advent of the Web 2.0 came a rich ecosystem of application services allowing developers to use
the functionality provided by Web applications into their own customized solutions. This, together with the current
developments on the Internet of Things are laying the foundations of new IP-based smart environments in which
applications and services are combined to support users in ways not possible before. Recently, most of the
research has focused on improving the networking capabilities of the Internet of Things infrastructure and in
enabling the access to the following generation of services. However, there are two more issues that need to be
attended. First, how data and functionality provided by services on these smart environments would be modeled
in order to facilitate abstraction and composition, and second, how users are intended to interact with the
environments in order to make applications support their particular needs. In this article, we present a framework
and an user-interaction model for Internet of Things applications based on the technologies of the modern Web
as a solution proposal for both issues. We start by describing the elements of the framework, and then discuss the
user-interaction model by using a case-of-study scenario illustrating the capabilities of our contributions.

1 Introduction
In recent years, the Web has quickly evolved from a
read-only source of information into a very dynamic
applications platform. In the modern Web, applications
no longer provide data and functionality only to human
users but also to other systems and applications.
Because of this situation, any user with the proper
knowledge has now the possibility to build upon existing
Web services and data feeds to put together, piece by
piece, the needed support for customized application
scenarios. This possibility led to the introduction of
mashups [1,2], a concept originated in music that in
computer science refers to applications created by mix-
ing and rearranging different sources and service APIs.
One of the key technologies involved in mashup systems
and into the design of the last generation of Web ser-
vices are the resource oriented architectures, or more
commonly, RESTful Web services [3,4]. Web services
following the architectural principles of REST use
HTTP as application protocol, providing a very basic
and simple communication platform for applications. A
very common example of mashup is a Web application

that uses Google Maps to show the location of the most
recent pictures or events related to a specific geographic
region. The Google Maps API [5] is used to draw a map
and to mark positions on it, other services are queried
to retrieve the list of items to show. Mashup systems
can be used to combine user-interfaces, data, and
functionality.
Another, more important, development is the “Internet

of Things” vision [6-8] which seeks to interconnect the
physical objects in everyday life through the Internet in
effective, practical, and inexpensive ways. The connectiv-
ity of the integrated environment of devices of the Inter-
net of Things together with REST-based systems will
form the foundation of smart environments in which
sensing and computing could be mashed-up in ways not
possible before.
Several examples exist today that demonstrate how

useful are REST-based platforms for different application
domains. The smart grid scenario is one of the most
illustrative examples as benefits are clearly identified. A
good reference of a smart grid is the Smart Energy 2.0
specification of the ZigBee alliance. Smart Energy 2.0 [9]
is a REST-based standard used by devices from different
vendors to seamlessly interoperate with the objective to
monitor, control, inform, and automate the delivery of

* Correspondence: avilesl@cicese.mx
Computer Science Department, CICESE Research Center, Carretera Ensenada-
Tijuana 3918, Ensenada, Mexico

Avilés-López and García-Macías EURASIP Journal on Wireless Communications
and Networking 2012, 2012:79
http://jwcn.eurasipjournals.com/content/2012/1/79

© 2012 Avilés-López and García-Macías; licensee Springer. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

mailto:avilesl@cicese.mx
http://creativecommons.org/licenses/by/2.0

energy and water. The IP-based communication of this
standard allows devices to work over Wi-Fi, HomePlug,
Ethernet, and other communication channels, and, as
resources are modeled after a RESTful interface, the only
thing that must be standardized are how URIs and data is
modeled. Another example of a successful REST-based
platform is Pachube [10]. This platform provides a cen-
tralized repository of sensorial data for any user inter-
ested on sharing readings. Resources on the platform,
consisting on the readings, are consumed through a
REST interface and data is modeled after an standard to
describe sensorial information. Pachube is also an
instance of something that will be very common on the
Internet of Things. Data will progressively cease to come
from direct intervention of the user, through keyboards,
touch-enabled surfaces, or other input devices, and will
start to come from sensors and context induced by the
natural interaction of the user with environments.
There is a large number of issues that must be resolved

in the current Internet before it can be used as a proper
infrastructure for the next generation of application ser-
vices. This seems to be one of the reasons why most of
the research on the Internet of Things has been focused
into improving the current networking infrastructure and
into providing the access for physical devices through the
Internet. There are two important issues that haven’t yet
been fully addressed. They are: how the services and data
available in the Internet of Things will be modeled to
facilitate its composition and abstraction, and, how will
users interact with these new smart environment applica-
tions composed by pieces of independent functionality.
In the following Section, we discuss some of the issues

on the aggregation and composition of REST services
and propose an architecture that can be used as a point
of reference for platforms that presents the basic
mechanisms needed to support mashups for the Internet
of Things. In Section 3 we discuss the interaction of
users with smart environments and present our interac-
tion-model based on an mashup editor from which the
environment functionality is changed or improved. In
Section 4, we present a case of study scenario where the
architectural elements and the user-interaction is illu-
strated. Section 5 includes a discussion of the related
study and how our contributions differ from other pro-
posals. Finally, in Section 6, we conclude with some final
remarks and outline the future study.

2 A framework for mashups
The Internet of Things can greatly benefit from mashup
technology. The common functionality for a number of
scenarios in a particular domain can be identified and iso-
lated into single, language agnostic, and independent Web
services that can be later combined into new applications.
Mashups not only offer a solution for composition, they

can be also used as a mean to delegate processing for
data-mining or aggregation, and generate new resources
that are more manageable and scalable. There are some
studies that are starting to bring services in representation
of physical entities into mashups. The terms ubiquitous
computing mashups [1] and physical mashups [11] are
being used to refer to those efforts. In a similar way, there
are other works trying to bring the notion of time, place,
and other contextual information into traditional Web
applications (for instance, the W3C’s UWA Group [12]).
Our architecture offers a comprehensive solution for
mashups in the Internet of Things as it not only features
the access to physical entities, but also provides the means
for service discovery, event notification, aggregation of
resources, deployment of applications, and importantly it
is designed around the an user-interaction model based on
ambient-intelligence (AmI) applications, as described in
Section 3.
As with any infrastructure that allows the creation of

mashup applications, our architecture features the fol-
lowing set of mechanisms:

• A way to describe each service in terms of their
functionality.
• A way to discover the services that are available in
the environment the user is in.
• A way for the services to communicate with inter-
ested peers when an event occurs.
• An easy way to combine data and functionality
from services.

Our framework consists of four main elements: services
in representation of data, logic, and physical entities, a hub
service used for notifications, a service-discovery mechan-
ism, and execution engines (see Figure 1). The rest of this
section describes each element in detail.

2.1 Services description
Each element in our architecture consists of a RESTful
Web service. One of the reasons why this kind of service

RESTful
Web Services

Service
Interfaces

Resource
Representations

Service
Discovery

Execution Engine

Recipes

Service Invoker

Scheduler

Outputs

HubBub
Services

Application
Manifests

Figure 1 An overview of the framework showing all its
elements.

Avilés-López and García-Macías EURASIP Journal on Wireless Communications
and Networking 2012, 2012:79
http://jwcn.eurasipjournals.com/content/2012/1/79

Page 2 of 11

has been used in recent services-based platforms is that
they are more suitable for ad hoc integration [13]. REST
services do not need special proxy objects to handle ser-
vice calls as they are accessed through simple HTTP
requests; a feature available in most modern program-
ming-languages. Interacting with a RESTful Web service
is no different than opening a webpage, or sending a
form. Services provide resources (e.g., webpage, data file,
image, etc.) when receiving HTTP GET requests, and
handle changes on the resource by receiving POST,
PUT, or DELETE requests.
One of the main issues with RESTful interfaces is that

they lack a well-defined standard description language
because of their own architectural restrictions. A REST-
based API should not define fixed resources names, so
the complete interface of a service could not be acknowl-
edged a priori. This architectural constraint states that
“hypermedia should be the engine of the application
state” [3]. This is, after an initial request, the content of
the response must include a relationship of further URIs
that can be used to continue requesting resources
according to the application flow. For example, if a user
is searched on a bank’s database, the resource containing
the user’s information should contain URIs for each of
his bank accounts. However, we do need to define what
starting URIs the clients could use. In the bank example,
we would need to know where to send the request for
the user search.
In our framework, a service is described in terms of its

functionality by using a WADL document [14] containing
pointers to just the starting URIs for interaction. The same
document describes how data will be shared, this is, how it
should be parsed and consumed. A full service is not com-
pletely described by a single WADL document. Instead, a
service can implement multiple interface specifications,
each stored on individual documents (see Figure 2). The
intention is to simplify the specification of service composi-
tions and to bring flexibility by allowing a service to per-
form richer, composed tasks. The service also needs to be
registered on the service discovery mechanism, and, in
order to multiply the opportunities of interoperability; all
the resources provided by services in the platform must be
represented in most of the following formats:

• HTML. A Web page designed to be used by a
human user. This representation must provide
access to all the functionality offered by the service.
• XML. A valid representation in an XML schema
related to the functionality provided by the service.
• JSON. A JSON file containing the same data as the
XML representation. Services featuring this data for-
mat must also provide a JSONP alternative.
• ATOM. An Atom feed whose items are augmented
with XML tags of the related XML schema.

2.2 Service discovery
The service discovery mechanism of our base platform
should be based on any protocol that can identify net-
working services on a local network. During prototyping
we used Zero configuration networking (Zeroconf) [15], a
protocol originated on a IETF working group. We use the
capabilities of Zeroconf to advertise services. To do so,
once a service is ready to receive requests it must be regis-
tered in the environment by broadcasting its description
through the Zeroconf implementation. The description of
a service consists of the following attributes: the service
name, a human-readable description, the host name and
port number of the network resource, a base URI in which
the REST endpoints are contained, the URL of the hub
service that is used to broadcast event notifications
(explained in Section 2.4.4), and the interfaces the service
implements (URLs to WADL specifications). The Zero-
conf protocol is currently used by many printer vendors,
Wi-Fi cameras, and others. Users of the protocol are
expected to find a device as soon as it joins the network,
much like an USB device connecting to a computer.

2.3 Event notification
While not really part of RESTful architectures, our
architecture defines as events the notifications about the
update of a resource sent to interested entities. The
event notification mechanism allows the interchange of
context information and control messages by alerting
services running in the platform when a resource con-
taining such data is updated.
The design of the mechanism is based on the PubSub-

Hubbub protocol [16], or Hubbub for short, which intro-
duces a special entity called hub into the traditional
publish/subscribe communication model. In Hubbub,
once that a consumer makes its first request for a provi-
der’s resource, the response representation contains a link
pointing to the hub service used by the provider to adver-
tise resource updates; consumers interested in receiving
notifications for that particular resource must send a sub-
scription request to the linked hub. The hub stores a local
copy of the representation that will be updated after it
receives a ping request from the provider notifying him

RESTful
Web Service

Service Discovery

Service
Interfaces

Resource
Representations

Figure 2 The structure of a service in our framework.

Avilés-López and García-Macías EURASIP Journal on Wireless Communications
and Networking 2012, 2012:79
http://jwcn.eurasipjournals.com/content/2012/1/79

Page 3 of 11

that new data is available. If this does not happen within a
certain time window, the hub requests the resource by
itself and updates its local copy; whenever the resource is
updated, the hub notifies each of the subscribers which
can then request the hub’s updated representation.
At the moment, Hubbub only supports resource repre-

sentations in the Atom and RSS feed formats as they
allow the documents to contain links to related
resources, in this case, to hub services. However, we
extend these capabilities by adding support to other pos-
sible representations. References to hub services are
expected as links within documents or as an attribute in
service’s descriptions. In this way, services that cannot
include links in the representations because of limitations
in data formats, can point to a hub in the service’s
description. Additionally, if a service declares to imple-
ment the Hubbub protocol but does not point to a hub
in any ways, an execution engine will search for an avail-
able hub service in the environment to use it for event
notifications during the application flow.

2.4 Execution language and engine
In mashup systems, an application is actually a composition
of services put together to provide the logic needed for an
application. In order to build such applications, we need
first to describe the service composition using whatever
language is available in the platform that will run the mash-
ups. As stated before, the definition of a formal description
for REST services has yet to be standardized; general com-
position languages such as WS-BPEL [17,18] or EMML
[19] which are highly dependent on the full service descrip-
tions are having difficulties to offer an easy to use solution
for unexperienced developers. Being general-purpose com-
position languages, they are very fine-grained systems so
developers must be aware of how requests, representations,
and the individual logic will be mixed up together. To con-
front all these issues, we propose a simple composition lan-
guage in which the application logic is expressed by
describing the dependencies between coarse-grained com-
ponent services. Each composition step is performed
accordingly to the interfaces that the involved services
implement, so the full application logic can be expressed as
a simple and straightforward pipelining logic graph. Appli-
cations in our framework are described by documents
called application manifests, which define:

• The services involved in the composition (which
can be specific or generic) and their description.
• The flow between the services.
• The mashup outputs where the final data or func-
tionality will be served.
• Application control data such as execution sche-
dule, authentication credentials, and other meta-
data.

The scenario of use for traditional mashup systems is
rather simple: once a composition is defined, it is sent
for execution to a server; the server runs the composi-
tion and exposes any resources generated throughout
the application flow. Systems providing ubiquitous or
physical mashups, in the other hand, should integrate
additional special characteristics. In our platform:

• An application manifest is not only run on publicly
available servers, they can run on local closed envir-
onments, personal mobile devices, and so on.
• The user can be a part of the execution flow (e.g.,
to select between alternatives).
• Composition could include previously unknown
services that implement certain generic interfaces.
• Notification events from physical devices or con-
text providers are involved in the application flow.
• The execution of applications can be scheduled.
• Users can share and collaboratively design applica-
tion manifests using the different available execution
engines (with the appropriate permissions).
• Services representing objects in the real world are
managed through permissions and access control.

Application manifests are run by one of the special
entities in the platform: the execution engine services. An
execution engine is in charge of managing the described
application flow by identifying providers, requesting
resources, receiving related event notifications, and pro-
viding output resources to finally deliver the target func-
tionality. Its architecture is composed of five main
components (see Figure 3) which are in fact implementa-
tions of one or more of the core services interfaces. To
further discuss the functionality of each component and
the overall engine’s scenario of use, lets consider as
example an application that generates a map widget with
the last sensor readings from two wireless sensor net-
works. Figure 4 shows the graphical representation of the
services involved and the application flow that will end

Execution Engine

Recipes

Service
Discovery

Service
Invoker

Scheduler

Application
Manifests

Output
Resources

Services
/callback

/engine

/apps

/recipes

/outputs

Figure 3 Architecture of the execution engine, one of the
framework elements.

Avilés-López and García-Macías EURASIP Journal on Wireless Communications
and Networking 2012, 2012:79
http://jwcn.eurasipjournals.com/content/2012/1/79

Page 4 of 11

up in the generation of an output resource containing the
representation of a events-enabled widget that can be
embedded in Web pages.
The following sections detail how mashup applications

are executed.
2.4.1 Deploying manifests
The scenario starts with the submission of the example
application manifest (see Figure 5) to an execution
engine. The manifest files deployed on an engine are
managed through the/apps endpoint.
2.4.2 Running applications
Once an application has been deployed, the Scheduler
component will start its execution at the time indicated in
the manifest. Applications can be started immediately, at a
certain time, or just put on hold. Also, for simple applica-
tion flows, where real time notifications are not involved,
the manifest can declare additional starting times or a
repetition scheme. Whether the applications are running
or not, they can be controlled by the direct interaction
with the Scheduler component using the/engine
endpoint.

2.4.3 Logical recipes
To actually “run” mashups, the application flow as
described in the manifest is first transformed into a logical
dependencies tree. Then, the Service Invoker component
examines each node and tries to match its current condi-
tions against the requirements of a logical recipe which is
used to handle the actual processing required for that step
in the mashing process. The conditions of a step refer to:
the description of the service represented by the current
node, the presence or availability of the same service, and
the services used by this node. The requirements of a
recipe declare: the interfaces that the target service must
implement, the interfaces implemented by the services
involved, and how recent a resource from such services
must be in order to be used for processing the logic pro-
vided by the recipe. We based the concept of recipes on
the fact that many of the composition tasks present very
similar situations. For instance, in our example application,
we could expect that the functionality expressed by the
connection of every instance of the KML Generator inter-
face to a Map Builder interface is to generate a map widget
highlighting hotspots from the file. If that is not the case,
we could easily add more recipes to an execution engine
by posting a new recipe resource (which includes require-
ments and the script to handle the composition step) into
the/recipes endpoint.
2.4.4 Handling requests and events
To fulfill the composition step accordingly to the recipe,
the service invoker casts all the involved requests for
resources. As responses arrive, they are mixed (by the
recipe’s scripting) into a new resource that will be stored
in the current node of the full logical tree. To handle
events, the Service Invoker subscribes itself to the
resources for which it requires notifications by using an
intermediary hub service. Here is where service discovery
is used to find a hub in case one of the services declares to
implement the push-subscriber interface but does not
include a link to one. After subscription, event notifica-
tions arrive to the/callback endpoint of the execution
engine, where the scheduler identifies the target applica-
tion manifest and activates the execution of the node
where the subscription was made. Whenever a step of the
application flow is completed, service invocation is acti-
vated on every child node to possibly update any derived
resources.
2.4.5 User inputs
It is handled by services whose resources represent user
interactions. As other publisher services, they implement
the push-publisher interface so they can halt the execu-
tion of an application manifest until a response from a
user is received.
2.4.6 Output endpoints
The resources generated on each composition step are
stored on the services dependency tree. Sometimes, the

WSN Research Lab
Sensing Provider

WSN Tony's Home
Sensing Provider

Sensing Map File
KML Generator

Sensing Widget
Map Builder

Sensing Map
Output

Figure 4 The graphical representation of an application
manifest.

{
 "interfaces": [
 { "id": "i1", "url": "http://…/push-publisher.wadl" },
 { "id": "i2", "url": "http://…/push-subscriber.wadl" },
 { "id": "i3", "url": "http://…/sensing-provider.wadl" },
 { "id": "i4", "url": "http://…/kml-generator.wadl" },
 { "id": "i5", "url": "http://…/widget-generator.wadl" },
 { "id": "i6", "url": "http://…/map-builder.wadl" }],
 "services": [
 { "id": "s1", "name": "WSN Research Lab",
 "implements": ["i3", "i1"], … },
 { "id": "s2", "name": "WSN Tony's Home",
 "implements": ["i3", "i1"], … },
 { "id": "s3", "name": "Sensing Map File",
 "implements": ["i4", "i2", "i1"], … },
 { "id": "s4", "name": "Sensing Widget",
 "implements": ["i6", "i5", "i2", "i1"], … }],
 "outputs": [
 { "id": "o1", "name": "Sensing Map", … }],
 "flow": [
 { "from": ["s1", "s2"], "to": ["s3"], … },
 { "from": ["s3"], "to": ["s4"], … },
 { "from": ["s5"], "to": ["o1"], … }],
 …

}

Figure 5 An application manifest in JSON format.

Avilés-López and García-Macías EURASIP Journal on Wireless Communications
and Networking 2012, 2012:79
http://jwcn.eurasipjournals.com/content/2012/1/79

Page 5 of 11

application’s complete functionality is performed by the
accumulation of each individual service request, other
times, the final objective of a mashup is to provide new
resources. To support this, the application manifest
includes outputs declarations into the application flow.
In the example application (see Figure 5), all connected
services end up in an output which generates source
code that users can copy and paste into Web pages. To
interact with outputs, each execution engine exposes the
outputs of the applications in the/outputs endpoint.
Output resources are not just plain, simple documents.
An application could be kept running and updating
those resources. In the example, sensing readings will be
constantly notified. Widgets on the platform are sup-
posed to receive PubSubHubbub updates on the client’s
side, so outputs are always updated, living documents.
Additionally, an output resource can be declared to
implement interfaces, as a normal service, so the discov-
ery mechanism can identify and include them into
compositions.
2.4.7 Sharing applications
Multiple users can simultaneously use execution
engines. To collaboratively design applications, they
could update the same manifests by interacting with
the/apps resources. We have included a special sharing
alternative: the ability to export application manifests.
Exported manifest contain along with the original docu-
ment, the definition of all the recipes found suitable by
the execution engine at hand. So, if a developer wants
to take an application into another execution engine it
will be executed on the same way (provided that both
engines are implemented with the same scripting
technology).
In the following section, we present our user-interac-

tion model based on the framework described above.
On section 4, we discuss a sample scenario with the set-
tings of the architectural elements and the interaction
following the complete model.

3 The user interaction with smart environments
Besides providing a good infrastructure foundation for
smart environments, we must address the question of how
users are expected to interact with such environments.
We think that, in order to illustrate this interactions in
smart Web-based environments on the Internet of Things,
we can use scenarios depicted on the AmI [20] and ambi-
ent-assisted living (AAL) visions.
The term AmI is used to refer to smart environments

that are sensitive and responsive to the presence of users.
Hardware devices and software services in smart environ-
ments are expected to work together to support users in
their everyday activities in easy, natural ways hiding at the
same time the network and other low-level details that

support the environment. The AmI paradigm is character-
ized by systems and technologies that are [21,22]:

• Embedded. Many small-networked devices are
seamlessly integrated into the environments.
• Context-aware. That can recognize users and their
situational context.
• Personalized. That can be tailored towards the
user’s needs.
• Adaptive. That can change in response to user
actions or other events in the environment.
• Anticipatory. That can anticipate users’ desires
without conscious mediation.

The AAL term refers to the application of ambient
technology to assist individuals in performing everyday
activities. This term is very similar to AmI, but the AAL
systems present the following additional characteristics:

• Invisibility. They are embedded in clothes, watches,
eyeglasses, and other day-to-day items.
• Mobile. They can be transported by the user and
have the ability to act in different environments.
• Spontaneous. They can communicate dynamically
with many previously unknown devices.
• Heterogeneous. They integrate several different
types of hardware and software entities.
• Proactive. They can act in behalf of the user after
the user activities inferred from his behavior.
• Natural. They communicate the user in natural
ways such as voice and light.

To further illustrate how the user interacts with smart
environments according to the concepts of the AmI and
AAL visions consider the following scenario:
Mr. Smith is a senior of advanced age who, due to the

physical inabilities that come with age, needs a wheel-
chair to move around his house. Whenever Mr. Smith is
close to a door, he presses a button on his watch and the
door opens, the same happens when he is close to a
window. When Mr. Smith needs the assistance of
another person, he presses the button again, and an
email and IM alert is sent to the closest person around
the area where he is providing him with Mr. Smith’s loca-
tion and identification details.
In the above scenario, the smart environment is sup-

porting the user but the user by himself does not actively
alters the functionality the environment is ready to pro-
vide. This scenario requires someone, a “power user”, to
set up how services in representation of doors and
windows should act when the button on Mr. Smith’s
watch is pressed. In the following section, we present
our infrastructural model in which we detail how the

Avilés-López and García-Macías EURASIP Journal on Wireless Communications
and Networking 2012, 2012:79
http://jwcn.eurasipjournals.com/content/2012/1/79

Page 6 of 11

interaction of users would be in both cases: the passive,
in which users take advantage of services and applica-
tions available in environments, and the active, in which
power users arrange the services available in an environ-
ment to define new applications.
Following the concepts and characteristics introduced

above, we can identify two scenarios of interaction
between the user and the smart environment. One, in
which the environment implicitly supports the users
according to the functionality of existing applications,
and other, in which the user explicitly creates or modifies
an application on the environment. For the first scenario,
our framework considers users carrying devices with
them that allows the environment to detect and track
their presence. For the second scenario, the user interacts
with the environment through a mashup editor he can
use to create new applications using the available services
or even previously created applications.
As explained above, in our base platform a mashup

application is coded by means of an application manifest
that specifies the services involved, the connections
between them, and the data flow though the configura-
tion or assembled by using the mashups editor; this edi-
tor is a Web-based system to create application manifests
through simple activities such as dragging and dropping
graphical representations of the involved services to
accomplish the specification of configurations that sup-
port a desired scenario. In our interaction model, a user
must carry a device that provides him with personal ser-
vices (such as localization, contacts, notification, and
others), runs mashup applications, and allows access to
the infrastructure through the mashups editor. The per-
sonal applications and services are shown on the left
sidebar of the editor (see Figure 6:1-3). The platform
infrastructure automatically discovers the services that
are provided on the user environment and the applica-
tions that are currently running (those are shown on the
right sidebar, Figure 6:4-5)). Additionally to the basic per-
sonal services, the user can add external services such as
his Facebook or Twitter account (Figure 6:3). The editor
also allows interaction with remote environments (Figure
6:6-7). The area at the center of the editor (Figure 6:8) is
the instantiation area where the services are dropped,
interconnected, and then stored into an environment or
in the personal device as mashup applications.

4 Case of study
To better illustrate how our base platform and user-inter-
action model work together let’s consider the following
scenario. In a living room, there are several devices that
provide RESTful interfaces to their resources as a way to
consume data or trigger functionality. The living room has
three types of communication channels (see Figure 7): a
802.15.4-based protocol, a HomePlug network, and a

Wi-Fi router. The lights in the room and the shade on the
window communicate with the 802.15.4-based protocol,
the home entertainment center and the ceiling lamp use
HomePlug, and users use the Wi-Fi connection to talk
with all the devices via the mashup editor on the device of
users. All three-communication channels are connected
together with a Wi-Fi/HomePlug/802.15.4 bridge in the
same room. Each device is running a REST service that is
developed following the characteristics of a service in our
base platform. These are, each service provide access to
resources through an RESTful API, implement one of the
generic interfaces, and are broadcasting their availability
into the service discovery mechanism. Additionally to the
device services, there is one execution engine and a direc-
tory service.
As discussed above, the interaction model has two dif-

ferent approaches. In one, applications on the execution
engines react to changes on the environments initialized
by the presence of the user or other related resources.
In the other, the user actively makes changes on the
applications in execution engines by using the mashup
editor. In this scenario there are multiple possible appli-
cations. One of them is one that turns out the lamp on
the corner, closes the window shade, and dims out the
lights in the room whenever the home entertainment
center is playing a movie. Other possibility is one appli-
cation that turns on the lights and closes the shade
when the day starts growing dark. These applications
are really simple and the user might be able to write the
needed recipes by himself. But, there could be situations,
for example, when the user purchases a new device, that
could require the user to obtain a recipe from a website,
or by having the assistance or a technician. Execution
engines will use devices and services on application
manifests but the user or any other entities can still use
them.
Lets discuss the implementation of the scenario in

which the entertainment center plays a movie, dims out
the lights and closes the window shade. The first thing
we need is to identify what is the dependency between
devices. In this scenario, the starting point is the enter-
tainment center, whenever the resource that contains the
status of the device changes, we need to receive an event
notification in order to continue other actions. So, before
using the mashup editor to create the application mani-
fest, we must be sure that we count with the proper ser-
vice implementations. First, the entertainment center
must provide a resource containing information about its
current status through a REST interface. Second, we
need at least one hub service available so we can sub-
scribe to the updates of the entertainment center
resource. And third, the light dimmer and the window
shade must count each with a service accepting updates
of its status resource so if we update it a physical action

Avilés-López and García-Macías EURASIP Journal on Wireless Communications
and Networking 2012, 2012:79
http://jwcn.eurasipjournals.com/content/2012/1/79

Page 7 of 11

will occur. Once the services are all running and detected
by the service discovery mechanism, they will appear on
the mashup editor the user carries with him. Here, he
just needs to drag each service representation and to
draw a line between the dependencies. Suppose this is
the first time the user needs this dependency scenario.
The editor will not find any recipes for the needed func-
tionality. So, the user will need to write a recipe for each
connection on the dependency tree. The needed recipes
for this functionality are:

• The event subscription to the entertainment center
status resource using any hub service available at the
time on the environment.
• The request for the lights to dim out accordingly
to the updated entertainment center status resource.Figure 7 The devices involved in the case of study scenario.

Figure 6 The mashup editor build upon the framework.

Avilés-López and García-Macías EURASIP Journal on Wireless Communications
and Networking 2012, 2012:79
http://jwcn.eurasipjournals.com/content/2012/1/79

Page 8 of 11

• The request for the window shade to close accord-
ingly to the updated status resource.

We have implemented a working prototypea of our fra-
mework and a basic version of our mashup editor. The
implementation of the different platform mechanisms are
a combination of RESTful Web services written in PHP
and Java (using the Restlet framework [23]) with a service
discovery based upon Bonjour [24]. The editor is imple-
mented on Webkit and uses JavaScript to handle the user
interface. Recipes in our execution engine mechanism are
an extension of PHP that includes methods and special
objects to reduce the amount of source code written by
users to define behavior. For example, to send a POST
request to a REST service the user only needs to write
post($target, $data). The keyword $target
refers to an special object that contains all the data
related to the identification of a service, requests to the
service discovery mechanism returns this kind of objects.
The keyword $data refers to a resource representation
that can be easily translated to a JSON or XML docu-
ment as the recipe needs. Using the prototype of our
infrastructure we have conducted other studies related to
AAL applications and scenarios [25].

5 Related study
The following studies present some similarities with our
proposals but differ in how services are handled towards
composition or in how the user-interaction is when
creating applications through mashups.
López de Ipiña et al. [26] present Sentient Graffiti (SG),

a platform following the Internet of Things concept
where users accompanied by mobile devices or Web
browsers can browse, discover, search, annotate, and fil-
ter surrounding smart objects in the form of Web
resources. In this infrastructure, users carry an SG client
which they can use to add annotations to objects on spa-
tial regions, they can also browse (physically or virtually)
an environment to consume the available annotations.
While this effort considers AmI environments, specifi-
cally, the ambient-intelligent systems requirements, it
considers the services as passive entities, requiring the
users to explicitly initiate the interaction with smart
objects.
Vazquez et al. [27] present the concept of “social

device” and talk about their study on implementing a
couple of prototypes to evaluate the potential of their fra-
mework to support the integration of smart devices into
the Web. Their focus differs to ours in the sense that the
authors want to make devices interact between each
other in the same way people interact through Web 2.0
social services. We are more focused on the interaction
on site and in how users would interact with smart envir-
onments by easily creating mashups.

Guinard et al. [28] analyze the integration of real world
devices with the Web by turning them into RESTful
resources. They propose two methods of integration, in
the first one, they describe how an actual Web server can
be implemented on tiny embedded devices and, in the
second one, when computational resources are too lim-
ited, they propose the use of an intermediate gateway
that can offer a unified RESTful API to the devices by
hiding the actual communication protocols used to com-
municate with them. They also exemplify how these
services can be later used in mashup applications. Our
contributions go beyond than just providing access
to physical entities or simplifying the development of
mashups from RESTful resources. The design of our
framework takes into account special requirements for
supporting AmI scenarios. Some of such requirements
are: the need to deliver timely notifications on a particu-
lar context change, the possibility to deploy an applica-
tion into the background of an environment, the
incorporation of generic services into compositions for
which the actual service to be used is unknown, and the
possibility to involve an user’s choice on runtime into the
application flow. The same author has also experimented
with a mashup editor for users to create applications
[29]. However, the editor runs applications on a Web
browser as it is based upon a Firefox plugin. Our mash-
ups can run on specialized devices or in execution
engines deployed on different environments, and more
importantly, they not limited by the capabilities of Java-
Script, this is, they can use different protocols or engines
as a way to compose resources.
Zhang et al. [30] present the advanced Internet of

Things (AIoT) paradigm based on the unified object
description language (UODL) proposed by the same
authors. UODL allows identifying and interconnecting
every object and event with a standard format, making
available all the information and events related to the
objects, and make the control by management and third
party entities easy and flexible. The AIoT paradigm and
our framework both take care of identifying objects,
handling discovery, and providing a deployment mechan-
ism but the main difference is the way objects are mod-
eled. Our framework is based upon REST and every
single framework element is a service that provides
resources via simple HTTP requests. Because of this, any
existing third party service using HTTP as application
protocol can be easily integrated into our framework. In
the same way, our framework can directly use the same
technologies for security and data privacy as the available
on the traditional Web. Finally, AIoT doesn’t directly
involve the user in the environments where the applica-
tions are deployment, our framework is designed to allow
users to crate or modify such applications following the
mashups concept.

Avilés-López and García-Macías EURASIP Journal on Wireless Communications
and Networking 2012, 2012:79
http://jwcn.eurasipjournals.com/content/2012/1/79

Page 9 of 11

6 Conclusions
In this article, we have talked about how the Internet is
progressing towards the Internet of Things and discussed
two important problems, which are, how the resources
and functionality of the different next generation services
would be composed, and how the user interaction would
be in terms of the access to the resources provided by the
environment, and in terms of how they would create new
applications for their particular support demands. To han-
dle both issues we propose a base platform architecture
and an user-interaction model based on the AmI applica-
tions and AAL concepts.
In order to corroborate our contributions, we have

implemented a working prototype of our platform and
used it to build test applications for a variety of scenarios.
We also used the implementation to conduct a usability
study with a small developers group consisting of engi-
neers both experts and novel in Web programming. The
test was based on the cognitive-dimensions framework
[31] and the participants were requested to build an appli-
cation using the mashup editor. Preliminary results show
users have no problems identifying each of the platform
elements and what is the role of each one in providing the
final support of the requested applications.
The Web-based support for the Internet of Things

seems to be the best way to promote interoperability and
easiness of access to resources. Certainly, it is not always
the best way for applications scenarios where quality of
service, latency, and consumption of energy are impor-
tant issues. Experimentation conducted with our proto-
type on different scenarios seems to support these
thoughts. Fortunately, there is a very active research on
protocols upon where the Internet of Things could rely
upon. One of such protocols is CoAP [32] which allows
low-end, 8-bit devices to use HTTP-like intercommuni-
cations. One of the many benefits of CoAP is that it is
easily translatable into the full HTTP protocol enabling
the valuable Web-based support.
With the introduction of our mashups-based platform

architecture and user-interaction model we intend to
provide a base upon where more advanced platforms
and applications could be designed and built. We are
working into conducting further evaluations to better
assess the suitability of our base platform in providing
support for smart environments.

Endnote
aThe implementation is open and can be downloaded
from: http://www.ubisoa.net/.

Acknowledgements
The study presented in this article was funded with grants from CONACyT,
the Mexican Council for Science and Technology.

Competing interests
The authors declare that they have no competing interests.

Received: 3 October 2011 Accepted: 2 March 2012
Published: 2 March 2012

References
1. B Hartmann, S Doorley, SR Klemmer, Hacking, mashing, gluing:

understanding opportunistic design. Pervasive Comput. 7(3), 46–54 (2008)
2. M Alibinola, L Baresi, M Carcano, S Guinea, Mashlight: A Lightweight

Mashup Frame-work for Everyone, in Proceedings of the 18th international
conference on World Wide Web, WWW’09, (Madrid, Spain, 2009)

3. RT Fielding, Architectural styles and the design of network-based software
architectures, (PhD thesis, University of California, Irvine, 2000)

4. L Richardson, S Ruby, RESTful Web Services, (O’Reilly Media, Inc., Sebastopol,
USA, 2007)

5. Google Maps APIhttp://code.google.com/apis/maps
6. N Gershenfeld, R Krikorian, D Cohen, The Internet of Things. Sci Am. 291(4),

76–81 (2004). doi:10.1038/scientificamerican1004-76
7. CR Schoenberger, The Internet of Things. Forbes Mag. 169(6), 155–160

(2002)
8. JS Rellermeyer, M Duller, K Gilmer, D Maragkos, D Papageorgiou, G Alonso,

The software fabric for the Internet of Things, in Proceedings of the 1st
international conference on the Internet of Things, IOT’08, vol. 4952. (Springer-
Verlag, Berlin, Heidelberg, 2008), pp. 87–104

9. ZigBee Alliance, ZigBee Smart Energy 2.0 Specification. http://www.zigbee.
org/ (2011)

10. Pachube, Real-Time Open Data Web Service for the Internet of Things.
http://pachube.com/ (2011)

11. D Guinard, V Trifa, E Wilde, A resource oriented architecture for the Web of
things, in Proc of IoT 2010 (IEEE International Conference on the Internet of
Things), (Tokyo, Japan, 2010), pp. 1–8

12. W3C Ubiquitous Web Applications Grouphttp://www.w3.org/2007/uwa/
13. C Pautasso, O Zimmermann, F Leymann, RESTful Web services vs. “big” Web

services: making the right architectural decision, in WWW’08: Proceeding of
the 17th interna-tional conference on World Wide Web, (Beijing, China, 2008),
pp. 805–814

14. MJ Handley, Web application description language (WADL), (W3c member
submission, Sun Microsystems, Inc, 2009) http://www.w3.org/Submission/
wadl/

15. Zero Configuration Networking (Zeroconf)http://www.zeroconf.org/
16. PubSubHubbub Projecthttp://code.google.com/p/pubsubhubbub
17. OASIS Web Services Business Process Execution Language (WS-BPEL)http://

www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsbpel
18. C Pautasso, RESTful Web service composition with BPEL for REST. Data

Knowledge Eng. 68(9), 851–866 (2009). doi:10.1016/j.datak.2009.02.016
19. OMA EMML Documentationhttp://www.openmashup.org/omadocs/v1.0
20. E Aarts, H Harwig, M Schuurmans, The Invisible Future: The Seamless

Integration of Technology into Everyday Life, (McGraw-Hill, Inc., NY, USA,
2002)

21. Weber W, Rabaey JM, Aarts EHL (eds.), Ambient Intelligence (Springer, New
York, USA, 2005)

22. J Nehmer, M Becker, A Karshmer, R Lamm, Living assistance systems: an
ambient intelligence approach, in ICSE’06: Proceedings of the 28th
International Conference on Software Engineering, (Shanghai, China, 2006),
pp. 43–50

23. Restlet, RESTful Web Framework for Java.http://www.restlet.org/
24. Apple Bonjourhttp://developer.apple.com/bonjour
25. E Avilés-López, JA García-Macías, I Villanueva-Miranda, Developing ambient

intelligence applications for the assisted living of the elderly, in Intl Conf on
Ambient Systems, Networks and Technologies (ANT 2010), (Paris, France, 2010)

26. D López-de-Ipiña, JI Vazquez, J Abaitua, A Web 2.0 platform to enable
context-aware mobile mash-ups, in AmI’07: Proceedings of the 2007
European Conference on Ambient Intelligence, vol. 4794. (Springer-Verlag,
Berlin, Heidelberg, 2007), pp. 266–286

27. J Vazquez, D López-de-Ipiña, Social devices: autonomous artifacts that
communicate on the Internet, in The Internet of Things, pp. 308–324http://
dx.doi.org/10.1007/978-3-540-78731-0_20 (2008)

28. D Guinard, V Trifa, Towards the Web of things: Web mashups for
embedded devices, in WWW’09: Proceedings of the 18th international
conference on World Wide Web, (Madrid, Spain, 2009), pp. 678–683

Avilés-López and García-Macías EURASIP Journal on Wireless Communications
and Networking 2012, 2012:79
http://jwcn.eurasipjournals.com/content/2012/1/79

Page 10 of 11

http://www.ubisoa.net/
http://code.google.com/apis/maps
http://www.ncbi.nlm.nih.gov/pubmed/15597983?dopt=Abstract
http://www.zigbee.org/
http://www.zigbee.org/
http://pachube.com/
http://www.w3.org/2007/uwa/
http://www.ncbi.nlm.nih.gov/pubmed/22431985?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22431985?dopt=Abstract
http://www.w3.org/Submission/wadl/
http://www.w3.org/Submission/wadl/
http://www.zeroconf.org/
http://code.google.com/p/pubsubhubbub
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsbpel
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsbpel
http://www.openmashup.org/omadocs/v1.0
http://www.ncbi.nlm.nih.gov/pubmed/15267644?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15267644?dopt=Abstract
http://www.restlet.org/
http://developer.apple.com/bonjour
http://www.ncbi.nlm.nih.gov/pubmed/22427076?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22427076?dopt=Abstract
http://dx.doi.org/10.1007/978-3-540-78731-0_20
http://dx.doi.org/10.1007/978-3-540-78731-0_20
http://www.ncbi.nlm.nih.gov/pubmed/22431985?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22431985?dopt=Abstract

29. D Guinard, Mashing up Your Web-enabled home, in Adjunct Proc of ICWE
2010 (In-ternational Conference on Web Engineering), Vienna. 6385, 442–446
(2010)

30. L Zhang, N Mitton, Advance Internet of Things, in iThings, (Dalian, China,
2011) http://hal.inria.fr/inria-00634290

31. TRG Green, M Patre, Usability analysis of visual programming environments:
a cognitive dimensions framework. J Visual Lang Comput. 7, 131–174
(1996). doi:10.1006/jvlc.1996.0009

32. Constrained Application Protocol (CoAP)http://tools.ietf.org/html/draft-ietf-
core-coap

doi:10.1186/1687-1499-2012-79
Cite this article as: Avilés-López and García-Macías: Mashing up the
Internet of Things: a framework for smart environments. EURASIP Journal
on Wireless Communications and Networking 2012 2012:79.

Submit your manuscript to a
journal and benefi t from:

7 Convenient online submission

7 Rigorous peer review

7 Immediate publication on acceptance

7 Open access: articles freely available online

7 High visibility within the fi eld

7 Retaining the copyright to your article

 Submit your next manuscript at 7 springeropen.com

Avilés-López and García-Macías EURASIP Journal on Wireless Communications
and Networking 2012, 2012:79
http://jwcn.eurasipjournals.com/content/2012/1/79

Page 11 of 11

http://hal.inria.fr/inria-00634290
http://tools.ietf.org/html/draft-ietf-core-coap
http://tools.ietf.org/html/draft-ietf-core-coap
http://www.springeropen.com/
http://www.springeropen.com/

	Abstract
	1 Introduction
	2 A framework for mashups
	2.1 Services description
	2.2 Service discovery
	2.3 Event notification
	2.4 Execution language and engine
	2.4.1 Deploying manifests
	2.4.2 Running applications
	2.4.3 Logical recipes
	2.4.4 Handling requests and events
	2.4.5 User inputs
	2.4.6 Output endpoints
	2.4.7 Sharing applications

	3 The user interaction with smart environments
	4 Case of study
	5 Related study
	6 Conclusions
	Endnote
	Acknowledgements
	Competing interests
	References

