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Abstract

In this article, we consider the diversity-multiplexing tradeoff (DMT) of relay-assisted communication through
correlated frequency selective fading channels. Recent results for relays in flat fading channels demonstrate a
performance and implementation advantage in using relay selection as opposed to more complicated distributed
space-time coding schemes. Motivated by these results, we explore the use of relay selection for the case when all
channels have intersymbol interference. In particular, we focus on the performance of relaying strategies when
multiple decode-and-forward relays share a single channel orthogonal to the source. We derive the DMT for
several relaying strategies: best relay selection, random relay selection, and the case when all decoding relays
participate. The best relay selection method selects the relay in the decoding set with the largest sum-squared
relay-to-destination channel coefficients. This scheme can achieve the optimal DMT of the system under
consideration and generally dominates the other two relaying strategies which do not always exploit the spatial
diversity offered by the relays. Different from flat fading, we found special cases when the three relaying strategies
have the same DMT. We further present a transceiver design which is proven to asymptotically achieve the optimal
DMT. Monte Carlo simulations are presented to corroborate the theoretical analysis and to provide a detailed
performance comparison of the three relaying strategies in channels encountered in practice.

Keywords: cooperative communication, relay selection, opportunistic relaying, diversity-multiplexing tradeoff, out-
age probability, frequency selective fading, intersymbol interference

1 Introduction
Cooperative relay networks have emerged as a powerful
technique to combat multipath fading and increase energy
efficiency [1,2]. To exploit spatial diversity in the absence
of multiple antennas, several spatially separated single-
antenna nodes can cooperate to form a virtual antenna
array. Such systems usually employ half-duplex relays and
come in two flavors [3-6]: those where the relays transmit
on orthogonal channels so that transmission from the
source and each relay is received separately at the destina-
tion, or those where a single non-orthogonal channel is
shared between the source and relays so that all nodes
may transmit on the same common channel at the same
time. Here, we focus on the former class of systems which
employ orthogonal relay channels, where the orthogonality
is often accomplished through time division.

Cooperative relay systems with orthogonal channels
typically either employ multiple orthogonal relay subchan-
nels in conjunction with repetition coding, or all relays use
a single orthogonal relay channel along with distributed
space-time coding (DSTC) [7]. While the use of repetition
codes is attractive for its simplicity, this approach requires
relay scheduling and dedicated orthogonal channels for
each relay which uses up precious system resources. On
the other hand, when using a single orthogonal relay chan-
nel with DSTC, the scheduling of relays is of no concern,
but DSTC requires synchronization between relays which
is very difficult in distributed networks. Asynchronous
forms of space-time coding have been proposed (e.g. [8]),
but the decoding complexity may still be prohibitively
complex to permit their use in low-cost wireless ad hoc
networks. Furthermore, the non-linearity of most existing
RF front-ends poses additional implementation challenges
for DSTC-based approaches [9].
More recently, relay selection schemes have been pro-

posed [10,11] which use simple repetition coding, very
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simple scheduling, and a single relay channel. Remarkably,
these schemes can achieve the same diversity-multiplexing
tradeoff (DMT) [12] as DSTC relaying, and can even out-
perform DSTC systems in terms of outage probability
[11,13]. Using relay selection is an attractive alternative to
avoid the spectral inefficiency of repetition coding and the
increased decoding complexity required for DSTC.
Most existing cooperative diversity research assumes

that the fading channels have flat frequency responses. In
high data-rate wireless applications, however, the coher-
ence bandwidth of the channels tends to be smaller than
the bandwidth of the signal, resulting in frequency selec-
tive fading [14]. For such high rate communication in
cooperative relay networks, existing techniques for flat fad-
ing channels need to be adapted, or new techniques need
to be designed for frequency selective fading channels. In
[15], the authors considered a system with a single
amplify-and-forward (AF) relay over frequency selective
channels, and proposed three DSTCs. In [16], the authors
consider a multiple-AF-relay OFDM system and proposed
a distributed space-frequency code. The three DSTCs in
[15] and the distributed space-frequency code in [16] can
achieve both cooperative diversity and frequency diversity
where the frequency diversity through a relay is up to the
minimum of the source-relay channel length and the
relay-destination channel length. Simpler, non-DSTC
approaches that employ relay selection have been pro-
posed for communication through frequency-selective fad-
ing channels. For example, in [17,18], uncoded OFDM is
studied, and it was shown that if relay selection is done on
a per-subcarrier basis, full spatial diversity can be achieved.
However, neither of these OFDM-based relay selection
methods were able to exploit the frequency diversity of the
ISI channel [19]. A linearly precoded OFDM system was
proposed in [20] which uses multiple amplify-forward
relays with linear transmit precoding; a simulation-based
study showed that two relay selection schemes exhibited a
coding gain improvement compared to an orthogonal
round-robbin relaying scheme.
This article investigates the performance limits of relay

selection with frequency selective fading, and focuses on
the DMT for single-carrier systems without transmit
channel state information (CSI) and transmit precoding.
We analyze three different relay selection methods,

including best relay selection, random relay selection,
and all-decoding-relay participation. The relays in these
three methods use a single orthogonal subchannel with
repetition coding. We derive the DMT for the relay selec-
tion methods and then propose a practical low-complex-
ity system which asymptotically attains the DMT by
using uncoded QAM with guard intervals between blocks
along with linear zero-forcing (ZF) equalizers.

2 System model
2.1 Channel model
We consider a system as in Figure 1, which consists of a
single source node (S), K relay nodes (R1,2,...,K), and a sin-
gle destination node (D). We assume that all nodes have
the same average power constraint P watts and transmis-
sion bandwidth W Hz. While this model has been well-
studied in the case of static flat channels [21], here the
links between the nodes are assumed to be frequency
selective quasi-static fading channels, modeled as complex
FIR filters. In the subscript, we denote s as source node, ri
as ith relay and d as destination. Thus, the source-to-desti-
nation channel coefficients are contained in the vector hsd.
Similarly, for i Î 1, 2,..., K, the source-to-relay Ri channels
are contained in hsri and the relay Ri to destination chan-
nels are contained in hrid. Most analyses of diversity
through frequency selective channels focus on the case
where the channel taps are i.i.d. [22,23]. Even when multi-
ple paths in the continuous time channel experience inde-
pendent fading, however, the channel taps themselves can
be highly correlated due to pulse shaping [14]. In addition,
pulse shaping typically causes the number of discrete time
channel taps to be quite a bit larger than the number of
(possibly independent) fading paths. To incorporate corre-
lated fading–as well as the effects of path loss, shadowing
and imperfect timing synchronization–we assume that the
channel taps arise as hjk = Γjkδjk where jk could be sd, sri
or rid, δjk ∼ CN

(
0, ILjk

)
represents the Ljk independent

fading paths. The autocovariance of the Mjk channel taps
can then be specified by appropriate choice of
�jk ∈ RMjk×Ljk whose maximum singular value and mini-
mum singular value are denoted as ξjk,max and ξjk,min,
respectively. Without loss of generality, we assume that Γjk
is full column rank and Mjk ≥ Ljk so that the number of
coefficients in the effective channel impulse response may

Table 1 DMT of each selection scheme for r Î [0,1/2]
Selection d(r) d(r) when ∀i, Lrid = Lrd, Lsri = Lsr

Best (1 − 2r)
(
Lsd +

∑K

i=1
min

{
Lrid, Lsri

})
(1 - 2r)(Lsd + min{KLrd, KLsr})

Random (1 − 2r)
(
Lsd + minD

{
(minRi∈D Lrid) +

(∑
Ri /∈D

Lsri
)})

(1 - 2r)(Lsd + min{Lrd, KLsr})

All (1 − 2r)
(
Lsd + minD

{
(minRi∈D Lrid) +

(∑
Ri /∈D

Lsri
)})

(1 - 2r)(Lsd + min{Lrd, KLsr})
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be greater than the number of fading paths in the physical
channel.
The channel coefficients are assumed to be constant

over a block and are independent from one block to the
next. We assume perfect CSI at the destination and no
CSI at the source. Furthermore, the transmission is pre-
sumed to be perfectly synchronized at the block level. In
addition, all links have additive noise which is assumed
to be mutually independent, zero-mean circularly sym-
metric complex Gaussian with variance N0 and the dis-
crete-time signal-to-noise ratio is defined as

ρ � P

WNo
.

While the assumption of equal node powers and equal
noise variances may seem impractical, the case of
unequal powers and variances does not change the
asymptotic high-SNR analysis which follows since these
constants disappear in the derivation; consequently, we
make this simplifying assumption to aid the clarity of
the exposition.

2.2 Diversity-multiplexing tradeoff
The DMT has proven to be a useful theoretical tool that
has considerably advanced the design of codes in the
MIMO context. By restricting attention to system beha-
vior in the high-SNR regime, DMT analysis permits a
mathematically tractable comparison of various trans-
mission and relaying schemes.
We define the outage probability as the probability

that the mutual information I between source and desti-
nation falls below rate R, and this is denoted as Pr[I <R

(r)]. The multiplexing gain and the diversity gain are
then defined as [14]

r � lim
ρ→∞

R(ρ)
log ρ

, d(r) � − lim
ρ→∞

log
(
Pr
[
I < R(ρ)

])
log ρ

,

respectively, where I is the mutual information
between the source and the destination, and R(r)
denotes the source data rate which is assumed to scale
as R(r) = r log r. The notation ≐ denotes asymptotic
equality in the large r limit with A ≐ B meaning

lim
ρ→∞

logA
log ρ

= lim
ρ→∞

logB
log ρ

.

2.3 Upper bound on the DMT
The MFB assumes that the source only sends a single
symbol x[0] and the relay Ri only sends a single symbol

xri[0] where E
[∣∣x[0]∣∣2] = E

[∣∣xri [0]∣∣2] = P/W. For each

source-to-relay link, the received signal at the relay is
yri = hsri x[0] + wri where wri is the noise at Ri, and for
each relay-to-destination link, the received signal at the
destination can be expressed as yrid = hridxri[0] + wdi

where wdi is the noise at the destination D when Ri is
transmitting. For the source-to-destination link, the
received signal can be written as ysd = hsdx[0] + wds where
wds is the noise at the destination D when the source S is
transmitting. Thus, the mutual information between
source and destination can be written as Isd = log(1 + ||
hsd||

2r). Similarly we can find the mutual information

between source and ith relay as Isri = log
(
1 +

∥∥hsri∥∥2ρ)

S

R1

R2

RK

D

...

...

h
sr

1

hsr2

h
sr
K

h
r
1 d

hr2d

hrK
d

hsd

w
sr

1

wsr2

w
sr
K

w
r
1 d

wr2d

w
rK

d

wsd

Figure 1 System model.
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and the mutual information between ith relay and desti-

nation as Irid = log
(
1 +

∥∥hrid∥∥2ρ). Define set R consist-

ing of all K relay nodes, and define a partition of R as
(V ,R\V). For the network as presented in the channel
model with a single source S and a single sink D, a cut
(S,T ) is defined as S = {S} ∪ V and T = {D} ∪ (R\V).
The capacity of a minimum cut of such a network can be
upper bounded as [24]

Icut = min
V

⎛
⎝Isd +

∑
Ri∈(R\V)

Isri +
∑

Ri∈(R\V)

Irid

⎞
⎠ . (1)

The outage probability is lower bounded as

Pout ≥ Pr
[
Icut < r log ρ

]
= Pr

⎡
⎣min

V

⎛
⎝Isd +

∑
Ri∈(R\V)

Isri +
∑

Ri∈(R\V)

Irid

⎞
⎠ < r log ρ

⎤
⎦

= max
V

Pr

⎡
⎣
⎛
⎝Isd +

∑
Ri∈(R\V)

Isri +
∑
Ri∈V

Irid

⎞
⎠ < r log ρ

⎤
⎦ .

(2)

For a particular partition of relay nodes V, we have
the outage probability

Pr

⎡
⎣Isd + ∑

Ri∈(R\V)

Isri +
∑
Ri∈V

Irid < r log ρ

⎤
⎦

= Pr

⎡
⎣log (1 + ‖hsd‖2ρ

)
+

∑
Ri∈(R\V)

log
(
1 +

∥∥hsri∥∥2ρ) +
∑
Ri∈V

log
(
1 +

∥∥hrid∥∥2ρ) < r logρ

⎤
⎦

= Pr

⎡
⎣log

⎛
⎝(1 + ‖hsd‖2ρ

) ·
∏

Ri∈(R\V)

(
1 +

∥∥hsri∥∥2ρ) ·
∏
Ri∈V

(
1 +

∥∥hrid∥∥2ρ)
⎞
⎠ < r log ρ

⎤
⎦

(3)

≤̇Pr

⎡
⎣‖hsd‖2ρ +

∑
Ri∈(R\V)

∥∥hsri∥∥2ρ +
∑
Ri∈V

∥∥hrid∥∥2ρ < ρr

⎤
⎦(4)

.= Pr

⎡
⎣‖δsd‖2ρ +

∑
R4∈(R\V)

∥∥δsri∥∥2ρ+ ∑
Ri∈V

∥∥δrid∥∥2ρ < ρr

⎤
⎦(5)

.= ρ
−(Lsd+

∑
Ri∈(R\V) Lsri+

∑
Ri∈V Lrid)(1−r), (6)

where (3) follows from log A + log B = log(AB), (4)
follows from the fact that Pr(a + b <c) ≤ Pr(a <c) for
any a, b, c ≥ 0, (5) follows from the fact that

ξ2jk,min

∥∥δjk∥∥2 ≤ ∥∥hjk∥∥2 ≤ ξ2jk,max

∥∥δjk∥∥2, and (6) holds as

‖δsd‖2 +
∑

Ri∈(R\V)

∥∥δsri∥∥2 +∑Ri∈V
∥∥δrid∥∥2 is chi-square

distributed with Lsd +
∑

Ri∈(R\V)
Lsri +

∑
Ri∈V

Lrid

degrees of freedom.
Substituting (6) into (2), the outage probability is

lower bounded as

Pout≥̇ρ
−minV (Lsd+

∑
Ri∈(R\V)Lsri+

∑
Ri∈VLrid)(1−r). (7)

Thus, the DMT is upper bounded as

d(r) ≤ min
V

⎛
⎝Lsd +

∑
Ri∈(R\V)

Lsri +
∑
Ri∈V

Lrid

⎞
⎠ (1 − r)

=

(
Lsd +

K∑
i=1

min(Lsri , Lrid)

)
(1 − r)

(8)

as the minimum is attained when relay Ri is in V if
Lrid < Lsri and is not in V otherwise.
For half-duplex orthogonal relays, the multiplexing

gain is halved [25] and the upper bound on the DMT
for the same channel model but with half-duplex relay-
ing becomes

d(r) ≤
(
Lsd +

K∑
i=1

min(Lsri , Lrid)

)
(1 − 2r). (9)

3 Outage probability analysis of decode-and-
forward relay system
We now focus on the decode-and-forward relay system
and derive its outage probability and DMT under several
different relaying strategies. We assume the message sent
by the source node is encoded to a block of N source
symbols. The relays operate in half-duplex mode, and
thus do not transmit and receive at the same time. In
addition, the relay nodes and the source use the same
transmission bandwidth but employ time division so that
the relays transmit on a channel orthogonal to the
source. The transmission of a complete message is
divided into two phases:

1. In phase one, the source broadcasts the message
to the destination and the relays, and each relay
attempts to decode the message.
2. In phase two, the source is silent. Depending on
the relay selection strategy, some or all of the relays
that successfully decoded the message (if any) for-
ward the message to the destination.

The source and relays then alternate between these two
phases; this is shown in Figure 2 for the case where two
relays R1 and RK participate in the second phase, and we
note that the destination receives the composite signal
corrupted by intersymbol interference, interblock inter-
ference, and additive noise. Only the relays which can
correctly decode the message from the source can parti-
cipate in forwarding the decoded message to the destina-
tion. We define such relays as decoding relays and they
form a decoding set. In practice, the decision of whether
the message is decoded successfully can be made with
the help of a checksum (e.g. CRC) and we assume the
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relays which pass this checksum do not contain any
errors in the decoded message. We consider several
relaying strategies in this article, including a best selec-
tion scheme, a random selection scheme, and a scheme
where all decoding relays participate.
We continue to use the MFB to derive the upper

bound on outage probability for the three relaying stra-
tegies and assume that a single symbol x[0] is sent by
the source.
In the first phase of transmission, the received signals

at the destination and at each relay are given by

ysd = hsdx[0] + wsd, (10)

yri = hsri x[0] + wsri . (11)

For classical direct transmission where the source
transmits continuously without help from the relays, the
mutual information between the source and Ri [14]

would be log
(
1 +

∥∥hsri∥∥2ρ)bits/s/Hz. In our system

model, however, the use of time-division constrains the
source to be silent half of the time which halves the
mutual information but doubles the power, giving the
mutual information between source and Ri in the first
phase as

Isri =
1
2
log

(
1 + 2

∥∥hsri∥∥2ρ) .
Next, in phase two, each relay attempts to decode the

message. Those relays which are able to successfully
decode the message comprise the decoding set D where
D ⊆ {R1, . . . ,RK}. Depending on the relay selection strat-
egy that is employed, some nodes in the decoding set will
participate in the relaying.
To calculate the outage probability, we seek the overall

mutual information I between the source and the desti-
nation. Conditioning on the random set D, the total
probability theorem gives the outage probability as

Pr[I < R] =
∑
D

Pr[D] Pr[I < R|D] (12)

with the summation over all possible decoding sets.
To calculate the probability of a given decoding set Pr
[D], first let

b � 22R − 1
2ρ

,

where we note that b ≐ r2r-1 and 0 ≤ r ≤ 1/2. The
probability that a relay node is in the decoding set is

Pr[Ri ∈ D] = Pr[Isri > R]

= Pr
[∥∥hsri∥∥2 > b

]
.= Pr

[∥∥δsri∥∥2 > b
]

.= e−b

Lsri−1∑
k=0

bk

k!
,

where the penultimate asymptotic equality follows
from ξ2sri ,min||δsri ||2 ≤ ||hsri ||2 ≤ ξ2sri ,max||δsri ||2 and the last

asymptotic equality follows as ||δsri ||2 is chi-square dis-
tributed with Lsri degrees of freedom. Since each relay
independently decodes the message, and since the chan-
nels from source to each relay are independent, the prob-
ability of the decoding set is

Pr[D]=̇
∏
Ri /∈D

⎛
⎝1 − e−b

Lsri−1∑
k=0

bk

k!

⎞
⎠ ∏

Ri∈D
e−b

Lsri−1∑
k=0

bk

k!

=̇b�Ri /∈DLsri .

(13)

Referring back to (12), we now need to calculate
Pr[I < R|D], which depends on the particular choice of
relay selection strategy. Next, we complete the outage
probability and DMT derivation for each of the three
selection strategies.

S

R1

R2

RK

D

...

time

Figure 2 Transmission process.
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3.1 Best relay selection DMT
We first analyze the outage of the best relay selection
scheme, where the “best” relay is defined as the one with
the largest sum-squared relay-to-destination channel
coefficients. The chosen relay uses repetition coding, and
simply forwards the decoded signal to the destination in
phase two. The best relay selection process can be com-
pleted either centrally at the destination or in a distribu-
ted fashion by relays, as follows:

- Centralized selection: In turn, each decoding relay
transmits some known information to the destina-
tion, and the destination estimates each relay-to-des-
tination channel. The destination chooses the relay
with the largest sum-squared relay-to-destination
channel coefficients, and feeds back this decision to
the relays. The feedback requires |D| bits and is
assumed to be fed back reliably.
- Distributed selection: The relay-to-destination chan-
nel and the destination-to-relay channel are assumed
to be the same due to reciprocity. The destination
broadcasts some known information to all the relays,
each of which individually estimate its relay-to-destina-
tion channel. Each relay waits for a time duration
which is inversely proportional to its sum-squared
relay-destination channel coefficients before sending
its signal to the destination, so the relay with the lar-
gest sum-squared relay-to-destination channel will be
the first to send its signal to the destination. Other
relays do not start transmission if they overhear any
signal from the best relay. The detailed process for this
distributed relay selection is discussed in [10].

The system designer may choose which of these two
approaches to adopt depending on the application. The
centralized selection might consume more time since the
channels between relays and destination would need to be
estimated sequentially. Centralized selection also puts
more estimation load on the destination. Distributed selec-
tion, on the other hand, is more spectrally efficiently since
relays concurrently estimate the channels; however, the
relays need to resolve collisions which may complicate the
implementation. The practical details of the selection pro-
cess itself–such as the overhead in performing the selec-
tion, as well as the possibility of poor channel estimates
that result in a sub-optimal relay selection–are beyond the
scope of the present study. Throughout our analysis, we
assume that the best relay is always selected with negligi-
ble overhead.
Again, transmission takes place in two alternating

phases, where the received signals in the first phase are
given by (10) and (11). Here, however, only the selected
relay participates in the second phase. Let the selected

relay index be m and denote its relay-destination channel
coefficients as hrmd so that∥∥hrmd∥∥2 � max

Ri∈D
∥∥hrid∥∥2.

The received signal at the destination becomes

yrd = hrmdx[0] + wrd. (14)

Due to the use of repetition coding by the selected
relay and the orthogonality of the source-destination
and source-relay channels, the conditional mutual infor-
mation of the best relay selection scheme can be written
as

Ibest =
1
2
log

(
1 + 2ρ

(
max
Ri∈D

∥∥hrid∥∥2 + ‖hsd‖2
))

. (15)

Denote ξmax = max(maxR i∈Dξrid,max,ξsd,max), ξmin = min(minR i∈Dξrid,min,ξsd,min),
we have the following upper bound and lower bound on
Ibest as

1
2
log

(
1 + 2ρξ2

min

(
max
Ri∈D

∥∥δrid∥∥2 + ‖δsd‖2
))

≤ Ibest

≤ 1
2
log

(
1 + 2ρξ2max

(
max
Ri∈D

∥∥δrid∥∥2 + ‖δsd‖2
))

.
(16)

Let Y ≜ ||δsd||
2 and fY(y) be the pdf of Y which is chi-

square distributed with Lsd degrees of freedom. The
conditional outage probability for best relay selection is
then

Pr [Ibest < R|D] = Pr
[(

max
Ri∈D

∥∥hrid∥∥2 + ‖hsd‖2
)

< b
]

(17)

.= Pr
[(

max
Ri∈D

∥∥δrid∥∥2 + Y
)

< b
]

(18)

=
∫ b

0
Pr

[
max
Ri∈D

∥∥δrid∥∥2 < b − y
]
fY(y)dy

=
∫ b

0

⎛
⎝∏

Ri∈D
Pr
[∥∥δrid∥∥2 < b − y

]⎞⎠ 1
(Lsd − 1)!

yLsd−1e−ydy

=
∫ b

0

⎡
⎣∏

Ri∈D
e−(b−y)

⎛
⎝ +∞∑

k=Lrid

(b − y)k

k!

⎞
⎠
⎤
⎦ 1

(Lsd − 1)!
yLsd−1e−ydy

(19)

=
∫ 1

0
e−b

⎡
⎣∏

Ri∈D

⎛
⎝ +∞∑

k=Lrid

bk
(1 − α)k

k!

⎞
⎠
⎤
⎦ 1

(Lsd − 1)!
(bα)Lsd−1bdα (20)

.= bLsd+
∑

Ri∈D Lrid
∫ 1

0

(1 − α)
∑

Ri∈D LridαLsd−1(∏
Ri∈D Lrid!

)
(Lsd − 1)!

dα (21)
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.= bLsd+
∑

Ri∈D Lrid, (22)

where (18) follows by applying (16), (19) follows from
[26, equation 2.321], (20) follows from the change of
variable y = ab with 0 ≤ a ≤ 1, (21) comes by dropping
terms in the polynomial of b with order higher than Lrid,
and (22) follows from the fact that the integration in
(21) is not a function of b.
Substituting (13) and (22) into (12), the outage of best

relay selection is then

Pr [Ibest < R] =
∑
D

Pr [Ibest < R|D]Pr[D]

.=
∑
D

bLsd+
∑

Ri∈D Lrid+
∑

Ri /∈D Lsri

.= b
Lsd+minD

{(∑
Ri∈D Lrid

)
+
(∑

Ri /∈D Lsri

)}

.= ρ
(2r−1)

(
Lsd+minD

{(∑
Ri∈D Lrid

)
+
(∑

Ri /∈D Lsri

)})

(23)

.= ρ
(2r−1)

(
Lsd+

∑K
i−1 min(Lrid,Lsri)

)
, (24)

where (24) follows as the minimum in (23) is attained
when relay Ri is in decoding set if Lrid < Lsri and is not in
decoding set otherwise. We see that full spatial diversity
is achieved by this relay selection method since there are
K + 1 terms in (24), but the achieved frequency diversity
through each relay is the minimum of the length of the
source-to-relay and relay-to-destination channels.

3.2 Random relay selection DMT
In this subsection, we analyze the outage of a random
relay selection scheme, where a random relay in the
decoding set handles the forwarding. While this strategy
would appear to be suboptimal compared to the best relay
selection scheme, random selection is attractive for its
simplicity and the fact that it requires no feedback nor
CSI. In random selection, the probability of a decoding
relay being selected as the forwarding relay is 1/ |D|. The
chosen relay employs repetition coding for the second
phase of transmission. Similar to Section 3.1, this relay
selection method can also be operated in a centralized
mode or a distributed mode. Under centralized mode,
there is no need to estimate the relay-to-destination chan-
nel, and the destination broadcasts the index number of a
randomly selected relay in the decoding set; in distributed
mode, each decoding relay waits for a random time which
is uniformly distributed within a range with the maximum
predefined by the system, and the first to transmit
becomes the chosen relay. The mutual information condi-
tioned on selecting relay Ri ∈ D can be written as

Irandom =
1
2
log

(
1 + 2ρ

(∥∥hrid∥∥2 + ‖hsd‖2
))

. (25)

We have

1
2
log

(
1 + 2ρ min

{
ξ2rid,min,ξ

2
sd,min

} (∥∥δrid∥∥2 + ‖δsd‖2
))

≤ Irandom

≤ 1
2
log

(
1 + 2ρ max

{
ξ2rid,min,ξ

2
sd,min

} (∥∥δrid∥∥2 + ‖δsd‖2
))

.
(26)

Let Y ≜ ||δsd||
2 and fY(y) be the pdf of Y which is chi-

square distributed with Lsd degrees of freedom. The
conditional outage probability for the random relay
selection method is

Pr [Irandom < R|D] =
∑
Ri∈D

1
|D| Pr [Irandom < R |Ri,D ]

=
∑
Ri∈D

1
|D| Pr

[∥∥hrid∥∥2 + ‖hsd‖2 < b
]

.=
∑
Ri∈D

1
|D|b

Lsd+Lrid

(27)

.= bLsd+minRi∈D Lrid , (28)

where (27) follows from the same steps used in going
from (17) to (22), but with only one relay in the decod-
ing set. From (28), we see that within the decoding set,
random relaying offers no spatial diversity but only fre-
quency diversity, where the diversity order equals the
shortest channel length. Substituting (13) and (28) into
(12), the outage of the random relay selection is

Pr[Irandom < R] =
∑
D

Pr[Irandom < R|D] Pr[D]

.=
∑
D

bLsd+minRi∈DLrid+
∑

Ri /∈D Lsri

.= ρ
(2r−1)(Lsd+minD{(minRi∈DLrid)+(

∑
Ri /∈D Lsri )})

(29)

.= ρ(2r−1)(Lsd+min{(mini∈1,...,KLrid),(
∑K

i=1 Lsri )}), (30)

where the last line follows from the fact that
minRi∈DLrid ≥ mini∈1,...,KLrid for any decoding set D. A
detailed explanation for the last step in the above deri-
vation follows. Denote

Z(D) � min
Ri∈D

Lrid +
∑
Ri /∈D

Lsri .

Let Dn be a set with n decoding relays so that
|Dn| = n. Then, Z(DK) = mini∈1,...,KLrid when all the
relays are in the decoding set and Z(D0) =

∑
i∈1,...,K Lsri

when no relay is in the decoding set. For 1 ≤ n <K,

Z(Dn) = min
Ri∈Dn

Lrid +
∑
Ri /∈Dn

Lsri

≥ min
Ri∈DK

Lrid +
∑
Ri /∈Dn

Lsri

≥ min
Ri∈DK

Lrid = Z(DK).
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Thus, the minimum of Z(D) over all possible decod-
ing sets happens either when |D| = K or |D| = 0. We can
write

min
D

Z(D) = min(Z(DK),Z(D0)) = min

⎛
⎝ min

i∈1,...,K
Lrid,

∑
i∈1,...,K

Lsri

⎞
⎠ .

Comparing (29) with (23), we find that the DMT
offered by the random selection method is dominated
by the best relay selection method. The random selec-
tion method cannot always fully exploit the spatial
diversity due to the presence of the min in (29) which
results in a diversity bottleneck, though we will consider
some cases in Section 3.4 where random selection can
exploit full spatial diversity.

3.3 All-decoding-relay DMT
Next, we analyze the outage of a scheme where all relays
in the decoding set participate. Since all decoding relays
participate in the forwarding, no overhead, no feedback,
and no CSI is needed to perform selection. We assume
perfect symbol synchronization now and will comment
on this later.
As the decoding relays participate in the second phase

of transmission and employ repetition coding, the effec-
tive channel from the relays to the destination becomes

hrd =
∑
Ri∈D

hrid.

For a fair comparison, we assume each relay transmits
at the power of 2P/ |D| where 2 is due to half-duplex
relaying. We can write the conditional mutual informa-
tion between the source and the destination through the
decoding set as

Iall =
1
2
log

(
1 + 2ρ

( ||hrd||2
|D| + ||hsd||2

))
. (31)

We denote ξmax = max
{
maxRi∈D ξrid,max, ξsd,max

}
, ξmin = min

{
minRi∈D ξrid,max, ξsd,max

},
and we can bound Iall as

1
2
log

(
1 + 2ρξ2min

(
‖δrd‖2
|D| + ‖δsd‖2

))
≤ Iall ≤ 1

2
log

(
1 + 2ρξ2min

(
‖δrd‖2
|D| + ‖δsd‖2

))
, (32)

where δrd =
∑

Ri∈D
δrid with length Lrd � maxRi∈D Lrid.

Denote the covariance matrix of δrd as C ∈ RLrd×Lrd. We
note that C is a diagonal matrix with the largest element
|D| and the smallest element greater than or equal to 1.
Define

δrd � C−1/2δrd.

Each element of δrd is then Gaussian distributed with

variance 1,
∥∥δ̄rd∥∥2 is chi-square distributed with Lrd

degrees of freedom, and

∥∥δ̄rd∥∥2 ≤ ‖δrd‖2 ≤ |D| ∥∥δ̄rd∥∥2. (33)

Let Y ≜ ||δsd||
2 and fY(y) be the pdf of Y which is chi-

square distributed with Lsd degrees of freedom. We
develop the conditional outage probability for the all-
decoding-relay method as

Pr [Iall < R |D ] = Pr

[
‖hrd‖2 + Y < b

|D|

]

.= Pr

[
‖δrd‖2
|D| + Y < b

] (34)

.= Pr
[∥∥δ̄rd∥∥2 + Y < b

]
(35)

.= bLsd+Lrd , (36)

where (34) follows by applying (32), (35) follows by

applying (33), and (36) follows as
∥∥δ̄rd∥∥2 + Y is chi-

square distributed with Lsd + Lrd degrees of freedom.
From (36), we see that within the decoding set, dividing
power among transmit antennas without phase align-
ment does not offer spatial diversity and only offers fre-
quency diversity where the diversity order equals the
longest delay length.
Substituting (13) and (36) into (12), the outage prob-

ability of the all-decoding-relay method is

Pr [Iall < R] =
∑
D

Pr [Iall < R |D ]Pr[D]

.=
∑
D

bLsd+maxRi∈D Lrid+
∑

Ri /∈D Lsri

.= ρ
(2r−1)

(
Lsd+minD

{
(maxRi∈D Lrid)+

(∑
Ri /∈D Lsri

)})
.

(37)

While we assume perfect symbol synchronization, we
note that imperfect symbol synchronization has the
effect of artificially increasing the channel lengths by
adding zeros (or delays) to the front of the impulse
responses. The use of intentional asynchronization to
induce delay diversity was studied in [27] for the case of
flat fading channels. A similar approach could be used
in ISI channels; by artificially adding zeros to the front
of each component relay-to-destination channel, the
effective sum channel from all relays to the destination

can be made to have Lrd =
∑

Ri∈D
Lrid independent

paths so that the all-decoding-relay scheme can attain
performance equal to the best relay selection if the sym-
bol-level asynchronization is chosen appropriately.

3.4 Summary
Collecting the expressions in (24), (29), and (37), we
arrive at the DMT expressions for each scheme shown
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in Table 1. By comparing the original outage expres-
sions, it is apparent that

dbest(r) ≥ dall(r) ≥ drandom(r).

Comparing each of these expressions with the DMT
upper bound in (9), we see that the best relay selection
method is the only one which can always achieve the
DMT bound. Table 1 also includes the special case
when all source-to-relay channels have identical length
Lsr, and all relay-to-destination channels have identical
length Lrd. We note that our theoretical diversity expres-
sions agree with results reported in elsewhere in the lit-
erature. For example, in the special case of flat-fading,
our results coincide with those of [10,11] which showed
that the best relay selection protocol can achieve diver-
sity equal to K + 1. Another example is that in [15],
with a single relay K = 1, a system employing STBC can
achieve diversity equal to the expression we found for
all the three relaying schemes. Additionally, the diversity
achieved when using multiple orthogonal relay subchan-
nels in an OFDM system with precoding [20] is identical
to the one achieved here by the best relay selection
scheme.
It is interesting to note that even random relay selec-

tion can achieve the same diversity as best relay selec-
tion in some cases. For example, looking at the last
column of Table 1, we see that all schemes have an
equivalent DMT when Lrd >KLsr. This situation could
arise when there is significant scattering and dispersion
in the relay-to-destination channel (due to a high den-
sity of large buildings, for example) when compared
with the source-to-relay channel (which may have a
lower density of reflecting structures and terrain). Thus,
when the relay-to-destination channel is sufficiently
rich, the lower overhead of random relay selection is
attractive. This is different from the situation in flat fad-
ing channels, since with Lsr = Lrd = 1, best relay selec-
tion is the only scheme which can exploit spatial
diversity.
The outage probability and DMT bounds derived here

are based on the MFB. As the MFB effectively ignores
the intersymbol interference, these results provide an
optimistic bound on the attainable outage probability
and DMT. We now consider a transceiver design for
attaining the bound for best relay selection.

4 Optimal-DMT-achieving transceiver
In the previous section, we proved that best relay selec-
tion can achieve the optimal DMT, the DMT upper
bound derived in Section 2. We now propose a specific
transmission and reception scheme for best relay selec-
tion and we will prove that it can asymptotically achieve
the optimal DMT.

4.1 Transceiver description
In the proposed scheme, the source sends N QAM-sym-
bols, denoted as x, which are drawn from a constellation
of Q = r2r’ points where [28, Equation (2)]

r′ =
r

1 − Mmax−1

N +Mmax−1

(38)

and

Mmax ≥ max
i∈1,...,K

{
Msri ,Mrid,Msd

}
.

After transmission of N symbols, a guard interval of
length Mmax -1 zeros follows. The choice of Q or r’ here is
to make sure the total transmission rate is still R = r log r
with the guard interval. Mmax is essentially an upper
bound on the length of all channels in the system. In prac-
tice, it is unrealistic for the source node to have knowledge
of the lengths of all channels in the system. The system
designer needs only choose the parameter Mmax to be
greater than or equal to the largest channel length
expected in the transmission environment. The insertion
of guard time eliminates the possibility of interblock inter-
ference, but intersymbol interference is still present. Due
to the insertion of guard time between alternating phases
of source/relay transmission, we see from (38) that the sys-
tem incurs a rate penalty that can be made arbitrarily
small by increasing the block length N.
We assume channel state information at the receiver

(CSIR) is perfect, but that no channel state information
at the transmitter (CSIT) is needed. We also assume
perfect frame synchronization though in practice the
system can accommodate modest symbol-level synchro-
nization errors since they can be lumped into the FIR
channel model. Each relay and the destination uses a ZF
equalizer prior to detection to compensate for the inter-
symbol interference.
In the first phase, the received signal at each relay is

yri = Hsri x + wsri , (39)

where the Hsri ∈ C(Mmax+N−1)×N are the Tœplitz chan-
nel convolution matrices corresponding to hsri, i.e.[
Hsri

]
j,k = hsri [j − k]. Since

∥∥hsri∥∥ 
= 0 with probability 1,

and the minimum eigenvalue of HH
sriHsri is greater than

zero due to [28, Lemma IV.1], HH
sriHsri is invertible and

the ZF equalizer coefficients used at the ith relay are

Gri =
(
HH

sriHsri

)−1
HH

sri .

The filtered estimate of x at each relay is

ỹri = Griyri

= x +
(
HH

sriHsri

)−1
HH

sriwsri .
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A given relay is declared to have successfully decoded
the message only when each symbol in the block is
decoded correctly. The best relay selection scheme
described in the previous section is employed, which
selects the relay in the decoding set with the largest sum-
squared relay-to-destination channel. After the completion
of relay selection, in the second phase, the selected relay
forwards the length N decoded message to the destination
and another guard interval of length Mmax - 1 follows the
relayed signal. This process continues and the source
sends another block of N symbols. Let the selected relay
index be m and denote its relay-destination channel coeffi-
cients as hrmd so that

∥∥hrmd∥∥2 � max
Ri∈D

∥∥hrid∥∥2.
Let Hsd ∈ C(Mmax+N−1)×N, Hrmd ∈ C(Mmax+N−1)×N be the

Tœplitz channel convolution matrices corresponding to
hsd and hrmd, respectively. Define

Heff =
[
Hsd

Hrmd

]
, weff =

[
wsd

wrmd

]
.

Then, the received signal to be equalized at the desti-
nation is then given by

y = Heffx + weff. (40)

We note that this model includes the guard intervals
inserted between the two transmission phases as can be
seen by the dimensions of Hsri, Hsd, and Hrmd. We note

HH
eff
Heff = HH

sdHsd +HH
rmdHrmd. (41)

Denote the minimum eigenvalue of HH
rmdHrmd as

λrmd,min, the minimum eigenvalue of HH
sdHsd as lsd,min,

and the minimum eigenvalue of HH
effHeff as leff,min.

From (41) and the fact that these three matrices are
Hermitian, Weyl’s Inequality [29, Theorem 4.3.1] gives

λeff,min ≥ λsd,min + λrmd,min . (42)

Since lsd,min > 0 and λrmd,min > 0 again due to [28,
Lemma IV.1], we have leff,min > 0 and thus HH

effHeff is
invertible. The destination processes the received signal
with a ZF equalizer

G =
(
HH

effHeff
)−1

HH
eff.

The filtered estimate of x at the destination is then

ỹ = Gy

= x +
(
HH

effHeff
)−1

HH
effweff.

The filtered noise z =
(
HH

effHeff
)−1

HH
effweff has total

variance

E
[‖z‖2] = E

[
zHz

]
= tr

[(
HH

effHeff
)−1

]
N0.

4.2 Outage analysis
We first analyze the probability of decoding set of this
scheme. Define the error probability at the ith relay
after ZF equalization as Pe,i and denote the minimum
eigenvalue of HH

sriHsri as λsri ,min. Following the steps in
Theorem III.6 of [28], we have

Pe,i
.= Pr

(∥∥hsri∥∥2 < Nλ̄−1
sri ρ2r′−1

)
≤ Pr

(
ξ2sri ,min

∥∥δsri∥∥2 < Nλ̄−1
sri ρ2r′−1

)
.= ρ−Lsri (1−2r′),

(43)

where ξsri ,min is the smallest singular value of �sri, and

λ̄sri = inf
hsri∈CMsri

λsri ,min

(
H̄

H
sriH̄sri

)
.

Following the steps in Theorem VII.7 of [28], we have

Pe,i ≥ P out,i
.= Pr

(∥∥hsri∥∥2 < ρ2r′−1
)

≥ Pr
(
ξ2sri ,max

∥∥δsri∥∥2 < ρ2r′−1
)

.= ρ−Lsri (1−2r′),

(44)

where ξsri ,max is the largest singular value of �sri. Thus,
we can conclude

Pe,i
.= ρ−Lsri (1−2r′).

As a relay is in the decoding set only when all N sym-
bols are decoded correctly

Pr [Ri ∈ D] =
(
1 − Pe,i

)N.
Thus, the probability of the decoding set is

Pr[D] =
∏
Ri /∈D

(
1 − (

1 − Pe,i
)N) ∏

Ri∈D

(
1 − Pe,i

)N
.= ρ

−(1−2r′)
∑

Ri /∈D Lsri ,

(45)

where asymptotic equality in (45) follows from the bino-
mial theorem. We next analyze the error probability at the
destination conditioned on the decoding set. Denote leff,k
as the kth eigenvalue for HH

effHeff with k Î {0,1,..., N - 1}.
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Assume we estimate each symbol in the block separately
then the effective r for decoding the kth symbol is

ρeff(k) =
P

WE
[|zk|2]

≥ P

WE
[‖zk‖2]

=
ρ

tr
[(
HH

effHeff
)−1

]
=

ρ∑N−1
k=0 λ−1

eff,k

≥ ρ

Nλ−1
eff,min

≥ 1
N

ρ
(
λsd,min + λrmd,min

)
≥ 1

N
ρ
(
λ̄sd,min‖hsd‖2 + λ̄rmd,min

∥∥hrmd∥∥2)
≥ 1

N
ρλ̄

(
‖hsd‖2 +

∥∥hrmd∥∥2) ,
where λ̄ = min

(
λ̄sd, λ̄rmd

)
with

λ̄sd = inf
hsd∈CMsd

λsd,min

(
H̄

H
sdH̄sd

)
,

λrmd = inf
hrmd∈CMrmd

λrmd,min

(
H̄

H
rmdH̄rmd

)
,

and

H̄sd �
Hsd

‖hsd‖ , H̄rmd �
Hrmd∥∥hrmd∥∥ .

Using a proof identical to [28, Lemma IV.1], it can be
shown that λ̄sd > 0 and λ̄rmd > 0, therefore λ̄ > 0.
The error probability at the destination conditioned

on D [28, Lemma VII.6] is

Pe|D
.= Pr

[
ρeff(k) < ρ2r′ |D

]
≤ Pr

[(
‖hsd‖2 +

∥∥hrmd∥∥2) 1
N

ρλ̄ < ρ2r′
]

= Pr
[(

‖hsd‖2 + max
Ri∈D

∥∥hrid∥∥2
)

<
N
λ

ρ2r′−1
]

.= Pr
[(

‖δsd‖2 + max
Ri∈D

∥∥δrid∥∥2
)

<
N

λ
ρ2r′−1

]
(46)

.= ρ
(2r′−1)

(
Lsd+

∑
Ri∈D Lrid

)
, (47)

where (46) follows by applying (16), and the last step
comes from steps identical to (17)-(22). Combining (45)
and (47) by the total probability theorem, we conclude
that the proposed transmission scheme and equalization

method have the following upper bound on the error
probability:

Pe
.=
∑
D

Pe|D Pr[D]

≤̇
∑
D

ρ
(2r′−1)

(
Lsd+

∑
Ri∈D Lrid+

∑
Ri /∈D Lsri

)

.= ρ
(2r′−1)

(
Lsd+

∑K
i=1 min(Lrid,Lsri)

)
.

Combining [28, Lemma III.1] and the result in (24),
we also have

Pe≥̇ρ
(2r′−1)

(
Lsd+

∑K
i=1 min(Lrid,Lsri)

)
.

Thus, we can conclude that

Pe
.= ρ

(2r′−1)
(
Lsd+

∑K
i=1 min(Lrid,Lsri)

)
.

which shows that the proposed scheme can asymptoti-
cally achieve the DMT for best relay selection.
We also point out that since minimum mean squared-

error (MMSE) and decision feedback equalizer (DFE)
performance dominates ZF equalizers [30], MMSE
equalizers and DFEs should attain the same DMT curve.
In practice, a system designer may prefer a MMSE or
DFE equalizer for their improved BER performance.

5 Numerical results
This section presents numerical examples of the perfor-
mance of the proposed relay selection methods devel-
oped in Sections 3 and 4. In evaluating performance
over finite SNRs, the diversity measured as the negative
slope of each outage curve often does not coincide
exactly with the predicted maximal diversity [31,32]; the
predicted diversity assumes that the SNR grows arbitra-
rily large to permit the analysis to be mathematically
tractable. We now compare the performance of the
three selection schemes in a variety of scenarios at finite
SNR, and show that the schemes follow the general
trends predicted by the DMT results.
To illustrate the attainable frequency and spatial diver-

sity, we consider 10 scenarios shown in Table 2 where
the maximum diversity order is computed from (24),
(30), and (37). The first five scenarios–which use a sin-
gle relay and therefore are unaffected by the choice of
selection strategy–are included to illustrate the relative
improvement in spatial diversity by adding additional
relays.
The outage probability for the best relay selection,

random relay selection, and all-decoding-relay methods
are plotted in Figures 3, 4, and 5, respectively, where the
rate R = 2 bits/s/Hz and each Γjk is a square identity
matrix, i.e. each fading tap of hjk is i.i.d. Rayleigh fading
with variance 1. For the best relay selection performance
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shown in Figure 3, the outage curves for Scenarios 1
through 3 have roughly the same slope which agrees
with the trend predicted by Table 2. Scenario 4 has a
higher diversity order since the minimum length of the
source-to-relay and relay-to-destination channels
increases, and Scenario 5 has an increased diversity
order due to the increased length of the source-to-desti-
nation channel. Similar behavior is observed for Scenar-
ios 6 through 10, which have correspondingly larger
diversity orders than Scenarios 1 through 5 because of
the spatial diversity offered by the additional relay. We
also notice that increasing the frequency diversity in the
source-to-relay channel results in a more pronounced
coding gain than increasing the frequency diversity in
the relay-to-destination channel, as Scenario 3 has a lar-
ger coding gain than Scenario 2 in Figure 3. As shown
by Figures 4 and 5, the random relay selection and all-
decoding-relay methods have nearly the same outage

performance as each other for the considered scenarios;
this is another trend predicted by the maximum diver-
sity order in Table 2. Furthermore, both of these
schemes have outage performance dominated by the
best relay selection method as expected.
We further verify the performance of the transceiver

design with different relaying strategies. In the simula-
tion, we use a block length N = 32 and Gray-mapped
QPSK modulation. In Figures 6 and 7, we consider a
frequency selective channel with uniform power delay
profile, i.e. each tap of each channel is i.i.d. fading with
variance 1/L where L is the channel length. On both fig-
ures, we have also included the performance of the opti-
mal maximum likelihood sequence estimator (MLSE)
equalizer for comparison. As we can see from Figure 6,
with only two relays present in the system, the perfor-
mance advantage of best relay selection over the other
two relaying strategies is negligible. This suggests that in
systems with a relatively small number of relays, selec-
tion strategies that do not require feedback or CSI (such
as the random relay selection and all-decoding-relay
methods) may be preferred for their simplicity.
When as many as K = 10 relays are available, as

shown in Figure 7, the diversity order of the best relay
selection may be significantly larger than the other two
methods. In examining the power gain of best relay
selection over the other two relaying strategies, we note
an interesting trend. When the fading channels contain
L = 2 taps, the power gain of the best relay selection is
about 6 dB at a bit error rate of 10-6. When L increases
to 4, however, the power gain of best relay selection is
only about 2dB. Thus, when there is already sufficient

Table 2 Simulation scenarios

Scenario K Lsd Lsr Lrd dmax,best dmax,random dmax,all

1 1 2 2 2 4 4 4

2 1 2 2 3 4 4 4

3 1 2 3 2 4 4 4

4 1 2 4 4 6 6 6

5 1 4 2 2 6 6 6

6 2 2 2,2 2,2 6 4 4

7 2 2 2,2 3,3 6 5 5

8 2 2 3,3 2,2 6 4 4

9 2 2 4,4 4,4 10 6 6

10 2 4 2,2 2,2 8 6 6
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Figure 3 Simulated outage probability for the best relay selection method, R = 2 bits/s/Hz.
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frequency diversity in the system, the improvement in
using sophisticated selection schemes which better
exploit the spatial diversity is not as pronounced. Again,
a system designer may favor one of the simpler selection
schemes if it is known that the transmission environ-
ment has sufficient frequency diversity.
We next compare the BER performance of different

relaying strategies under i.i.d. and correlated fading. The
i.i.d. fading channel used for comparison has uniform
power delay profile, and its performance is shown in
Figures 6 and 7 with L = 4, and is referred to as “no

correlation” in Figure 8. To introduce the correlation in
the channel taps, we model each channel in the system
as a GSM typical rural channel [33] which has L = 4
underlying independent fading coefficients where each
of the four path arrivals have power delay profile given
by [0, -2, -10, -20]dB and corresponding path arrival
times τT = [0,0.2,0.4,0.6] μs. We employ a square root
raised cosine pulse shape p(t) at the transmitting end
with rolloff factor 0.4 which is truncated to a length of
8 symbol periods. The symbol period is taken to be T =
0.278 μs which, with QPSK transmission, corresponds to
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Figure 4 Simulated outage probability for random relay selection method, R = 2bits/s/Hz.

4 6 8 10 12 14 16 18 20
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

SNR (dB/bit)

O
ut

ag
e

 

 
Scenario 1, All
Scenario 2, All
Scenario 3, All
Scenario 4, All
Scenario 5, All
Scenario 6, All
Scenario 7, All
Scenario 8, All
Scenario 9, All
Scenario 10, All

dmax = 5

dmax = 6

dmax = 4

Figure 5 Simulated outage probability for all-decoding-relay method, R = 2bits/s/Hz.

Deng and Klein EURASIP Journal on Wireless Communications
and Networking 2011, 2011:171
http://jwcn.eurasipjournals.com/content/2011/1/171

Page 13 of 16



a data rate of 7.2 Mbps. Together, these parameters
determine the tap autocovariance Γjk for each discrete
baseband channel since each sampled channel h arises
as

h[n] = h(t)

∣∣∣∣∣t=nT =
L−1∑
�=0

α�p(t − τ�)p(−t)

∣∣∣∣∣
t=nT

,

where the underlying independent fading coefficients
a Î ℂ4 are complex Gaussian with variance given by
the GSM typical rural power delay profile. For fair com-
parison, we normalize the total average power in the
underlying independent fading coefficients to 1. The
resulting sampled channel with four independent path
arrivals gives rise to a correlated discrete channel with

19 taps. As shown in Figure 8, the simulated perfor-
mance demonstrates that at finite SNR the receiver is
not able to exploit the diversity offered by all four inde-
pendent paths since the last path which has a power of
-20 dB contributes very little to the received signal, an
effect masked by the high-SNR analysis of the DMT.
Nevertheless, the choice of relay selection method still
has significant impact on system performance when the
number of relays K is relatively large.

6 Conclusion
In this article, we have considered the relay selection
problem for the orthogonal decode-and-forward system
where correlated frequency selective fading is present.
We analyzed the outage performance and derived the
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Figure 6 Simulated BER for i.i.d. fading channels, K = 2.
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DMT for three relay methods: best relay selection, ran-
dom relay selection, and the all-decoding-relay method.
Our analysis shows that best relay selection performance
dominates the other two schemes with respect to out-
age. We further proposed a transceiver to realize the
DMT offered by best relay selection with minimal com-
plexity; the proposed scheme uses uncoded QAM trans-
mission with guard times and uses ZF equalization at
each node. The analysis and simulation results show
that the proposed scheme asymptotically achieves the
DMT.
While the diversity offered by relay systems in flat fad-

ing channels is fairly well understood, the deployment of
relay systems in ISI channels requires consideration of a
variety of new issues in order to best exploit the avail-
able diversity. For example, we presented cases where
random relay selection and the all-decoding-relay
method can achieve the same diversity as best relay
selection, which runs counter to the situation in flat fad-
ing channels where best relay selection is always super-
ior. We also found that only when the number of relays
in the system is relatively large, the best relay selection
offers a significant performance advantage over the
other relaying strategies, though this tends to diminish
with increased frequency diversity in the system. As the
overhead of random relay selection is lower than that of
the best relay selection, system designers may favor ran-
dom relaying depending on the application and trans-
mission environment.
The analytical study presented here focuses on the

high-SNR regime and is an important step toward
understanding the diversity offered by relay systems in
frequency selective fading channels. The relaying strate-
gies presented in this article do not require sophisticated

space-time coding, they have relaxed synchronization
requirements, and are spectrally efficient; these advan-
tages make the relay selection methods ready for imple-
mentation in today’s distributed networks. Future study
may consider the use of alternate forwarding protocols
(such as amplify-and-forward or equalize-and-forward)
as well as the overhead tradeoff of the various relay
selection methods.
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