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Abstract

Pervasive healthcare is one of the most important applications of the Internet of Things (IoT). As part of the IoT,
the wireless sensor networks (WSNs) are responsible for sensing the abnormal behavior of the elderly or patients.
In this article, we design and implement a fall detection system called Sensfall. With the resource restricted sensor
nodes, it is vital to find an efficient feature to describe the scene. Based on the optical flow analysis, it can be
observed that the thermal energy variation of each sub-region of the monitored region is a salient spatio-temporal
feature that characterizes the fall. The main contribution of this study is to develop a feature-specific sensing
system to capture this feature so as to detect the occurrence of a fall. In our system, the three-dimensional (3D)
object space is segmented into some distinct discrete sampling cells, and pyroelectric infrared (PIR) sensors are
employed to detect the variance of the thermal flux within these cells. The hierarchical classifier (two-layer HMMs)
is proposed to model the time-varying PIR signal and classify different human activities. We use self-developed PIR
sensor nodes mounted on the ceiling and construct a WSN based on ZigBee (802.15.4) protocol. We conduct
experiments in a real office environment. The volunteers simulate several kinds of activities including falling, sitting
down, standing up from a chair, walking, and jogging. Encouraging experimental results confirm the efficacy of our
system.

Keywords: Internet of Things (IoT), wireless Sensor networks (WSNs), fall detection, pyroelectric infrared (PIR), refer-
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1 Introduction
Internet of Things (IoT) concerns about the seamless
interaction of objects, sensors, and computing devices
[1]. As wireless sensor networks (WSNs) become increas-
ingly integrated with the Internet, the IoT is fast-becom-
ing a reality. The IoT changes the web from being a
virtual online space to a system that can both sense and
affect its environment. The WSNs, as a subpart of the
IoT, extend the Internet’s digital nerve-endings into
everyday objects. All kinds of sensors, such as RFID,
video, and infrared, are recognized as the critical “atomic
components” that will bridge the gap between the real
physical world and the digital world [2].

IoT can be applied to various areas. The most often
cited include business logistics, home automation and
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healthcare [3]. Although falls are specific cases of health-
care, there is a significant research effort focusing on fall
detection. This is due to the fact that accidental falls are
among the leading causes of death over 65 [4]. According
to the report in Chan et al. [5], approximately one-third
of the 75 years or older people have suffered a fall each
year. The fall of the elderly is a serious problem in an
aging society [6]. The immediate treatment of the injured
people by the fall is very critical, because it will not only
increase the independent living ability of the elderly and
the patient, but also release the pressure of the shortage
of nurses. Therefore, how to design a rapid alarm system
for fall detection has always been an active research topic
on the elderly healthcare.

Camera-based methods may realize fall detection for
elderly people in a non-intrusive fashion. For example,
Williams et al. [7] extracted the human target with the
simple background subtraction method from the video,
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and then used the aspect ratio of the image of the body
as the cue to determine whether the fall event hap-
pened. If the aspect ratio, i.e., the width of the person
divided by height, is below a particular threshold, then
we can assume that the person is upright; otherwise the
person is assumed to have fallen. Rougier et al. [8] inte-
grated the motion history image (MHI) and the variance
of body shape information as the feature for fall recogni-
tion. Although there are so many works that demon-
strate their efficiency [6], these studies are based on the
assumption that the lighting conditions remain fairly
stable. However, this assumption does not always hold
in everyday life. The camera-based analysis may be
influenced by the change of illumination and the sha-
dow, and accurate body extraction from video is still a
thorny issue in the computer vision community. With
resource constrained sensor nodes, sophisticated algo-
rithms are not preferable choices. In addition, the cam-
era-based method will infringe privacy; no one likes the
feeling of being monitored by a camera all day long. Is
it possible to find another sensing method to detect the
fall? This is the motivation of our research.

In the WSN-portion of the IoT, the choice of sensing
modality is critical. Recently, there has been a growing
tendency to research sensing modalities with pyroelec-
tric infrared (PIR) sensors [9-11]. The PIR sensor is a
kind of thermal imaging technologies and responses
only to temperature changes caused by human motion.
It has the promising advantages to overcome the limita-
tions of the traditional camera-based sensing method,
since the human motion information is acquired
directly, without sensing redundant background and
chromatic information. The output of the PIR sensors is
low-dimensional temporal data stream, which avoids the
high-dimensional data processing. However, PIR sensors
provide fairly crude data from which it is difficult to
acquire the spatial information. Thus, the primary goal
of the sensing system design is to enhance the spatial
awareness of the PIR sensors, and to capture the spatio-
temporal feature of the fall.

In this article, we design and implement a system,
SensFall, which can detect the fall efficiently and effica-
ciously. Sensing model design is the most important
process of our system design. Our sensing model springs
from the reference structure tomography (RST) para-
digm [12], which permits scan-free multidimensional
imaging, data-efficient, and computation-efficient source
analysis. The reference structure plays the role of modu-
lating the visibility between the object space and the
measurement space. Thus, after object space segmenta-
tion, the spatial awareness of the PIR sensors in the
measurement space is enhanced, and spatio-temporal
feature of the fall could be captured by the PIR sensors.
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In particular, with a Fresnel lens array around, each
PIR sensor can detect sensitively the thermal fluctuation
induced by human motion within its field of view
(FOV). Each PIR sensor can be considered as a single
pixel. The opaque mask covers part of the surface of the
Fresnel lens array, acting as the geometric reference
structure [13]. As a result, the PIR sensor could only
sense part of its original FOV. Several PIR sensors with
their own masks are multiplexing in one sensor node to
modulate the visibility pattern of the object space.

By this method, the object space is segmented into a
lot of sampling cells, as contiguous points in each cell
have the same unique visibility signature. The human
body acts as a structured thermal source. As the body
passes the boundaries of the sampling cells, the PIR sen-
sors will generate output with different characteristics
corresponding to different human motions, e.g., falling,
sitting down, standing up from a chair, walking, and
jogging.

We develop a corresponding hierarchical classifier, the
two-layer hidden Markov model, to model the time-
varying PIR signals and detect the fall.

The advantages of our system are obvious. First, the
dimension of the PIR data stream is low, which avoids
the high-dimensional data processing. In our prototype
implementation, the data stream dimension is 7 x 1
with 25Hz sample rate. Second, the communication bur-
den is low (message payload 1400 bits/s), which could
be supported by most low-rate wireless personal area
networks (LR-WPANSs) protocol, i.e., the data rate of
ZigBee is 250 kbit/s. Third, our system could work well
in any illumination conditions, even in a totally dark
environment. The sensor nodes could be easily deployed
in the elder’s house. Last but not the least, our system
follows privacy preservation, because it will not capture
the image of the elder as the camera sensors do. The
design of our system is towards the vision of the IoT:
anytime, anywhere, anymedia, and anything [1].

2 Related study
Much of the existing study on IoT has focused on
addressing the power and computational resource con-
straints by the design of specific routing, MAC, and
cross-layer protocols [14,15]. However, for specific
applications, further efforts should be directed toward
finding ways to improve the sensing efficiency and mini-
mize the data transmitted between sensor nodes. The
focus of our study is to design a novel sensing paradigm
to achieve the fall detection based on the resource-con-
strained wireless network.

Using wearable sensors is the most common method of
detecting falls and other abnormal behaviors. Several
researchers have explored the use of wearable acceleration
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sensors that placed in human clothing [16,17]. Based on
the multidimensional signals, a simple threshold or pos-
ture model was built to detect abnormal activities [18].
Bourke and Lyons [19] used gyroscopes mounted on the
torso to measure the pitch and rolling angular velocity.
They introduced a threshold-based algorithm to analyze
the collected changes of angular velocity to make the fall
alarm. Although accelerators and gyroscopes are able to
provide discriminative time-varying signals for fall detec-
tion, they are intrusive and their usage is restrictive. The
reason is that they need the cooperation of the elderly,
which largely depends on the person’s ability and willing-
ness. The elder may forget to wear them, and wearable
sensors will cause discomfort to the wearer.

For camera-based methods, the body shape change
analysis algorithms are based on a general principle that
the shape of a lying person is significantly different from
that of a standing person. For example, Anderson et al.
[20] used an HMM-based algorithm to detect the fall.
The HMMs use the width-to-height ratio of the bound-
ing box extracted from the silhouette. However, a single
camera limits the viewing angle of the scene and, more
importantly, the residents. The collaboration of multiple
cameras can overcome this limitation. Cucchiara et al.
[21] used a 3D shape of the human body to detect the
fall. The 3D body shape is obtained by multiple cameras
calibrated in prior. The advantages of employing cam-
era-based methods include [6]: (1) Compared with wear-
able sensors, they are less intrusive because they are
installed on the building, not worn by users. (2) The
recorded video can be used for remote post verification
and analysis. Generally speaking, body shape change
detection can be real-time, whereas the 3D body shape
needs more computation and more cameras. However,
the existing algorithms in this category are mainly based
on the shape feature extracted from the human contour,
e.g., the width-to-height ratio of the bounding box; the
accurate background and shadow substraction is the
basic premise. This premise sometimes will be violated
in real environment and then the performance of the
camera-based methods will degrade.

Moreover, the high dimensional input visual data
stream brings great computational and communication
pressure and limitation for constructing pervasive visual
sensor networks. In addition, the privacy is an inevitable
concern of employing the camera-based methods.
Recently, several studies exploit the advantages of PIR
sensors in the automated surveillance. Shankar et al.
[22] explored the response characteristics of PIR sensors
and used them for human motion tracking. Hao et al.
[23] confirmed a multiple-lateral-view based wireless
PIR sensor system to perform human tracking. The
human location can be surmised from the angle of arri-
val (AoA) of the distributed sensor modules. Hao et al.
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[24] subsequently showed the PIR sensor has the poten-
tiality to have a reliable biometric solution for the verifi-
cation/identification of a small group of human subjects.
Burchett et al. [25] gave a lightweight biometric detec-
tion with PIR sensors. However, the studies mentioned
above do not address how to discriminate the abnormal
behavior from normal behavior as done in our studies.

The first study that employs the PIR sensors for fall
detection is conducted by Sixsmith and Johnson [26].
They used an integrated pyroelectric sensor array (16 x
16) to collect human motion information without sen-
sing the background. They installed the device on the
wall for capturing the thermal image of the human body
and estimating the vertical velocity. A neural network
was trained to detect the falls in realistic scenarios.
However, only the vertical velocity information is not
robust enough to detect the fall. Their system is intrin-
sic to capture the body shape change as the camera-
based method does. Besides, their experiments did not
analyze the system’s ability to distinguish between the
fall and other similar normal vertical activities.

Recently, Liu et al. [27] used the direction-sensitive
PIR sensors to construct a distributed fall detection sys-
tem. Their distributed sensing paradigm is aimed at cap-
turing the synergistic motion patterns of head, upper-
limb and lower-limb. Their experiments results are
encouraging. However, to capture the motion patterns
of different parts of the human body, their system
deployment has to be side-view, which means it is very
easily occluded by other objects, e.g., furniture. Further-
more, their system is view-dependent, which means that
for each sensor node, it could only detect the fall hap-
pened perpendicularly to the FOV of the PIR sensors.
These limitations will be overcome in our design of a
novel efficient sensing model.

3 Feature analysis and sensing model
In this section, we discuss the spatio-temporal feature of
the fall, followed by the sensing model design.

3.1 Optical flow based analysis

To obtain the discriminative spatio-temporal feature of
the fall, it is necessary to analyze the difference between
the fall and other normal activities. This is the key to
detect the fall in an efficient way. Based on the analysis,
we design the corresponding sensing model.

The sophisticated optical flow method is employed to
refine the analysis of the spatio-temporal feature as a
human performs different activities. The estimation of
pixel motion in two consecutive frames yields the opti-
cal flow computation [28]. Some sample images of nor-
mal activities and the fall are shown in Figure 1. The
motion images are taken from a video of which the
sample rate is 25 frames/s. We select three frames and
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its corresponding optical flow vector images in each
category of activities for visualization. We divide the
monitored region into four sub-regions, as shown in
Figure 1la; furthermore, we aggregate the horizontal vec-
tor magnitude within these regions separately, denoted
as horizontal motion energy (HME), as shown in Figure
2. The HME reflects the horizontal component of the
human motion that crosses the sub-region perpendicu-
larly, and will be used as the cue to analyze the spatio-
temporal feature of different activities. As shown in Fig-
ure 2a “walking” and 2d “jogging”, the peaks of HME of
each sub-region appear one by one at roughly fixed
interval, which reflect the motion characteristic of
“walking” and “jogging” that pass these four sub-regions
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sequentially at about the same horizontal speed. As
shown in Figure 2b,c, the peaks of HME of “sitting
down” and “standing up” disappear or appear gradually,
as they are controlled human activities. By contrast, the
“fall” will cause the HME output of the adjacent sub-
regions to overlap in a relatively short period of time,
which corresponds with the velocity features of the fall
[29], as shown in Figure 2e. These observations consist
with the dynamics of the fall. In [29], Wu found two
velocity features of the fall: (1) the magnitude of both
vertical and horizontal velocities of the trunk will
increase dramatically during the falling phase, reaching
up to 2 to 3 times that of any other controlled move-
ment; (2) the increase of the vertical and horizontal

(a) Walking

(c) Standing up

(b) Sitting down

(d) Jogging

(e) Falling

Figure 1 The sample images and their corresponding optical flow images. The first row of each sub-figure is the original images, and the
second row is the corresponding optical flow images: (a) walking; (b) sitting down; (c) standing up; (d) jogging; (e) falling. Further, we divided
the monitored region into 4 sub-regions, and aggregated the horizontal vector magnitude of these regions as the human cross these regions, as
shown in Figure 2.

.
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Figure 2 The change of the optical flow of each sub-region.
The sum of the horizontal optical flow motion vector as the human
passes four regions performing different activities: (a) walking; (b)
sitting down; (c) standing up; (d) jogging; (e) Falling.

velocities usually occurs simultaneously, about 300-400
ms before the end of the fall process, which are strongly
dissimilar with the controlled human activities.

Based on the above analysis, the time-varying HME of
each sub-region is a discriminative spatio-temporal feature
which can be used to distinguish the fall from other nor-
mal activities. To leverage this feature for fall detection in
an efficient fashion, the feature-specific system should: (1)
segment the monitored region into sub-regions and (2)
the sensors collect the energy variation of each sub-region.
This is the inspiration of our sensing model design, which
will be elaborated in the succeeding sections.

3.2 Sensing model

To capture the most discriminative spatio-temporal fea-
ture of the fall, namely the HME of each sub-region, the
sensing model has to be designed deliberately. Our
model springs from the reference structure tomography
(RST) paradigm, which uses multidimensional modula-
tions to encode mappings between radiating objects and
measurements [12].
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The schematic diagram of our sensing model is shown
in Figure 3. The object space refers to the space where
the thermal object moves. The measurement space refers
to the space where the PIR sensors are placed. The
reference structure specifies the mapping from the object
space to the measurement space [12], and is used to
modulate the FOV of each PIR. In the case of opaque
reference structure, the visibility function v,(r) is binary
valued depending on whether the point r in the object
space is visible to the jth PIR sensor:

1 risvisible to the jth PIR

vi(r) =
0 otherwise

The function of the PIR sensors is to transform the
incident radiation into measurements. The measurement
of the jth PIR sensor is given by

m(©) =h(0)+ [ y(e)s( de 0

Q

where “*” denotes convolution, %4(¢) is the impulse
response of the PIR sensor, Q € R? is the object space
covered by the FOV of the jth PIR sensor, v(r) is the
visibility function, and s(r,) is the thermal density func-
tion in the object space.

Assume that there are M sensors in the measurement
space, and their FOVs are multiplexed. Thus, every
point r in the object space can be associated with a bin-
ary signature vector [v,(r)] € {0, 13, which specifies its
visibility to these M sensors. In the object space, contig-
uous points with the same signature form a cell that is
referred to as a sampling cell. As a result, the 3D object
space Q can be divided into L discrete non-overlapping
sampling cells, denoted as Q;

Measurement Space
my mo msz
Reference
Structure
0./ \ s
of / ’ 7
QQ QG
Q
Object Space

Figure 3 Schematic diagram of the sensing model: The
measurement space, reference structure, object space and sampling
cells.
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Q=U;Q;, 2N Q]' =0 (2)

where i, j = 1, .., L. Then (1) can be rewritten in dis-
crete form

L
mj(t) = h(t) * Y f vi(r)s(r, t)dr

i1 g

L
= h(t) * Zvﬁ / s(r, t)dr

=1 g,

L
= Zvﬁ h(t) * ]s(r, t)dr

Q;

3)

L
= > visi(t)
i=1

where vj; is the jth element of the signature vector of
Q,;, and si(t) = h(t) * fﬂi s(r, t)dr is the sensor measure-
ment of sampling cell Q,.

Then (3) can be written in a matrix form as

m=Vs (4)

where m = [m(t)] € RM*1 is the measurement vector,
V=[v]e RM*L is the measure matrix determined by
the visibility modulation scheme, and s = [s,(¢)] € RELx1
is the sensor measurement of the sampling cells.

As the analysis mentioned in Section 3.1, to capture
the discriminative spatio-temporal feature of the fall, it
requires that the system can sense the time-varying
HME of each sub-region. In our sensing model design,
each sampling cell corresponds to a sub-region of the
monitored region, and the PIR sensors are employed to
capture the time-varying HME of these sampling cells.
Therefore, our sensing model satisfies the design
requirements. Our sensing model is an intrinsic non-iso-
morphic model, which means the number of PIR sen-
sors M is less than the number of sampling cells L, and
the measurement of each PIR sensor is a linear combi-
nation of the sampling cells [30]. However, its sensing
efficiency is high, that is, it can robustly detect the fall
by processing low-dimensional sensor data directly. The
reason lies in that the our sensing model captures the
most discriminative spatio-temporal feature of the fall
by efficient spatial segmentation. In Section 5, we will
elaborate the system implementation, and list the speci-
fication of the reference structure.

3.3 Signal feature extraction

To represent the energy variation of the time-varying
PIR sensor signals, it is critical to select an appropriate
feature. Because the short time energy (STE) has been
proved effective in depicting the energy variation of the
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sine-like waveform [31], we employ it as the feature of
the PIR signals. The STE of the nth frame of the jth PIR
is defined as

Zn—1
pi(n) = Y |mj(k) — avSTE;(n)| (5)
k=0
1 Zy,—1
with avSTE;(n) = > my(k) (6)
™ k=0

where j € {1, ..., M} is the index of the PIR sensor, Z,
is the total number of the sampling points in the nth
frame, avSTE;(n) is the average energy of the sampling
points, and m1;(k) is the signal amplitude of the kth sam-
pling point.

3.4 Hierarchical classifier

Based on the extracted signal feature, STE of each
frame, we can continue to design the corresponding
classifier. The design of the classifier is problem-specific.
Fall detection could be regarded as a binary classifica-
tion problem, that is, fall or other normal activities.
However, because it is difficult to design a single classi-
fier to accomplish the task, the coarse-to-fine strategy is
a better choice [32]. Thus, we design a binary hierarchi-
cal classifier for the fall detection.

The hierarchical classifier in our study is based on the
hidden Markov models (HMMs). HMMs have been
demonstrated as a powerful tool for modeling time-vary-
ing sequence data, such as speech [33] and video stream
[34]. The parameters of a HMM can be denoted com-
pactly by 4 = (A, B, II), where A = {a;]} represents the
hidden state transition probabilities matrix, B = {b,(p
(n))} denotes the probability density distribution of the
observation vector, and Il = {rr;} is the initial state prob-
ability vector [33]. The parameters are learned from
training data using Baum-Welch method. This is done
for each class separately.

The binary hierarchical classifier we designed is the
two-layer HMMs model, as shown in Figure 4. The nor-
mal activities include normal horizontal activities and
normal vertical activities. The first-layer HMMs is
responsible to classify the unknown activities into nor-
mal horizontal activities and the rest. The horizontal
activities include walking and jogging, and the rest activ-
ities include fall, sitting down, and standing up. In other
words, we need to train two HMMs to separate these
two groups of activities, G; = {walking, jogging} and G,
= {fall, sitting down, standing up}. Based on the Bayesian
rule, given the sequence P = [p;(n)], the likelihood out-
put p(X;|P) is proportional to p(P|L;). That is, label the
input sequence P to the HMM with the height likeli-
hood,
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Unknown Activities

Normal Horizontal
Activities
(e.g. walking/ jogging)

First Layer
HMMs

Other Activities

Normal Vertical
Activities
(e.g. sitting down/ standing up)

Second Layer

HMMs Fall

Figure 4 Binary hierarchical classifier. The two-layer HMMs
model. The first layer HMMs is responsible to classify the unknown
activities into normal horizontal activities and the rest. The rest
activities will be classified by the second layer HMMs to distinguish
the fall from other normal vertical activities. The fall will be detected
eventually.

i* = arg i??ﬁi‘}p (PIA) (7)

where A; and A, correspond to G; and Gy,
respectively.

By the same method, the second-layer HMMs is to
distinguish the fall from other normal vertical activities
(sitting down and standing up).

4 System design

Our SensFall system seeks to provide an efficient solu-
tion for fall detection. The design of the system mainly
includes two parts: (1) data acquisition and (2) data pro-
cessing. Specifically, the data acquisition is about how
the system acquire the useful sensor data through the
sensing model, which is the most important aspect of
our system. The data processing consists of feature
extraction and classification. An alarm will be raised if
the fall is detected.

Our study assumes the distributed fall detection sys-
tem SensFall comprising several PIR sensor nodes, a
sink and a host, as shown in Figure 5.

A canonical node is assumed to be equipped with sev-
eral PIR sensors, a micro-controller unit (MCU), and a
radio as well as on-board RAM and flash memory.
Nodes are assumed to be tetherless and battery-pow-
ered, and consequently, the overall constraint for each
node is energy and data transmission bandwidth. The
PIR sensors are responsible for collecting the time-vary-
ing HME of each sub-region, and the MCU converts the
analogy signal of each PIR sensor into digital signal. If
the amplitude of the PIR signal exceed the pre-defined
threshold, the radio unit on the node will send the data
to the sink.

The sink collects all the data transmitted from the
sensor nodes, and transfer them to the host through a

Radio
=
v

Data Transmission

Data Acquisition ‘

Serial Cable

‘ Data Processing

Figure 5 The SensFall system model. The combination of our
system and the Internet forms IoT.

serial cable. The host is responsible for the data proces-
sing, including feature extraction and activity classifica-
tion. If the “fall” is the result of the activities
classification, the alarm will be raised. The host is con-
nected to the Internet. If the emergency situation
occurs, it will send the message to the doctors and
nurses in the nearby hospital.

5 System implementation
This section describes the implementation of SensFall
based on the design discussed in the previous section.

5.1 Hardware architecture

In this section, we present some of the important hard-
ware aspects of the preindustrial prototype developed by
the authors, as shown in Figure 6. The sensor node will
be mounted on the ceiling 3m above the floor, as shown
in Figure 7. Hemispherical shape of the Fresnel lens
arrays, model 8005, are obtained from Haiwang Sensors
Corporation [35], and the PIR detectors, D205B, are
obtained from Shenba Corporation [36]. The MCU
embedded in the sensor node and the sink are Chipcon
CC2430 modules. The CC2430 module combines the
RF transceiver with an industry-standard enhanced 8051
MCU, 128 KB flash memory, 8KB RAM [37]. After con-
figure the CC2430, the data generated by the sensor
node will be sent to the sink based on the 2.4G Hz
IEEE 802.15.4 (ZigBee) protocol, and then the sink will
transport the data to the PC host by RS232 serial port
for data processing.

5.2 Reference structure specification
We propose a proof-of-concept implementation scheme
of the reference structure for our SensFall system. The
optical flow analysis is view-dependent; however, to
detect the fall that may happen in all directions within
the monitored region, our system should be view-inde-
pendent. Thus, the design of the reference structure is
based on two principles: (1) the volume of each sampling
cell is to be as equal as possible; (2) the sampling cells are
symmetric along the axis of the monitored region.

For each PIR sensor, there is a Fresnel lens array
located one focal length away from the detector. The
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Fresnel lens
arrays

TRl
Sensor node

Figure 6 SensFall hardware prototype. The sensor node is with
seven PIR sensors, all to be mounted at a height of 3m from the
floor, looking down to classify human activities. The 2.4G RF
transceiver module is embedded in the CC2430.

Fresnel lens array is composed of a number of small Fres-
nel lens, which will collect the thermal energy within
their FOV. Before visibility modulation, the FOV of each
PIR sensor is a full cone. The opaque masks play the role
of reference structure. The first type of mask, Type I, is a
fan shape, as shown in Figure 8a. After applying such
mask, the FOV of the PIR sensor is no longer a full cone,
but partial cone shape, called fan cone. The fan cone’s
sweep angle is 120°, only 1/3 of the full cone. The second
type of mask, Type II, is a ring shape, as shown in Figure
8b. The FOV of the PIR sensor after masked is still a full
cone, but its cone angle f is less than that of the original
cone. These two types of masks provide two degree of
freedom (DOF) spatial partitions, bearing segmentation
by Type I mask, and radial segmentation by Type II
mask. By using these two kinds of masks and adjusting
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the parameters appropriately, the design principles (1)
and (2) will be achieved.

In our system implementation, seven PIR sensors with
masks are multiplexing to segment the object space sev-
eral sampling cells. Four PIR sensors are masked by
Type I mask, and the rest three PIR sensors are masked
by type II mask. The specification of the FOV of each
PIR, the sector angle ¢ and cone angle f3, are listed in
Table 1. In such configuration, the object space is seg-
mented into 17 sampling cells, as shown in Figure 8c.
The sampling cells are symmetric along the cone axis,
and they could detect the falls happening in all direc-
tions. It means that the monitoring region of the sensor
node is view independent.

Referring to Equation (4), M = 7, L = 17, and the
measurement matrix V is given by

00010117

1001011
1000011
1100011
0100011
0110011
0010011
0011011
0000111
0001001
1001001
1000001
1100001
0100001
0110001
0010001

0011001

(a) Falling

Figure 7 Typical experimental scenarios: (a) falling; (b) jogging.

Sensor node |

(b) Jogging
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Figure 8 Schematic diagram of the reference structure. (a) Type | mask for PIR1, PIR2, PIR3, and PIR4. (b) Type Il mask for PIR5, PIR6, and
PIR7. (c) The multiplexing of PIR sensors with masks form sampling cells. (d) The measure space, object space and the thermal target. The

human target can be modeled by a vertical cylinder thermal source approximately. During the process of fall, the thermal target will cross the
boundaries of the sampling cells and PIR sensors will generate output correspondingly.
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Table 1 Specification of PIR sensors

PIR index Mask Sector angle ¢ Cone angle 8
1 Type | -45°to 90° 45°
2 Type | 45°-180° 45°
3 Type | 135°-270° 45°
4 Type | -135%o0 0° 45°
5 Type |l 0°-360° 10°
6 Type Il 0°-360° 25°
7 Type I 0°-360° 45°

Our system can be regarded as a concrete implemen-
tation of the geometric reference structure [13]. The
PIR sensors with Fresnel lens array are essentially sensi-
tive to thermal change, especially at the boundaries of
the sampling cells, which are preferable in terms of sen-
sing efficiency in the sense of reducing the number of
sensors involved without degrading the sensing perfor-
mance. When the fall occurs, the human body will cross
the boundaries of the sampling cells, and output of the
PIR sensors array will reflect the spatio-temporal charac-
teristic of the action. Typical output of the PIR sensors
for different human activities is shown in Figure 9.
Because the dynamic process of the fall is quite different
from other normal activities, the output of the PIR sen-
sors provides a powerful cue for fall detection.

5.3 Software architecture

The software framework of SensFall is shown in Figure 10.
In our implementation, the sample rate of each PIR output
is 25 Hz. The STE is calculated based on 2 s window with
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1 s overlapping. A threshold is set to determine the start-
ing point and ending point of each activity. Two layer
HMMs will be trained by the training samples, and save as
the model parameters A = (A, B, Il) for testing. The main
difference between our SensFall system and its camera-
based counterpart is that our system does not contain the
component of background segmentation [38]. The reason
lies in the characteristic of the PIR sensors that they could
only sense the motion of the thermal target, not including
the chromatic background. As a result, the most obvious
merit of our SensFall is its low dimensional input data
stream for data processing.

6 Experimental results

The experiments were carried out in an office environment.
The monitored region covered by the sensor node was a
cone with 3 m radius. There were totally eight volunteers
participated in our experiments, including three females
and five males. The height of them ranges from 1.64 m to
1.80 m, and the weight of them ranges from 50 kg to 70 kg.
Each volunteer emulated five kinds of activities, including
fall, sitting down, standing up from a chair, walking and jog-
ging. Every activity was emulated ten times by each volun-
teer at a self-select speed and strategy, as shown in Figure 7.
Totally, we obtained 400 samples, including 80 fall-simu-
lated samples and 320 normal activity samples.

The experiments were divided into two stages: the
training and the testing stage. In the training stage, half
of the total samples were randomly selected to train the
parameters 4 = (A, B, II) for each HMM, where A €
RN B « RNxMq, and TT € RM*!. The number of hidden
states N and the number of Gaussian models Mg have
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PIR2

PIR2

PIR3

PIR3

PIR4

PIR4

PIR5

PIR5

PIR6

PIR6

PIR7

PIR7
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o
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(a) Falling

Figure 9 The output of the PIR sensors caused by different human activities: (a) falling; (b) sitting down.
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Figure 10 SensFall software architecture and data processing flow.
A

to be specified manually before employing the Baum-
Welch method (equivalently the EM method) [33]. Dif-
ferent combination of the N and Mg will affect the clas-
sification accuracy of the system. Figure 11 presents the
average likelihood output of the first-layer HMMs with
different parameters, and Figure 12 presents the average
likelihood output of the second-layer HMMs with differ-
ent parameters. Based on their performance, we specify
the N and Mg for two layers of HMMs as Table 2,
where A;; and A, correspond to vertical activities and
horizontal activities in the first-layer HMMs, A,; and
Ao correspond to the fall and other normal activities in
the second-layer HMMs, respectively.

After these two-layers of HMMs were trained (total 4
HMMs), we used the rest of the samples for testing. We
repeated this process 20 times for cross validation, and
Table 3 shows the overall normal and abnormal event
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detection accuracy rate. The data processing was run on
an Intel Pentium Dual-Core 2.60 GHz computer by
Matlab code. For every testing sample (4-10 s), the aver-
age time spent on the first-layer HMMs is 4.1 ms with
maximum 7 ms, the second-layer HMMs 4.3 ms with
maximum 7.7 ms. It shows that our system fulfills the
real-time processing requirement.

7 Discussion

The experimental results of related systems are listed in
Table 3. The first one related to ours is conducted by Six-
smith and Johnson [26]. In their study, the SIMBAD sys-
tem used a low-cost array of infrared detectors to detect
falls. Specifically, a neural network was employed to clas-
sify falls using the vertical velocity information extract
from (16 x 16) integrated pyroelectric sensor array. How-
ever, the vertical velocity could not be sufficient to discri-
minate a real fall from other similar activities. Another
study related to ours is conducted by Liu et al. [27]. The
feature they extracted by using the PIR sensors is the
synergistic motion patterns of head, upper-limb and
lower-limb of the human target. This feature is efficient.
However, to capture this feature, their system has to be a
side-view deployment; the PIR sensors are to be placed
parallel to separate parts of the human body, e.g., the
head, upper-limbs, and lower-limbs. It means that the
FOV of the PIR sensors will be easily blocked by furni-
ture in a real environment. More importantly, because
the PIR sensors are direction sensitive, the side-view
deployment PIR sensors could only detect the fall occurs
perpendicularly to the FOV of the sensor node efficiently;
the fall happen along the axis of the sensor node will not
show the same characteristics. In other words, their mon-
itoring region is view-dependent.

The primary insight of our study is that by segmenting
the object space into distinct sampling cells and detect-
ing the abnormal thermal variation of them, it is an effi-
cient method to detect the fall. In other words, the

Average likelihood
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Figure 11 Average likelihood output of the first-layer HMMs.
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Table 2 The specification of HMMs
First-layer HMMs

Second-layer HMMs

)\.11 ;\-12 }\421 }"22
# Hidden states N 10 14 10 14
# Gaussian models Mg 2 2 2 2

variation of HME of each sub-region is a most discrimi-
native feature for fall detection. The output of the PIR
sensors reflects the spatio-temporal characteristics of
different human activities. As a result, the most promi-
nent advantages of our feature-specific sensing paradigm
is its low input data dimension (7 x 1, 25 Hz), which is
considerably lower than its camera-based counterpart, e.
g., cyclops (128 x 128, 10fps) [39] and CMUCam3 (352
x 288, 50fps) [40]. Encouraging experimental results
confirm the efficacy of the feature extraction. It shows
that the deliberate design of the data acquisition will
greatly reduce the complexity of the data processing.
Although the monitoring region of each sensor node
is a cone with 3 m radius, it could be deployed in any
position where the fall will happen with high probability,

Table 3 The average experimental results

Fall event Normal event

System: SensFall

Ground truth # 40 160

Detected as fall event (rate) (%) 86.5 203

Detected as normal event (rate) (%) 135 97.97
System: SIMBAD [26]

Ground truth # 14 30

Detected as fall event (rate) (%) 357 33

Detected as normal event (rate) (%) 643 96.7
System: proposed in [27]

Ground truth # 40 200

Detected as fall event (rate) (%) 925 6.3

Detected as normal event (rate) (%) 75 93.7

e.g., the corridor. The ceiling-mounted deployment style
makes the sensor node not easy to be occluded by the
furniture. More importantly, our sensor node is view-
independent. It could detect a fall that happens within
its monitoring region in all directions. It also studies in
totally dark environments, unlike its camera-based
counterpart. The quantization of the PIR measurement
is 8 bit, and the payload of the messages sending from
the sensor node to the sink is 1400 bit/s (including mea-
surement of seven PIR sensors). So, it can be trans-
mitted by most low-rate wireless personal area networks
(LR-WPANSs) standard. For example, the transfer rate of
the Zigbee is 250 kbit/s [37]. Thus, it is possible to con-
struct a scalable WSNs to achieve ubiquitous monitor-
ing, which is the future goal of our research.

8 Conclusions

In this article, we design and implement a fall detection
system SensFall, which is based on efficient spatial seg-
mentation sensing model. It is not only advantageous in
providing a low-cost, privacy non-invasive motion sensing
method, but also it can be a practical guide to construct a
coverage scalable, construction easy and energy saving
wireless network for the integrated healthcare information
system. Our ultimate goal is to enhance the quality of life
of the elderly, afford them a greater sense of comfort and
reassurance, and facilitate independent living.
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