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Abstract

Orthogonal frequency division multiplexing (OFDM) has been considered for visible light communication (VLO);

thanks to its ability to boost data rates as well as its robustness against frequency-selective fading channels. A major
disadvantage of OFDM is the large dynamic range of its time-domain waveforms, making OFDM vulnerable to
nonlinearity of light emitting diodes. DC-biased optical OFDM (DCO-OFDM) and asymmetrically clipped optical OFDM
(ACO-OFDM) are two popular OFDM techniques developed for the VLC. In this article, we will analyze the
performance of the DCO-OFDM and ACO-OFDM signals in terms of error vector magnitude (EVM), signal-to-distortion
ratio (SDR), and achievable data rates under both average optical power and dynamic optical power constraints. EVM
is a commonly used metric to characterize distortions. We will describe an approach to numerically calculate the EVM
for DCO-OFDM and ACO-OFDM. We will derive the optimum biasing ratio in the sense of minimizing EVM for
DCO-OFDM. In addition, we will formulate the EVM minimization problem as a convex linear optimization problem
and obtain an EVM lower bound against which to compare the DCO-OFDM and ACO-OFDM techniques. We will
prove that the ACO-OFDM can achieve the lower bound. Average optical power and dynamic optical power are two
main constraints in VLC. We will derive the achievable data rates under these two constraints for both additive white

ACO-OFDM under different power constraint scenarios.

Achievable data rate, Clipping

Gaussian noise channel and frequency-selective channel. We will compare the performance of DCO-OFDM and
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Introduction

With rapidly growing wireless data demand and the sat-
uration of radio frequency (RF) spectrum, visible light
communication (VLC) [1-4] has become a promising can-
didate to complement conventional RF communication,
especially for indoor and medium range data transmis-
sion. VLC uses white light emitting diodes (LEDs) which
already provide illumination and are quickly becoming the
dominant lighting source to transmit data. At the receiv-
ing end, a photo diode (PD) or an image sensor is used
as light detector. VLC has many advantages including
low-cost front-ends, energy-efficient transmission, huge
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(THz) bandwidth, no electromagnetic interference, no eye
safety constraints like infrared, etc. [5]. In VLC, simple
and low-cost intensity modulation and direct detection
(IM/DD) techniques are employed, which means that only
the signal intensity is modulated and there is no phase
information. At the transmitter, the white LED converts
the amplitude of the electrical signal to the intensity of the
optical signal, while at the receiver, the PD or image sensor
generates the electrical signal proportional to the inten-
sity of the received optical signal. The IM/DD requires
that the electric signal must be real-valued and unipolar
(positive-valued).

Recently, orthogonal frequency division multiplexing
(OFDM) has been considered for VLC; thanks to its
ability to boost data rates and efficiently combat inter-
symbol interference [5-10]. To ensure that the OFDM
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time-domina signal is real-valued, Hermitian symmetry
condition must be satisfied in the frequency-domain.
Three methods have been discussed in the literature for
creating real-valued unipolar OFDM signal for VLC.

(1) DC-biased optical OFDM (DCO-OFDM)—adding a
DC bias to the original signal [6,7,11];

(2) Asymmetrically clipped optical OFDM
(ACO-OFDM)—only mapping the data to the odd
subcarriers and clipping the negative parts without
information loss [8];

(3) Flip-OFDM—transmitting positive and negative
parts in two consecutive unipolar symbols [10].

One disadvantage of OFDM is its high peak-to-average-
power ratio (PAPR) due to the summation over a large
number of terms [12]. The high PAPR or dynamic range
of OFDM makes it very sensitive to nonlinear distor-
tions. In VLC, the LED is the main source of nonlinearity.
The nonlinear characteristics of LED can be compensated
by digital pre-distortion (DPD) [13], but the dynamic
range of any physical device is still limited. The input
signal outside this range will be clipped. A number of
papers [14-17] have studied the clipping effects on the RF
OFDM signals. However, clipping in the VLC system has
two important differences: (i) the RF baseband signal is
complex-valued whereas time-domain signals in the VLC
system are real-valued; (ii) the main power limitation for
VLC is average optical power and dynamic optical power,
rather than average electrical power and peak power as
in RF communication. Therefore, most of the theory and
analyses developed for RFE OFDM are not directly appli-
cable to optical OFDM. A number of papers [13,18-20]
have analyzed the LED nonlinearity on DCO-OFDM and
ACO-OFDM and compared their bit error rate, power
efficiency, bandwidth efficiency, etc.

In this article, we will investigate the performance of
DCO-OFDM and ACO-OFDM signals in terms of error
vector magnitude (EVM), signal-to-distortion ratio (SDR),
and achievable data rates. EVM is a frequently used
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performance metric in modern communication stan-
dards. In [13,19], the EVM is measured by simulations for
varying power back-off and biasing levels. In this article,
we will describe an approach to numerically calculate the
EVM for DCO-OFDM and ACO-OFDM, and derive the
optimum biasing ratio for DCO-OFDM. We will formu-
late the EVM minimization problem as a convex linear
optimization problem and obtain an EVM lower bound.
In contrast to [21] which investigated the achievable data
rates for ACO-OFDM with only average optical power
limitation, we will derive the achievable data rates sub-
ject to both the average optical power and dynamic optical
power constraints. We will first derive the SDR for a given
data-bearing subcarrier based on the Bussgang’s theory.
Upon the SDR analysis, we will derive the achievable data
rates for additive white Gaussian noise (AWGN) channel
and frequency-selective channel. Finally, we will compare
the performance of two optical OFDM techniques.

System model
The system model discussed in this study is depicted in
Figure 1. In an OFDM system, a discrete time-domain sig-
nalx =[x[0],x[1],...,x[ N—1]]is generated by applying
the inverse DFT (IDFT) operation to a frequency-domain
signal X =[ Xo, X1, ..., Xn-1] as
;N2
x[n] = IDFT(Xy) = Z Xi exp(j2rkn/N),
NS

0<n<N-1, (1)

where j = /=1 and N are the size of IDFT, assumed to
be an even number in this article. In a VLC system using
LED, the IM/DD schemes require that the electric signal
be real-valued and unipolar (positive-valued). According
to the property of IDFT, a real-valued time-domain signal
x[ n] corresponds to a frequency-domain signal Xj that is
Hermitian symmetric, i.e.,

Xk S R, k=0,N/2y

where * denotes complex conjugate.

Xy x[n] y[n]
Data in
Subcarrier - N-point Clipping DPD DA
assignment : IDFT and Biasing | E
| |
Electrical to Optical
Conversion (LED)
Hermitian l
symmetry hin] Optical
’[” Channel
Ry r'[n.} l
] Optical to Electrical
Data out Subcarrier N-point ADC le anl\(/:eri(Z)n (eF?Drﬁ?
<+<—  extraction DFT L=~ Image Sensor)
Figure 1 OFDM system model in VLC.
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In Figure 1, y[n] is obtained from x[#] after both a
clipping and a biasing operation are implemented. The
resulting signal, y[#], is non-negative (i.e., y[n]> 0)
and has a limited dynamic range. In a VLC system, the
light emitted is used for illumination and communica-
tion simultaneously. The intensity of light emitted by the
LED is proportional to y[ #], while the electrical power is
proportional to y?[ #]. In the optical communication liter-
ature, the average optical power of the LED input signal
y[ n] is defined as

0y £ Epylnl), (3)

where £[-] denotes statistical expectation. Usually, the
VLC system operates under some average optical power
constraint Py, i.e.,

Oy < Py4. (4)

This constraint is in place for two reasons: (i) the sys-
tem power consumption needs to be kept under a certain
limit, (ii) the system should still be able to communicate
even under dim illumination conditions. The VLC system
is further limited by the dynamic range of the LED. In this
article, we assume that the DPD has perfectly linearized
the LED between the interval [ Py, Py], where Py is the
turn-on voltage (TOV) for the LED. If the TOV is pro-
vided by an analog module at the LED and we assume that
LED is already turned on, the linear range for the input
signal is [ 0, Py —Pr]. We define the dynamic optical power
of y[ n] as

Gy £ max (y[n] ) — min (y[ n] ) . (5)
Gy should be constrained by Py — Py as
Gy < Py —Pp. (6)

Moreover, y[ n] must be non-negative, i.e., y[ n] > 0.

According to the Central Limit Theorem, x[#x] is
approximately Gaussian distributed with zero mean and
variance o2 with probability density function (pdf):

p(x[n]=2)=1¢>(z>, (7)

o
where ¢ (x) = \/;T e 2 is the pdf of the standard Gaus-
sian distribution. As a result, the time-domain OFDM
signal x[ ] tends to occupy a large dynamic range and is

bipolar. In order to fit into the dynamic range of the LED,
clipping is often necessary, i.e.,

Cyus x[n] > cy
xX[nl= 1 xln], c=<x[n]=<c (8)
cl x[n] < ¢

where ¢, denotes the upper clipping level, and ¢; denotes
the lower clipping level. In order for the LED input y[ #] to
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be non-negative, we may need to add a DC bias B to the
clipped signal x[ #] to obtain

ylnl=x[n+B, 0<nm<N-1 9)

For y[ n] > 0, we need B = —¢;.
To facilitate the analysis, we define the clipping ratio y
and the biasing ratio ¢ as

a (cu—cp)/2
o o

% (10)

a B —¢

(11)

I - Cu— ¢y
Thus, the upper and lower clipping levels can be written

as

¢y =20y(1—¢), (12)

(13)

The ratios y and ¢ can be adjusted independently caus-
ing ¢, and ¢; to vary.

Clipping in the time-domain gives rise to distortions
on all subcarriers in the frequency domain. On the other
hand, DC-bias only affects the DC component in the
frequency-domain. The clipped and DC-biased signal
y[ n] is then converted into analog signal and subsequently
modulate the intensity of the LED. At the receiver, the
photodiode, or the image sensor, converts the received
optical signal to electrical signal and transforms it to
digital form. The received sample can be expressed as

r[n] = (X[ n] +B) ® h[n] +w[n],

c=—20y¢.

(14)

where /[ n] is the impulse response of the wireless opti-
cal channel, w[ n] is AWGN, and ® denotes convolution.
By taking the DFT of Equation (14), we can obtain the
received data on the kth subcarrier as

Ry = XpHy + Wy, k#0,

where Hy is the channel frequency response on the kth
subcarrier.

Based on the subcarrier arrangement, DC-biasing, or
transmission scheme, several optical OFDM techniques
have been proposed in the literature. In this article, we
will focus on the performance analysis of two widely stud-
ied optical OFDM techniques, namely, DCO-OFDM and
ACO-OFDM. In the following, we shall use superscripts
D and @ to indicate DCO-OFDM and ACO-OFDM,
respectively.

In DCO-OFDM, subcarriers of the frequency-domain
signal XP) are arranged as

(15)

(D) *(D)
XN/2—1 0 X

x? =lo x{” x{” N

D D
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where the Oth and N /2th subcarriers are null (do not carry
data). Equation (16) reveals Hermitian symmetry with
respect to k = N /2. Let K4 denote the set of data-carrying
subcarriers with cardinality |Cy4|. The set of data-carrying

subcarriers for DCO-OFDM is IC;D) =1{1,2,...,N/2 —
LN/2+1,...,N —2,N — 1} and |[K”| = N — 2. The
time-domain signal x?)[ 7] can be obtained as

N/2—-1

(D)[ n] = j Z (Si(XlgD))cos(ann/N)
k=1

—3(xP) sin(2nkn/N)> ,
(17)

which is real-valued. In DCO-OFDM, we first obtain a
clipped signal ) [ n] similar to the procedure in (8), and
then add DC-bias B = —¢; to obtain the LED input signal

P [n]> ¢,

Cy — Cp
¥ =P +B = { sPlul—c,, o <aP[n]<cy
0, P [n] < ¢
(18)
In the frequency domain,
Y =xP + ., Vk#0, (19)

where C is clipping noise on the kth subcarrier.
In ACO-OFDM, only odd subcarriers of the frequency-
domain signal XA carry data

X® =lo X" o x{ 0 X,
0 Xi4 0 ;Y 0 XU, o

and X meets the Hermitian symmetry condition (2).
The set of data-carrying subcarriers for ACO-OFDM is

K$Y = {1,3,...,N — 1) and |K}"| = N/2. Thus, the
time-domain signal x4 [ #] can be obtained as

N/4—
o Z (‘“(Xéf;)ﬂ) cos (27 (2q + 1)n/N)
q=0
—3(X ) sin (2729 + Dn/N) )
(21)

which is real-valued. It follows easily that x4 [ n] satisfies
the following negative half symmetry condition:

A n+N/2=-xDn], n=0,1,...,N/2 -1

(22)

Denote by z[ 1] a generic discrete-time signal that satis-
fiesz[n+N/2]= —z[n], n=0,1,...,N/2—1and by z[ n]

Page 4 of 16

its clipped version where the negative values are removed,
ie.,

. z[n],  z[n]=0,
z[n] = ) (23)
0, otherwise.
It was proved in [22] that in the frequency-domain,
= 1
Zr = 2Zk, Vk odd. (24)

In ACO-OFDM, we obtain the LED input signal y)[ ]
via
Cur *Dn] > ¢,

Y= a@n], 0<xD[ul<c,  (25)

0, W [nl <0

Equation (25) can be regarded as a 2-step clipping pro-
cess, whereby we first remove those negative values in
[ n], and then replace those x| ] values that exceed
¢y by cy,. Since x4 [ 1] satisfies (22), we infer based on (24)
that

@ _

Y, XM+ VK, (26)

2
where Cy is clipping noise on the kth subcarrier in the
frequency-domain. For ACO-OFDM, no DC-biasing is
necessary and thus the biasing ratio ¢ = 0.

As an example, suppose that we need to transmit a
sequence of eight quadrature phase-shift keying (QPSK)
symbols. Table 1 shows the subcarrier arrangement for
DCO-OFDM, whereas Table 2 shows the subcarrier
arrangement for ACO-OFDM. The time-main signals
xP)[n] and x| n] and the corresponding LED input sig-
nals Y [#n] and y“[#n] are shown in Figure 2. We see
that in x| x], the last 16 values are a repetition of the
first 16 values but with the opposite sign. It takes ACO-
OFDM more bandwidth than DCO-OFDM to transmit
the same message, although ACO-OFDM is less demand-
ing in terms of dynamic range requirement of the LED and
power consumption.

EVM analysis
EVM is a figure-of-merit for distortions. Let X' =
[XT,XI, . ,X;{I_l] denote the N-length DFT of the mod-

ified time-domain signal x". EVM can be defined as

(r) il
& [Lher, X - X[ P]
(r)
& [Lrer, 1]
where X =[X(()r),XY), e (r) 11 denotes the reference

constellation. For DCO- OFDM Xy (r) X(D) for k € IC;D) .
For ACO-OFDM, X" = 1X* for k e IC(A)

gxX",xh & , (27)
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Table 1 DCO-OFDM subcarrier arrangement for transmitting eight QPSK symbols—an example

k 0 1 2 3

D . . .
xP 0 14 1—j —1—j
k 9 10 1 12

D . . .
x® 0 14 —14j —1—j

EVM calculation
In DCO-OFDM, clipping in the time-domain generates
distortions on all the subcarriers. We denote the clipping

D) (D .
error power by Py c = Zkelc;D’ &l |X/(< ) _ X}( )|2], Since
the sum distortion power on the Oth and N/2th subcar-
riers is small relative to the total distortion power of N
subcarriers, according to the Parseval’s theorem, we can
approximate P( ¢ as
pD) _ D) _ D)2
Pye = Z X = X1
kel

~ Zg“x(D)

= (/ (z — cu)? ¢<§)dz
o GG ¢(j)dz)

=No’(1+4y°A -9 -2y1 - )¢ 2y(1—¢))
-2y 2ys) — ® 2y (1 —¢))
—4y*(1- 9?0 2y (1—¢))
+O (=2y¢) +4y% 7D (—2y¢)),

—xP[n] ]

(28)

where ®(x) = [*_ ¢ (¢)dt. Thus, we obtain the EVM for
the DCO-OFDM scheme as

»D)
£D = Pye
Vs No?

= (1+47°0 -9 =2y1 - )¢ 2y (1 =)

—2y5¢ 2ys) —P2y(1—¢))

—4y*(1 - )*® 2y(1— ) + & (-2y¢)

+y28%0 (—276))/” (29)
Table 2 ACO-OFDM subcarrier arrangement for
transmitting eight QPSK symbols—an example
k 0o 1 2 3 4 5 6 7
x? o 14/ 0 1—j 0 —1—j 0 1+4)
k 8 9 0 1 12 13 14 15
X 0 1—j 0 —14j 0 —1—j 0 1-j
k 16 17 18 19 20 21 22 23
X0 14j 0 —14j 0 —1—j 0  14j
k 24 25 26 27 28 29 30 31
X0 1—j 0 —14j 0 14j 01—
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4 5 6 7 8
T4 1—j —14j —1—j 1T—j
13 14 15 16 17
1+) 1—j —14j 1+) 1—j

To find the optimum biasing ratio ¢*, we take the
first-order partial derivative and the second-order partial

derivative of I_)}(,l,)g) with respect to the biasing ratio ¢

oPy) )
Bg] = No“ 4y (2y(1—¢)) —4yd (2y¢) (30)
—872(1 — )P 2y (s — 1)) + 8y*c® (—2y¢)),
2 p(D)
38?; = No? (8y%® 2y (c — 1)) + 8y*® (—2y5)). (31)

We can see that if ¢ = 0.5, 8P(D)/8g = 0. The second-
order partial derivative 82P(D) 2/ds? > 0 for all . Hence,
if ¢ < 0.5, BP(D)/Bg < 0.If¢ > 05, 0P /oc > 0.
Therefore, ¢* = 0.5 is the optimum biasing ratio which
minimizes I_)}(,?g). By substituting ¢* into Equation (29)
we obtain the EVM for the DCO-OFDM scheme at the
optimum biasing ratio as

»D)
é(D) Z\/P%g*
No?

= V204 y)D(—y) — 279 (y).

(32)

Remark 1. (i) ¢* = 0.5 is the optimum biasing ratio
for DCO-OFDM, regardless of the clipping ratio. (ii) When
¢ = 0.5, we infer that c,, = —cy, i.e., when the x'P) [ n] wave-
form is symmetrically clipped at the negative and positive
tails, the clipping error power is always less than that when
the two tails are asymmetrically clipped (i.e., when c,, # ¢;
or when ¢ # 0.5).

Denote by e[n], n = 0,1,...,N — 1 a generic discrete-
time signal with DFT E, k = 0,1,...,N — 1. When k is
odd, E; can be written as

N-1

E = \/IN Z e[ n] exp (—j27t§5>

n=0
_ 1 N/i_l e[ n] ex; (—'27t kn)
TN 2 p|—J N

N/2-1
Z n+ N/2] exp (—j27‘r fon —jkn)
N

N/2—1

= \/IN nzzo (e[n] —e[n + N/2]) exp (—j271/]<\’;> .

(33)
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x(D)[n]
o

x(A)[n]
o

y©iny
o

y®mn]
o

0 10 20 30
n

Figure 2 An example of 2 [ ], yP [ n], @[ n], and yD[ u] to convey a sequence eight QPSK symbols. For DCO-OFDM, y = 1.41 = 3dB,
¢ =045,¢ = —-1.70,¢, = 2.07,B = 1.70;for ACO-OFDM, y = 0.79 = —2dB,¢ =0,¢;=0,¢, = 1.59,B=0.

Letk=29+1,4=0,1,...,N/2 —1, Equation (33) can
be further written as

N/2—-1
By = ZO (e[ n] —e[n+ N/2])

, qn " N
x exp | —j2m NJ2 —]271N
N/2-1

= \/1N Z exp (—j2n;\1[> (e[n] —e[n+ N/2])

n=0

X exp (—j271 ]372> (34)

Therefore, {Ex = Ezgt1 };\;/371 can be viewed as the DFT
coefficients of a new discrete-time sequence

{exp (—j2711<’[) (e[n] —e[n + N/2] )}2[2/3_1. Applying the

Parseval’s theorem to {exp (—j2m 1(’[) (e[ n]
—e[n+ N/2] )}2[:/(2)_1, we obtain,
N/2-1
DR = ) Byl
k=odd q=0
L N2
= — N/2])*. (35
) go (el n] —e[n+N/2])%. (35)

In ACO-OFDM, we denote the clipping error power by
- a2
P)(,A) = Zkelcﬁf’ & |:’X,EA)/2 - X;(A)‘ ] According to (35),

we can calculate I_’)(,A) as

2
pA) _ (A) ¥ (A)
W= % |jxtn-xef]
kek§V
N/2—1
_ 1 Z < x(A)[n] _&(A)[n]_x(A)[n-l-N/Z]
2 = 2 2

2
+xY [+ N/2] ) ]

JZ £ |:(x(A)[ 1] =D [ 1] +3D[n + N/2] )2}
N [~ o1 sz
4 [w (z+cu) 6¢><U>dz

+];[ /C:O(z = cu)2i¢ (7)a

—Noz(—z Q2 & (=2 4y%® (=2
=, Yo 2y) + ® (—2y) +4y* P (—2y)).

Then we obtain the EVM for the ACO-OFDM scheme

as
H(A)
B \/ 4p )
] No?

V =4y 2y) +2® (=2) + 82D (—2y).

(36)

B(A)
PV

2
A
> kerjA)S |:‘X](( )/2‘

g (37)
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Lower bound on the EVM
Let us consider the setting

x[nl=x[n]+c[n], 0<n<N-1, (38)

where x[ 1] is the original signal, ¢[ #] is a distortion sig-
nal, and the resulting *[ 1] is expected to have a limited
dynamic range

max(x[#]) — min@[#n]) < 2yo. (39)

In (38), all quantities involved are real-valued.

Clipping can produce one such X[ n] signal, but there
are other less straightforward algorithms that can generate
other %[ n] waveforms that also satisfy (39).

In the frequency-domain,

j(k = Xi + C. (40)

_Since x[ 1], ¢[ n], and X[ n] are all real-valued, X, Ci, and
X all should satisfy the Hermitian symmetry condition
(2). Therefore, c[ n] has the form

N/2-1
c[n]= Z (M(Cy) cosmkn/N) — I(Cy) sin(2wkn/N))
VN =
+ ! Co+ ! Cny/2 cos(mrn) (41)
IN 0 UN N/2

We are interested in knowing the lowest possible EVM,

- g I:Zkelcd |Ck|2] w)

€[ Shex, 1]

among all such x[ n] waveforms. Afterwards, we can com-
pare the EVM from the DCO-OFDM and ACO-OFDM
methods to get a sense of how far these algorithms are
from being optimum (in the EVM sense).

We formulate the following linear optimization
problem:
minimize Z |Cr|?
kEICd
subject to  max (£[#]) — min ([n]) < 2yo

x[n] = x[n] +\/N N,(/XZI (M(Cy) cos(2mkn/N)
—3J(Cy) sin(2mkn/N))
+ ! Co+
VN VN
0<n<N-1

Cny2 cos(rrn),
Co,Cnj2 € R
(43)

When the distortion of each OFDM symbol is mini-
mized by the above convex optimization approach, the
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corresponding EVM of %[ n] (which is proportional to

\/S [Zkelcd |Ck|2]) serves as the lower bound for the

given dynamic range 2yo.

Optimality for ACO-OFDM
In this section, we will prove that the ACO-OFDM
scheme achieves the minimum EVM and thus is optimal
in the EVM sense.

For ACO-OFDM, let us write

iln] = xW[n] 4l n], (44)

where c[ n] is the clipping noise to ensure that x[ #] has
a limited dynamic range as described in (39). In the
frequency-domain, we have

Xe=x2 + G (45)

where the X lgA) subcarriers are laid out as in (20). Accord-
ing to (35), when k is odd, the objective function in (43)
can be written as

N/2—-1

D (elnl—c[n+N/2])*. (46)
n=0

> IGl =

k=odd

The dynamic range constraints in problem (43) can be
viewed as two constraints put together.

max (x(A)[n] ~+c[ n] ) — min (x(A)[n] ~+c[ n] ) <2yo,

0<mn<N/2-1, (47)

max (x(A)[n] ~+c[ n] ) — min (x(A)[n] ~+c[ n] ) <2yo,

N/2<n<N-1. (48)

Since s [ n] = —x[n—N/2] whenN/2 <n < N—1,
Equation (48) can be further written as

max (x(A) [n] —c[n+ N/2] )
— min (x(A)[n] —c[n —|—N/2]> <2yo,

0<mn<N/2-1 (49)
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From Equations (46), (47), and (49), the problem (43)
can be recast as

N/2—1
minimize Z A n)
n=0
subject to  max (x<A)[n] ~+c[ n] ) — min (x(A)[n] +c[ n] )

<2y0, 0<mn<N/2-1

(50)

which is equivalent to

N/2-1

>, Sl

n=0

minimize

subject to A [ 1] 4+c[n] < 2yo, 0<n<N/2-1
s [n]+c[n]>0, 0<nm<N/2—1
(51)

In Appendix, we prove that the solution ¢*[#] to (51)
yields

2yo, 2D n] > 2yo
FVn = 2D n] +c* [n]= { x?[n], 0<x¥[n<2y0
0, x®[nl<o0

(52)

and thus the ACO-OFDM scheme is optimum in the EVM
sense.

SDR analysis

Based on the Bussgang’s theorem [23], any nonlinear func-
tion of x[ #] can be decomposed into a scaled version of
x[ n] plus a distortion term d[ ] that is uncorrelated with
x[ n]. For example, we can write

x(nl=a-x[n]+d(n], n=0,...,N—1. (53)

Let Ry [m]= Ef{x[n]x[n + m]} denote the auto-
correlation function of x[x], and let Ry [m]=
E{x[n]y[n + m]} denote the cross-correlation function
between x[n] and y[n] at lag m. For any given m, the
correlation functions satisfy

Ryalm] =0, (54)
Rzx[m] = aRy[m]. (55)
Thus, the scaling factor « can be calculated as
Ry_cx[ 0]
o = (56)
Ryx[ 0]
_ Efx[n]x[n]}
= 2

1 oo
= / xx - p(x)dx
o 00
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Let f(-) denote the function linking the original signal to
the clipped signal, it is shown in [24] that the output auto-
correlation function Rjz[ m] is related to the input auto-
correlation function Ry, [ m] via

b2 [ Ryl m] "
Rxx[rn]=zg‘f[ x’“[z ]] , (57)
=t o
where the coefficients
2
(—Dfot=t o dlexp(=5,)]
by = Jon [ N fx) 1t 2027 g, (58)

The input auto-correlation function Ry,[m] can be
obtained from taking IDFT of the input power spectrum
density (PSD)

Ryx[m] = IDFT{Px i}, m=0,...,N—1, (59)

where Py, = £[|Xx|?] is the expected value of the power
on the kth subcarrier before clipping. Then it is straight-
forward to calculate the output PSD by taking the DFT of
the auto-correlation of the output signal:

Pgx =DFT{Riz[m] ), k=0,...,.N—1.  (60)

Taking the DFT of Equation (53), the data at the kth
subcarrier are expressed as

Xk

DFT{« - x[ 1] }x + DFT{d[ n] }x
=a-Xy+Dy, kelky.

(61)

Here, we assume that Dy is Gaussian distributed, which
is the common assumption when N is large [15]. The SDR
at the kth subcarrier is given by

Ella - Xx?] Py
E1DkI?]

Olsz,k

SDRy = , kelky,

- Pp a P)‘(,k—OlzPX’k

(62)

where Ppi = E[|Dy*]= Py — o?Py is the average
power of the distortion on the kth subcarrier.

According to Equation (56), we can obtain the scaling

factor o as a function of the clipping ratio y and the
biasing ratio ¢:

o2 J_

012 /CZCMZZ;(p(j)dz—l— 012 /_Coloclziq)(j)dz

1 [ 1 z
+02 /cu cu26¢>(0>dz
=dQ2y(1—-¢)) —D(—2y9).

Note that in (63) we have used Equations (13) and (12)
for ¢; and ¢,. According to Equation (58), we can obtain

1 oo
/ xx - p(x)dx
o

(63)
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the coefficient b, as a function of the clipping ratio y and
the biasing ratio ¢:

by

o

2
d’lexp(—5

st s the proba-

where He,(t) = (—=1)¢ exp (t22>
bilists’ Hermite polynomials [25].

Achievable data rate

In VLC, average optical power and dynamic optical power
are two main constraints. Recall from Equation (3), we can
obtain the average optical power of y[ 1] as

Oy = E{yln]}
= E{x[n]}+B
1

Cu z ©1 z
[T Cara [T o2
a1 z
+Cl/_ooo¢(a>dz_cl
o (@Q2ys)—¢R2y(A—3g)) —2ys®(-2y¢)
+2y(1—=¢)®(—2y(1 —¢)) +2y¢). (65)

Let af, = £{w?[n]} denote the power of AWGN w| n],
we define the optical signal-to-noise ratio (OSNR) as

% ) (66)

Ow

OSNR =
Recall from Equation (5), we can obtain the dynamic
optical power of y[ n] as
Gy = max (y[n] ) — min (y[ n]) =cy,—c =20y. (67)
We define the dynamic signal-to-noise ratio (DSNR) as

22 g 2 2
exp (—2y7¢%)He—2) (=2y¢) =, exp (=2y*(1 — ¢)*)He—2) 2y (1 = ©)),
V21 V2
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09pQRys) —op 2Qy(1 —¢g)) —20y5P (—2y5) + 2071 — )P (-2y(1—¢5)), £=0
o®(2y(1—¢)) —o®(-2y5), =1 64)

>1

by substituting (65) and (67) into the right-hand side of
(69) and (70), respectively. The ratio npsNrR/NOSNR =
(Pr — Pr)/P4 is determined by specific system require-
ments.

AWGN channel
For AWGN channel, recall from Equation (15), the
received data on the kth subcarrier can be expressed as

Ri=Xi + Wi =aX +Di+ Wi, kelky. (72)

The signal-to-noise-and-distortion ratio (SNDR) for the
kth subcarrier is given by

@ E{1Xk]?)
E{IDkI?} + E{IWi 2}
Olzp)(,k

SNDR; = (73)

Ppi + o2

1
-1 2. 1
SDRk + o 2Py

In this article, we assume the power is equally dis-
tributed on all data-carrying subcarriers,

Gy
DSNR= 7. (68)
Ow
2
Let nosNrR = Pa /oy denote the OSNR constraint and Pyxy = No , (74)
npsNR = (P — Pr)/oy denote the DSNR constraint, we ’ IKal
have
G _ TOSNR , (69) then Equation (73) is reduced to
ow — Oy/o
o IDSNR
< . 70 1
. . SDR; ! 4 % . IKd]
The maximum o /oy, value can be obtained as k o? No
(of . OSNR DSNR
= Mmin ’ ’ (71)
Ow PQ2ys)—¢2y(1—¢)) —2ys® (=2y¢) +2y(1 — )P (=2y(1 —¢)) +2y¢ 2y
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By substituting Equation (71) into (75), we obtain the
reciprocal of SNDR at the kth subcarrier:

[Kal
No?

i <<¢>(2y;> —¢Qr1-9)=2%s® (=29 +2yA - )P (=2y(A = 5) +2y5)* 4y ) '

2
OSNR

(SNDRy) ! = (sDRp) ! + (76)

Therefore, the achievable data rate, as a function of
clipping ratio ¥, ¢, nosNr, and 7psNR, is given by

R (¥> > NOSNR, "DSNR)

1
= 0N > log, (1 + SNDRy)
keKy

bit
its 77)

subcarrier

Frequency-selective channel

In the presence of frequency-selective channel, the
received data on the kth subcarrier obey the following in
the frequency-domain:

Ri = Hi Xy + Wi = Hi(aXy +Dp) + Wi, ke Ky
(78)
In this article, we consider the ceiling bounce channel
model [26] given by
6a°
&+ a)
where H(0) is the gain constant, a = 124/11/23D and u(¢)
is the unit step function. D denotes the rms delay. From
Equation (78), the SNDR is given by
|Hy 2o E{| X%}
|Hi|2E{1Dk 12} + E{IWk [}
1

_ . (81

-1 2. 1
SDR ™+ 0w | 2a2py

h(t) = H(0) u(®), (79)

SNDRy (Hy) =

(80)

With the assumption of equal power distribution, we
can obtain the 1/SNDR as

IKCal
N|Hi[a?

max <(¢(2yg) —¢2y(1—¢) —2yc®(—2y¢) +2y(1 — )@ (2y (1 — ¢)) +2y¢)* 4y? ) .

(SNDRg) ™! = (SDRy) ™! +

’

2 2
NOsSNR "IDSNR
The achievable data rate, in the presence of frequency-

selective channel, is given by

R (¥, S, NOSNRs 'DSNR> H)

1
=N > log, (1 + SNDR(Hy))
kelcd

bits

subcarrier

(83)
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Numerical results

In this section, we show EVM simulation results and
achievable data rates of clipped optical OFDM signals
under various average optical power and dynamic optical
power constraints.

EVM simulation

The EVM analyses for DCO-OFDM and ACO-OFDM
are validated through computer simulations. In the
simulations, we chose the number of subcarriers N = 512,
and QPSK modulation. One thousand OFDM symbols
were generated based on which we calculated the EVM.
In order to experimentally determine the optimum bias-
ing ratio for DCO-OFDM, we used biasing ratios ranging
from 0.3 to 0.7 in step size of 0.02, and clipping ratios
ranging from 5 to 9dB in step size of 1dB. Their simu-
lated and theoretical EVM curves are plotted in Figure 3.
As expected, the minimum EVM was achieved when the
biasing ratio was 0.5, regardless of the clipping ratio. This
agrees with the analysis in “EVM calculation” section.
Next, we compared the EVM for DCO-OFDM with bias-
ing ratio 0.5, EVM for ACO-OFDM with biasing ratio 0,
and their respective lower bounds. To obtain the lower
bounds, we used CVX, a package for specifying and solving
convex programs [27], to solve Equation (43). The result-
ing EVM curves for DCO-OFDM are plotted in Figure 4.
The resulting EVM curves for ACO-OFDM are plotted in
Figure 5. We see that the EVM for ACO-OFDM achieves
its lower bound, thus corroborating the discussion in
“Optimality for ACO-OFDM” section. For DCO-OFDM,
the gap above the lower bound increases with the clipping
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ratio (i.e., with increasing dynamic range of the LED). This
implies that there exists another (more complicated) way
of mapping x°[ #] into a limited dynamic range signal X[ 7]
that can yield a lower EVM.

Achievable data rates performance

We now show achievable data rates of clipped OFDM sig-
nals under various average optical power and dynamic
optical power constraints. The number of subcarriers was
N = 512. For the frequency-selective channel, we chose
the rms delay spread D = 10ns and sampling frequency
100 MHz. The normalized frequency response for each
subcarrier is shown in Figure 6.

As examples, we chose nosnr = 20 dB, npsnr = 32dB,
and AWGN channel. Figures 7 and 8 show the achievable
data rate as a function of the clipping ratio and the biasing
ratio for DCO-OFDM and ACO-OFDM, respectively. We
see that for given nosnr and npsnr values, a pair of opti-
mum clipping ratio y¥ and optimum biasing ratio ¢ exist
that maximize the achievable data rate. It is worthwhile
to point out that the optimum biasing ratio ¢¥ is differ-
ent from ¢* (recall that ¢* minimizes the EVM). If the
system is only subject to the dynamic power constraint,
¢* should be equal to ¢*. If the dominant constraint is
the average power, ¢* should be less than or equal to ¢*
because reducing the biasing ratio can make the signal
average power lower. We can obtain the optimum clipping
ratio and biasing ratio for given nosngr, 7DsSNR by

(Vj’-; §i) = argmax  Rlyosnr.mpsnr (84)

¥,9)

30
O Simulation
====Theory
250 ’
(0] \\ ,/
CANY 0
G, O, ‘ Clipping ratio ¥ = 5, 6, ..., 9 dB| 0 %
S N 2 ’
20 d\\ O’\\ z'lo /‘6
N [ 2N -0 ’
[N [« 29 >, ' 4 /
— N, O“\ ,’6 Pid %4
I o O, o~ 6»6 L0 ,0
R ~ - ’
s 154, \b\ o\& L 4 °/o' S
>
w b\ \Q\ “o. ¢0/ 40, ,0'
N "o “o -~ &’ e
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Figure 3 EVM as a function of biasing ratio for DCO-OFDM with clipping ratio = 5, 6,...,9 dB.
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Figure 4 EVM as a function of the clipping ratio y for DCO-OFDM along with the EVM lower bound for a given dynamic range limit 2y .

Figure 9a shows the optimal clipping ratio as a function
of nosnr for DCO-OFDM. Figure 9b shows the optimum
biasing ratio as a function of nognr for DCO-OFDM. Sim-
ilar plots are shown as Figure 10a,b for ACO-OFDM. In
all cases, nosnr varied from O to 25 dB in step size of 1dB,
NDSNR/NOSNR = 18 dB, and the channel was AWGN. The
main observation is, with a lower average optical power
constraint, the clipping ratio and the biasing ratio can be

increased to achieve higher data rates. Intuitively, when
nosnR is large, the channel noise has little effect and the
nonlinear distortion dominates.

Next, we chose the ratio npsNr/nosNr from 6 dB, 12 dB,
and no npsnRr constraints. For each pair of nosngr, 7DSNR»
AWGN channel, or frequency-selective channel, we can
calculate the optimum clipping ratio y* and biasing ratio
¢* according to Equation (84) and the corresponding

T
O  Simulation
Theory
----- Lower bound

1
Clipping ratio y (dB)

Figure 5 EVM as a function of the clipping ratio y for ACO-OFDM along with the EVM lower bound for a given dynamic range limit 2y o.
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Figure 6 Normalized frequency response for each subcarrier
(rms delay spread D = 10 ns, 100 MHz sampling rate).

achievable data rates. Figures 11, 12, and 13 show
the achievable data rates with optimal clipping ratio
and biasing ratio for the case npsnr/nosNk = 6dB,
NDSNR/NOSNR = 12dB, and no npsNr constraint, respec-
tively. We observe that the performance of ACO-OFDM
and DCO-OFDM depends on the specific optical power
constraints scenario. In general, DCO-OFDM outper-
forms ACO-OFDM for all the cases. With the increase
of the ratio npsNrR/nMosNR, the average optical power
becomes the dominant constraint. The ACO-OFDM
moves closer to the DCO-OFDM.

As seen in Figure 13, when there is no DSNR constraint
and the OSNR constraint is large, the DCO-OFDM curve
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closely matches the ACO-OFDM curve. This is in con-
trast to the performance curves in Figures 11 and 12. The
reason for the curve coincidence in Figure 13 is twofold.
First, we have already discussed that the performance dif-
ference between DCO-OFDM and ACO-OFDM is less
when the OSNR constraint dominates, which is the case
for Figure 13. Second, the suddenness of the conver-
gence of the two curves can be explained by the fact
that with only OSNR constraint, there will be more flex-
ibility in the signal optimization to adjust the clipping
ratio and biasing ratio to achieve the best performance.
That means that the achievable data rates in the middle-
OSNR region (5-22dB) are improved significantly com-
pared with Figures 11 and 12. However, for high-OSNR
region (greater than 22 dB), since the nonlinear distortion
is negligible, the improvement becomes less pronounced
compared to Figures 11 and 12. Therefore, the transition
from the middle-OSNR region to the high-OSNR region
will become sharper with only an OSNR constraint.

Conclusions

In this article, we analyzed the performance of the DCO-
OFDM and ACO-OFDM systems in terms of EVM, SDR,
and achievable data rates under both the average opti-
cal power and dynamic optical power constraints. We
numerically calculated the EVM and compared with the
corresponding lower bound. Both the theory and the
simulation results showed that ACO-OFDM can achieve
the EVM lower bound. We derived the achievable data
rates for AWGN channel as well as frequency-selective
channel scenarios. We investigated the trade-off between

25

Achievable data rates (bits/subcarrier)

Clipping ratio y (dB)

and AWGN channel.

0 -02

Biasing ratio ¢

Figure 7 Achievable data rate as a function of the clipping ratio and the biasing ratio for DCO-OFDM with nosng = 20 dB, npsng = 32 dB,
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Figure 8 Achievable data rate as a function of the clipping ratio and the biasing ratio for ACO-OFDM with nosng = 20 dB, npsng = 32 dB,
and AWGN channel.
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Figure 11 Achievable data rate with optimal clipping ratio and

optimal biasing ratio for nosng = 0,1, . . ., 25 dB (in step size of
1dB), and npsnr/NMosnr = 6 dB.

the optical power constraint and distortion. We analyzed
the optimum clipping ratio and biasing ratio and com-
pared the performance of two optical OFDM techniques.
Numerical results showed that DCO-OFDM outperforms
the ACO-OFDM for all the optical power constraint
scenarios.

Appendix
Proof that ¢*[ n] = X[ n] —x®[ n] is optimum for Equation
(51)
Denote by u(c[ n] ) the objective function for the problem
in (51):

N/2-1

u(eln) = Y (cln)?, (85)
n=0

AWGN channel
===~ Frequency selective channel

DCO-OFDM

Achievable data rate (bits/subcarrier)

00 5 10 15 20 25

Nosnr (dB)

Figure 12 Achievable data rate with optimal clipping ratio and
biasing ratio for nosng = 0,1, . . ., 25 dB (in step size of 1dB),
and npsnr/Mosnk = 12 dB.
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Figure 13 Achievable data rate with optimal clipping ratio and

biasing ratio for yosng = 0,1, . . ., 25 dB (in step size of 1dB),
and no npsnr constraint.

and denote by g;(c[ #] ) the ith constraint function for the
problem in (51):

* W[ il4e[]2y0,
gi(c[n]) =
—xW[i = N/2]—[i—=N/2],

Let u; denote the ith Kuhn—Tucker (KT) multiplier. We
inter that

Vu(c[n]) = [2c[0],2c[1],...,2¢[N/2—1]], (87)
N-1

Z wiVgi(c[nl) = [1o — UN/2s i — IAN/2415 - - -

i=0

(88)

UN/2-1 — UN—1] -

Next, we prove that ¢*[n] = x“[n] —x“4[n] satisfies
the KT conditions [28].

Stationarity
N-1
Vu(cln]) + > wiVgic[n]) = 0. (89)
i=0
Primary feasibility
wi>0 V¥i=01,... ,N—1 (90)
Dual feasibility
gi(c[n]) <0, Vi=0,1,...,N—1 (91)
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Complementary slackness

igi(cln]) =0, Vi=0,1,...,N—1. (92)

Substituting ¢*[ 1] into Equation (89), we obtain,
pi— Ny = =22 M +2xD04], i=0,1,..., ];[ —1.
(93)

In order to satisfy all the other conditions (90)-(92), we
can choose u; as follows

1) ifxW[i]=xD[4],

i = pisNy2 = 0; (94)
) ifx®W[i] > 2yo and P [i] = 2y 0,

wi =250, pipng = 2606 (95)
(3) ifx[i] <0and ¥ [i] =0,

wi=—=22Y[i],  pinp =—-22Y0]. (96)

Therefore, there exits constants u; i = 0,1,...,N — 1)
that make ¢*[n] = s [n] —xA[ n] satisfy the KT condi-
tions. It was shown in [29] that if the objective function
and the constraint functions are continuously differen-
tiable convex functions, KT conditions are sufficient for
optimality. It is obvious that # and g are all continu-
ously differentiable convex functions. Therefore, ¢*[ ] is
optimal for the minimization problem (51).
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