
Akrout et al. Journal of the Brazilian Computer Society 2014, 20:4
http://www.journal-bcs.com/content/20/1/4

RESEARCH Open Access

An automated black box approach for web
vulnerability identification and attack scenario
generation
Rim Akrout1,2*, Eric Alata1,2, Mohamed Kaaniche1,2 and Vincent Nicomette1,2

Abstract

Web applications have become increasingly vulnerable and exposed to malicious attacks that could affect essential
properties of information systems such as confidentiality, integrity, or availability. To cope with these threats, it is
necessary to develop efficient security protection mechanisms and assessment techniques (firewall, intrusion
detection system, Web scanner, etc.). This paper presents a new methodology, based on Web page clustering
techniques, that is aimed at identifying the vulnerabilities of a Web application following a black box analysis of the
target application. Each identified vulnerability is actually exploited to ensure that it does not correspond to a false
positive. The proposed approach can also highlight different potential attack scenarios including the exploitation of
several successive vulnerabilities, taking into account explicitly the dependencies between these vulnerabilities. We
have focused in particular on code injection vulnerabilities, such as SQL injections. The proposed methodology led to
the development of a new Web vulnerability scanner that has been validated experimentally on several examples of
vulnerable applications.

Keywords: Web application; Vulnerabilities; Attacks; Evaluation; Web scanner

1 Background
1.1 Introduction
Web application vulnerabilities have become, in the recent
years, a major threat to computer systems security. This
is illustrated in, e.g., the IBM X-force 2012 mid-year trend
and risk report which shows that Web application vulner-
abilities including SQL injections and Cross-site scripting
occupy the highest positions in computer threats [1]. This
situation can be explained by the increase in complexity
of Web technologies, by the frequent evolution of these
technologies, by the short development cycles of Web
applications during which testing and validation activities
are limited, and also, in some cases, by the lack of security
skills and culture of the developers.
In this paper, we propose a novel methodology that

allows to automatically identify residual vulnerabilities of
a Web application from the analysis of the targeted appli-
cation, following a black box approach. The proposed

*Correspondence: rakrout@laas.fr
1CNRS, LAAS, 7 avenue du Colonel Roche, Toulouse 31400, France
2Univ de Toulouse, INSA, LAAS, Toulouse 31400, France

approach can automatically identify and exploit vulner-
abilities. It is also designed to highlight potential attack
scenarios including the exploitation of several successive
vulnerabilities that are not necessarily independent. The
identification of these scenarios is based on the dynamic
crawling of the application, resulting in the creation of a
navigation graph that describes the different possibilities
for a user to activate the application and associated vulner-
abilities. This graph explicitly represents the dependen-
cies between the vulnerabilities of the site and thereafter
various attack scenarios. To validate our approach, we
developed a new vulnerability scanner that has been val-
idated on different vulnerable applications and compared
experimentally with other existing vulnerability scanners.
This paper extends the results presented in [2] and

[3]. It is structured into seven sections. Section 1.2
discusses related work focusing on the analysis of the
vulnerability detection algorithm used by several well-
known freeware vulnerability scanners and presents some
weaknesses of these algorithms. Section 2.1 presents our
clustering algorithm for detecting Web application vul-
nerabilities. Section 2.2 presents an overview of our

© 2014 Akrout et al.; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction
in any medium, provided the original work is properly cited.

http://creativecommons.org/licenses/by/2.0

Akrout et al. Journal of the Brazilian Computer Society 2014, 20:4 Page 2 of 16
http://www.journal-bcs.com/content/20/1/4

approach for constructing the graph. The details of the
algorithm are outlined in Section 2.3. We present in
Section 3 the experiments performed in order to vali-
date our approach and assess the efficiency of our scan-
ner. Finally, Section 4 concludes this paper and discusses
future work.

1.2 Background and related work
Most frequent attacks on Web servers include SQL injec-
tion attacks (for Web servers connected to an SQL
database) and code injection attacks (Flash, Javascript,
etc., carried out through so-called Cross-site scripting or
XSS attacks). These attacks generally correspond to the
exploitation of the same kind of vulnerability related to the
lack of sanitization of URL parameters or of HTML form
inputs. In the following, we will focus on SQL injection
attacks, without loss of generality.
To check whether SQL injection attacks are possible,

the vulnerability scanners send specially crafted requests
and analyze the responses returned by the server. A server
may respond with a rejection page or with an execution
page. A rejection page is returned by the server as a con-
sequence of an error while processing the request. An
execution page is returned by the server as a consequence
of a successful execution of the request. This page may
correspond to the ‘normal’ scenario, i.e., in the case of a
legitimate use of the Web site, but may also result from a
successful exploitation of an injection attack. These latter
requests are those we consider in this paper. In particu-
lar, our objective is to identify the vulnerabilities that can
be successfully exploited by the attackers. For instance,
the successful exploitation of an SQL injection vulnerabil-
ity in a login form may lead to bypass an authentication,
and the successful exploitation of a File include vulner-
ability on a search form may lead to display extra data
like /etc/passwd file content. In order to identify the
vulnerabilities of a Web site, the scanners generally send
specially crafted requests via the identified injection points
allowing them to determine whether the input parameters
submitted to the target system are sanitized or not. An
injection point is a piece of a Web page into which a code
can be injected: a parameter in the URL or a field of a form,
etc. Overall, the identification of potential vulnerabilities
is generally based on the characterization of responses of a
Web server to crafted requests sent via the injection points
and the ability to distinguish rejection pages and execution
pages.
The issue is thus the analysis of the responses to

determine if they actually correspond to rejection or
execution pages. Two main approaches can be identi-
fied based on the analysis of related work on this topic.
These approaches are discussed in the next section. In
the following, we denote as false positive the fact that
a vulnerability scanner detects a vulnerability in a Web

page while this vulnerability does not exist. A false neg-
ative occurs when the vulnerability scanner does not
detect a vulnerability in a Web page while it actually
exists.
Two main approaches exist to detect the presence of a

vulnerability in a Web application. The first one relies on
an error pattern matching algorithm and is presented in
Section 1.2.1. The second one relies on the analysis of sim-
ilarities between the pages returned by the server and is
presented in Section 1.2.2. Lastly, Section 1.2.3 proposes a
discussion regarding the limits of these approaches.

1.2.1 Error patternmatching approach
To identify SQL injections, the error pattern matching
approach consists in sending specially crafted requests
to the application and looking for specific patterns in
the responses, e.g., database error messages. The basic
idea is that the presence of an SQL error message in
an HTML response page means that the corresponding
request has not been sanitized by the application. There-
fore, the fact that this request has been sent unchanged
to the SQL server reveals the presence of a vulnerabil-
ity. Scanners such as W3af (http://w3af.sourceforge.net)
(sqli module), Wapiti (http://wapiti.sourceforge.net),
and Secubat [4] adopt such approach. As an exam-
ple, to detect injection vulnerabilities in authentication
forms, the sqli module of W3af sends three requests
based on the SQL injection: d’z"0 (or d%2Cz%220
encoded in ASCII). The three corresponding responses
are then analyzed. If they include SQL error messages
(e.g., Mysql_ and supplied argument is not a
valid Mysql), W3af informs the user that the applica-
tion is vulnerable.
The list of keywords adopted by Secubat for the error

pattern matching approach is presented in [4]. This list,
derived by analyzing response pages of vulnerable Web
sites, is aimed at covering a wide range of error responses
and a variety of database servers. A confidence factor that
measures the level of confidence that the attacked Web
form is vulnerable is also assigned to each keyword.

1.2.2 Similarity approach
This approach relies on three assumptions: (1) execution
and rejection pages are different, (2) it is easy to build
requests that generate rejection pages (by generating ran-
dom or syntactically invalid requests for instance), and (3)
it is difficult to build requests including injection attacks
that actually generate execution pages (i.e., requests that
successfully exploit a vulnerability). The principle of the
approach consists in sending different crafted requests to
the Web application and comparing the similarity of the
corresponding responses using a textual distance, in order
to identify rejection pages among the response pages (i.e.,
pages that highlight non-sanitized inputs).

http://w3af.sourceforge.net
http://wapiti.sourceforge.net

Akrout et al. Journal of the Brazilian Computer Society 2014, 20:4 Page 3 of 16
http://www.journal-bcs.com/content/20/1/4

Let us consider as an example the approach adopted
by Skipfish (http://code.google.com/p/skipfish) for
detecting SQL injection vulnerabilities. Three requests
are sent to the Web application (A- ’", B- \’\", and
C- \\’\\"). The responses are compared two by two.
According to Skipfish, a vulnerability is present if both
responses associated to B and C are not similar to the
response associated to A. The similarity test uses a dis-
tance based on the frequency of the words in the response
pages.
The algorithm presented in [5] is also based on the

similarity approach. It differs from other implementa-
tions in the additional use of the error pattern matching
approach at a first step to guide the classification. The
similarity approach is used to address the uncertainty
that arises about the presence or absence of a vulner-
ability when an injection does not generate an error
message.

1.2.3 Discussion and contributions
The assumption used by the error pattern matching
approach is debatable. Indeed, error messages that are
included in HTML response pages do not necessarily
come from the database server itself. A database related
error message may also has been generated by the applica-
tion. Moreover, even if the message is actually generated
by the database server, this is not sufficient to conclude
when receiving this message, that an SQL injection is
possible. Indeed, this message means that, for this par-
ticular request, the inputs have not been sanitized. How-
ever, it does not mean neither that the server does not
sanitize all the SQL requests nor that the non-sanitized
input can be chosen in order to successfully exploit any
vulnerability.
Regarding the similarity approach, it is easier to gen-

erate random or syntactically invalid requests to obtain
rejection pages than to send valid injection attacks to
obtain execution pages. Since the main assumption is
based on the observation that the content of a rejec-
tion page is generally different from the content of an
execution page, it is important to ensure a wide cover-
age of the different types of rejection pages that could
be generated by the application. This can be achieved
by generating a large number of requests aimed at
activating different types of error pages. However, the
existing implementations of this approach generate too
few requests. For instance, Skipfish uses only three
requests.
Also, as in any classification problem, the choice of the

distance is very important. The one used in Skipfish
does not take into account the order of the words in a text.
However, this order generally defines the semantics of the
page. Thus, it is important to take it into account to assess
the similarity, as performed in [5] with a text similarity

distance. As an example, the two following pages use the
same words in a different order, but they have different
semantics:

- You are authenticated, you have not
entered a wrong login.
- You are not authenticated, you have
entered a wrong login.

The algorithm presented in Section 2.1 builds on some
of the concepts of the similarity approach and addresses
the issues raised in the discussion above. In particular, it
allows: (1) the generation of a large number of requests
that can be tuned by the user, to activate different rejection
pages returned by the application, (2) the automatic gen-
eration of various types of specially crafted requests using
a grammar, and (3) the automatic clustering of the cor-
responding HTML pages returned by the Web server to
distinguish between rejection pages and execution pages
and automatically identify successful injections. This algo-
rithm is also designed to identify and successfully exploit
various types of vulnerabilities. Besides SQL injections,
the proposed approach can address XPATH, OS Com-
manding, and File include vulnerabilities. While our work
shares some of the ideas and objectives presented in [5],
we follow different approaches. For example, the cluster-
ing approach which is the core of our algorithm is not used
in [5]. They use a different technique combining error
pattern matching and the similarity analysis of applica-
tion response pages. Also, their approach is firstly based
on error pattern matching and hence shares the same
concerns raised above.

2 Methods
2.1 Html page clustering for Web vulnerability detection
The approach presented in this section seeks to achieve
the automated detection of different types of Web vulner-
abilities, corresponding to SQL injection attacks, OsCom-
manding, File Include, and XPatha. It is based on the
automatic classification of responses returned by the Web
server using data clustering techniques and identifies
queries that are able to successfully exploit vulnerabilities.

2.1.1 Principles
In the following, let us take the example of an SQL
injection in an authentication form. Our goal is to iden-
tify, among several SQL injections, those which allow an
attacker to bypass the authentication. The main challenge
is the automation of this process. In the following, we
present a method which intends to reduce false negatives
and false positives in comparison with existing solutions
presented in the previous section. Our approach relies on
the following assumptions: (a) the content of an execu-
tion page is significantly different from the content of a

http://code.google.com/p/skipfish

Akrout et al. Journal of the Brazilian Computer Society 2014, 20:4 Page 4 of 16
http://www.journal-bcs.com/content/20/1/4

rejection page, (b) two rejection pages may be different
from each other, and (c) two execution pages may also be
different from each other even for the same class of inputs.
In the login page that we consider, responses to valid

requests include welcome messages and invalid input
error messages. Responses to invalid requests include
PHP or SQL error messages. The essential point is the
existence of differences between execution pages and
rejection pages, and, more precisely, between welcome
messages and invalid input error messages, and between
PHP and SQL error messages. Our approach focuses
on the analysis of these differences. The objective is to
identify, among several responses, those which corre-
spond to execution pages generated through syntactically
valid requests. In other words, we learn the behavior of
the application based on the clustering of Web server
response pages that are similar enough.
The entry point of our algorithm is a set of initial

requests that have a common property: it is easy to clas-
sify the associated responses (either as execution page or
rejection page). Obviously, it is easier to generate requests
which lead to rejection pages or execution pages corre-
sponding to invalid input error messages than requests
which lead to execution pages associated to welcomemes-
sages. To generate the former, one can, for example, use
random usernames and passwords to fill the authentica-
tion form. One can also easily generate requests which
lead to rejection pages associated to PHP or SQL error
messages.
In our proposal, we distinguish three sets of requests:

Rr is the set of requests generated from words randomly
chosen from the list [a-zA-Z0-9]+. They are very likely
to generate rejection pages or execution pages
associated to invalid input error messages. For
example:

http://address/directory/page.php?
login=ABCDEF&pass=ABCDEF

Rii is the set of syntactically incorrect SQL injection
requests that are inappropriate for the given injection
point. They are constructed to produce a syntax error
in the SQL query sent to the SQL server by the HTTP
server. Usually, these requests are composed of an
odd number of quotes. They are also very likely to
generate rejection pages. For example:

http://address/directory/page.php?
login=’’’&pass=’’’

Rvi is the set of syntactically correct SQL injection
requests that are constructed to generate execution
pages in the presence of vulnerabilities, but they

might as well generate rejection pages in the absence
of vulnerabilities. For example:

http://address/directory/page.php?
login=test&pass=’ or ’1’=’1

The main issue is to determine whether the response
is a rejection page or an execution page. To do so,
these responses are compared to those associated to
sets Rr and Rii.

Let us note Sr, Sii, and Svi the responses associated to Rr,
Rii, and Rvi, respectively. The principle of our algorithm is
then as follows: Rvi requests whose responses are not sim-
ilar to any of the responses from Sii and Sr are considered
valid SQL injections. To assess the similarity between the
pages returned by different requests, we use a classifica-
tion technique based on the distance presented in the next
subsection.

2.1.2 Distance
To analyze the similarity between two HTML pages, we
need a distance for assessing the difference between two
strings. As discussed in Section 1.2.3, the order of words
in a text could be relevant. In fact, the same words in a
different order can completely change the semantics of
the response. Thus, to compute the distance between two
pages, we use a normalized version of the Levenshtein dis-
tance. Let a and b be two responses of length n and m.
We also denote ai and bj the ith character in a and the
jth character in b. The distance for clustering is defined in
Equation 1.

diff(ai, bj) =

⎧⎪⎪⎨
⎪⎪⎩

n − i + m − j i = n or j = m
diff(ai+1, bj+1) ai = bj, i < n, j < m
1 + min(diff(ai+1, bj),diff(ai, bj+1))

ai �= bj, i < n, j < m
(1)

d(a, b) = diff(a1, b1)
n + m

.

Generally, clustering techniques are based on two differ-
ent strategies. The first is driven by the number of clusters,
if it is known a priori. It starts by considering a single
cluster containing all requests and divide it progressively,
relying on distances, until the desired number of clus-
ters. The second technique is used in case the number
of clusters is not known a priori. It consists in grouping
in a same cluster the requests whose pairwise distance is
below a threshold. In our approach, the number of clusters
is not determined a priori, and so we use the second strat-
egy, called hierarchical clustering [11], which requires the
choice of a threshold.

Akrout et al. Journal of the Brazilian Computer Society 2014, 20:4 Page 5 of 16
http://www.journal-bcs.com/content/20/1/4

The threshold for grouping queries can vary from an
injection point to another. Indeed, it depends on the
size of the responses and the amount of data that dif-
fer between two responses for the same type of requests.
Also, this threshold must be adapted to each Web appli-
cation. In our approach, the threshold is defined empir-
ically by the shortest distance between: i) the maximum
distance between the responses belonging to Sr and ii)
the maximum distance between the responses belonging
to Sii.

2.1.3 Requests generator
One important aspect of the proposed algorithm is its
ability to identify the presence of a vulnerability in an
injection point based on multiple responses generated
from this injection point. To improve the accuracy of the
results, we need to generate a large number of responses,
allowing to achieve a high coverage of the response
domain. Note that other approaches are often based on
a small number of responses (for example, three for
Skipfish).
One possible way to generate different types of

responses (and associated queries) is to record in a static
file, queries obtained from security experts similar to, e.g.,
to SQL sheets [12]). A more flexible approach would be
to define a grammar to automate this process. Such an
approach can be compared to some extent to fuzzing tech-
niques [13]. In the following, we outline the grammar that
we have defined to automate the generation of Rr, Rii, and
Rvi requests.
On theWeb server-side, most of the time, an SQL query

is created by concatenating SQL terms and parameters
sent by the client. For example, the following PHP script
deals with the authentication of a user given the username
and password sent by the client:

$query = "SELECT id FROM users WHERE
name=’$name’ AND pass=’$pass’";

Given a semantically valid (user name, password) pair,
the created SQL query is considered syntactically valid.
Also, the created query associated to a (user name, pass-
word) pair generated based on a dictionary attack is
considered syntactically valid, even if the authentication
failed. From this observation, an SQL injection is defined
as a string that leads to a syntactically valid SQL query
while changing the semantics of this generated SQL query.
In many situations, an SQL injection is relevant if it leads
to a tautology in the WHERE clause of the forged SQL
query. From the previous example, an example of such an
SQL injection is

name="’ OR 1=1 OR string=’"

Therefore, the grammar of SQL injections is just a part
of the grammar of SQL queries. The advantage of a gram-
mar is that it enables to easily generate as many SQL
injections as needed. We can apply the same reasoning to
the set of randomly generated words (Rr), and to the set of
SQL injections that are inappropriate for the given injec-
tion point (Rii). A tiny grammar for the set Rvi (i.e., the
set of SQL injection requests that are constructed in order
to generate execution pages) can be expressed using BNFb
notation as follows:

INJECTION := WORD’ POR TAUTAG [’ POR TAUTAG]

| WORD" POR TAUTAG [" POR TAUTAG]

POR := or /) POR (

TAUTAG := hex(’A’)=’41

| ’1’=’1

| ’[f-m]’ between ’[a-e]’ and ’[n-z]’

WORD := [0-9a-zA-A]*

...

This grammar generates different variations of SQL
injection attacks. It consists in inserting a tautology inside
an expression evaluated by a WHERE clause, in such a
way that this expression becomes a tautology itself. To
inject the tautology, the initial expression is splitted into
several pieces. The TAUTAG rules are examples of such
tautologies and the INJECTION rules express how the
tautology is included in an initial expression, (1) by clos-
ing the expression with delimiter characters (’, ", or)),
(2) by inserting the tautology (through a disjunction), and
(3) by opening a new expression using the same delimiter
characters.

2.1.4 Extension to other vulnerability classes
The approach proposed for SQL injection vulnerability
detection can be generalized. In fact, many attacks have
the same behavior: the client sends a string which changes
the semantics of the forged query. Depending on the con-
text, the forged query is sent to a specific component
in Web server-side such as the XPath engine, operating
system, etc. The names of the corresponding injection
attacks are derived from the name of this component lead-
ing to XPATH injection, Os Commanding, etc. Thus, the
clustering algorithm that we have illustrated using the
example of SQL injection in the previous section can be
also used for these types of vulnerabilities.
XPATH vulnerabilities consist, like SQL vulnerabilities,

in submitting not sanitized input in an HTML form or
URL parameters. The difference is that the vulnerability
can be exploited to execute XPath queries and not SQL
queries.
In the case of OS Commanding vulnerability, the string

sent by the client is used to create a command executed
by the operating system. This command is executed under

Akrout et al. Journal of the Brazilian Computer Society 2014, 20:4 Page 6 of 16
http://www.journal-bcs.com/content/20/1/4

the identity of the process corresponding to the Web
server. Exploitation of this vulnerability allows an attacker
to execute arbitrary commands on the system and can also
allow read and/or write access to certain files.
As explained previously, the algorithm uses three sets

of queries: Ra (random request), Rii (syntactically invalid
injections), and Rvi (syntactically valid injections). The
adaptation of the algorithm to other types of vulnerabili-
ties requires the definition of these three sets for each type
of vulnerability. Once these sets are established, the algo-
rithm proceeds in the same way: send those requests, and
store the corresponding results obtained by the clustering
distance presented in Section 2.1.2. Further details can be
found in [9].

2.2 Attack scenarios with multiple vulnerabilities
The previous section described a methodology allow-
ing the detection of a single vulnerability by automatic
HTML page clustering. In this section, we present a global
approach that aims at exhibiting attack scenarios, result-
ing from the exploitation of several vulnerabilities, some
of which may be causally dependent on each other.
The objective of this approach is to establish these

scenarios from the automatic construction of the graph
representing all possible navigations on a site taking into
account its vulnerabilities. The approach is composed of
two steps: (1) a first step aimed at identifying the differ-
ent possibilities offered to a client to navigate through the
web site; and (2) a second step aimed at the identification
and exploitation of vulnerabilities in the web pages and
injection points identified at step 1, using the methodol-
ogy presented in Section 2.1. The iteration of steps 1 and
2 allows the elaboration of attack scenarios including the
exploitation of multiple vulnerabilities.
We adopt a black box approach since no details of the

source code implementation of the Web site is required.
The public address of the Web site is used as a starting
point for dynamic discovery of the site and its vulnerabil-
ities. We begin this section by introducing some defini-
tions that are useful for the presentation of our approach.
Thereafter, we describe the principles of our approach.

2.2.1 Definitions
Our approach aims at automatically building a graph that
represents the set of all possible navigations on aWeb site,
including those that result from exploitations of the Web
site vulnerabilities. Let us call a navigation a sequence
of requests (a request consisting in the activation of an
HTML link). A sequence of requests actually sent by a
client is called a trace. The set of all the possible navi-
gations by a client during a visit to the Web site can be
represented by an automata called a navigation graph.
A navigation state of a client (i.e., a browser) is com-

posed of (1) the HTML page currently displayed by the

browser and (2) the current values of the cookiesc in the
browser. A request sent by a browser provokes a change of
the current navigation state.
Each node of the navigation graph corresponds to a nav-

igation state. An edge between two navigation states exists
if a request whose execution leads to the transition from
an initial state to the another one can be sent by the client.
An edge may correspond to a ‘normal’ request or to a
request that exploits a vulnerability of theWeb site. A vul-
nerability graph is a particular case of a navigation graph
that includes edges corresponding to the exploitation of
vulnerabilities.
It is important to note that a navigation graph is differ-

ent from a traditional graph of HTML pages describing
the structure of a Web site. Each node of an HTML page
graph generally corresponds to an HTML page of the
site and an edge between two nodes identifies a link that
enables to access the second page from the first one. The
difference is mainly due to the fact that a navigation state
does not only depend on the currently accessed HTML
page. Indeed, a client can access an HTML page sev-
eral times, while being in different navigation states. For
instance, let us consider an e-business Web site. It is pos-
sible to browse the purchasing page after having ordered
some products or not. When browsing this page, in the
first case, the client is authorized to pay for the products
and in the second case, an error message is returned (it
makes no sense to purchase for an empty bag). However,
in these two situations, the HTML page accessed is the
same. The difference is due to the content of the cookies
that indicate that products have been ordered or not, i.e.,
that reflect the current navigation state.

2.2.2 Principles
The construction of the navigation graph is progressive
and dynamic by identifying different navigations and vul-
nerabilities. In addition, a vulnerability exploitation opens
new possibilities for navigation. The construction is thus
done iteratively. Our approach is composed of a navi-
gation step called crawling to identify the various pos-
sibilities to navigate through the site and the associated
navigation states and a step for identifying and exploiting
vulnerabilities as presented in Section 2.1.
Figure 1 presents a high-level view of the proposed

approach. The crawling starts from the initial URL (which
corresponds mostly to the main page of the Web appli-
cation), after by deleting the cookies at the client side.
This initialization is important for having different inde-
pendent navigations. From this URL, combinatorial site
crawling identifies the traces navigation list. Our approach
is based on an exhaustive search to obtain all possible
navigations of the site. The site is browsed starting with
the initial query and storing the requests sent to the site.
The choice of the request to send is done by analyzing

Akrout et al. Journal of the Brazilian Computer Society 2014, 20:4 Page 7 of 16
http://www.journal-bcs.com/content/20/1/4

Figure 1 Injection point extraction algorithm and vulnerabilities
identification.

the content of the page displayed. If this HTML page con-
tains several links, one of these links is chosen to build
the following query and the other links are stored for later
analysis. As the crawling of the Web site may be infinite,
a threshold indicating the maximum exploration depth of
the site has to be specified. The corresponding value is an
input parameter of the algorithm. If the maximum depth
is reached or if no requests can be sent from the cur-
rent reached state, i.e., the current page no longer contains
HTML links, the requests sequence stored from the initial
state corresponds to a site navigation. Then, the process
restarts from the beginning trying new navigations, based
on the stored choices. At the end, the set of sequences of
requests representing all site navigations is obtained.
On some complex Web sites, the number of requests

sent while crawling may be huge. The potential number
of injection points is even more important. Hence, it is
more appropriate to analyze vulnerabilities on a compact
representation rather than directly on the individual nav-
igations. One way to obtain a compact representation is
to minimize the navigation graph built using the set of
request sequences representing all site navigations. The
first version of the navigation graph does not contain any
edge corresponding to vulnerabilities.
The construction of the minimal graph from the set

of navigations and the associated sequence of requests is
similar to a grammatical inference problem whose objec-
tive is to find a minimal automaton that represents a
language from symbol sequences of this language (so-
called words). In this analogy, the automaton corresponds
to the navigation graph and the symbols correspond to
requests. As a language may include an infinite number
of words, the algorithm must be able to run based on a

subset of the words of a language. Two categories of gram-
matical inference algorithms exist: (1) those that infer the
language only from sequences of words that belong to the
language and (2) those that consider all the sequences of
words. More details can be found in [14]. The RPNI algo-
rithm (Regular PositiveNegative Inference) [15] we chose
belongs to the second category. This widely used algo-
rithm presents a polynomial time-based complexity and is
quite simple to implement.
At the end of the crawling step, we note that the only

possibility to enrich the graph is to identify vulnerabili-
ties that if successfully exploited, could lead to add new
edges and nodes to the navigation graph. Such vulner-
abilities can be identified using the approach detailed
in Section 2.1. This algorithm allows the identification
and effective exploitation of existing vulnerabilities. This
exploitation leads to the discovery of new pages that, in
turn, may contain new injection points that were not avail-
able at the first step. Therefore, new possibilities for the
exploitation of vulnerabilities are available. Subsequently,
the approach is re-executed iteratively by including new
pages, which leads to the construction of several naviga-
tion graphs until satisfying the stopping criterion, which is
specified by the maximum navigation depth. The graphs
including edges corresponding to the exploitation of a
vulnerability are so-called vulnerability graphs.
Figure 2 pictures this iterative approach. Red edges iden-

tify vulnerabilities whose exploitation reveals new states
and edges of the navigation graph that were initially inac-
cessible.
This algorithm has been implemented in a software tool

using the Python language, which greatly facilitates the
handling of HTTP concepts (cookies, settings, etc.). This
tool is interfaced with the statistical analysis software R
(http://www.r-project.org/) which integrates a set of clus-
tering programs that we detailed in Section 2.1. They have
been used to develop our classification algorithm. This
tool is called Wasapy, which stands for Web Application
Security Assessment in Python.

Figure 2 Iterative construction of the navigation graphs.

http://www.r-project.org/

Akrout et al. Journal of the Brazilian Computer Society 2014, 20:4 Page 8 of 16
http://www.journal-bcs.com/content/20/1/4

2.2.3 Example
In order to illustrate our approach, we developed an e-
commerce Web site for buying books, using the PHP
language and a MySql database. This site is a simple proof
of concept but it uses technologies and a structure simi-
lar to ‘real’ Web sites. Figure 3 presents the HTML page
graph describing the structure of the Web site. A page is
represented by an icon. An edge between two pages cor-
responds to the existence of an HTML link in the source
page leading to the second page. Let us note that a partic-
ular reflexive link exists for the display.php page. This
page enables to list the available books and includes a fil-
tering function in a particular form field. A user may then
enter a regular expression in this field and submit it to the
site, in order to update the list of books.
This site includes three vulnerabilities. The pages

including these vulnerabilities are identified by a star on
Figure 3. The first vulnerability is associated to the page
login.php. The exploitation of this vulnerability allows
an attacker to bypass the authentication thanks to an SQL
injection. The second vulnerability is associated to the
page display.php. It allows an attacker to download
the content of the database. The last vulnerability asso-
ciated to the page check.php allows an attacker to pay
the products he ordered without providing any credit card
number. This vulnerability cannot be exploited unless
some products have been added to the virtual shopping
cart.
First, we consider a non-malicious user, who does not

have any account on the site. The only actions that the user
can do are

• access the index.html page
• fill in the form with the authentication information in

the login.php page
• get information from the about.html page.

The list of navigations that can result from these actions
are as follows:

• P1: index.html
• P2: index.html → about.html
• P3: index.html → login.php
• P4: index.html → login.php →

index.html.

All these navigations can be synthesized by the naviga-
tion graph in Figure 4. In this graph, the edges correspond
to links of the site (html page or php, etc.), the nodes cor-
respond to navigation states. The set of edges leaving a
node is the set of links accessible from the corresponding
navigation state. This set is independent from previously
activated links used to achieve this navigation state.
This navigation graph is very simple because the possi-

ble actions without valid (login/password) are limited.
However, if we consider an attacker who is able to exploit
some vulnerabilities, then he is able to perform more
actions than an unregistered benign user. Therefore, the
associated navigation graph is a richer version of the graph
in Figure 4, new edges and new nodes may appear.
This is precisely what the next step serves for. The edges

of the graph 4 are tested to identify vulnerabilitiesd. The
exploitation of a new vulnerability may change the naviga-
tion state. Thus, it can lead to the insertion of a new node
in the graph. At this stage, the only available vulnerability
corresponds to an SQL injection for the authentication,
i.e., in the login.php page. The result is depicted in
Figure 5.
During the second iteration, we identify pages that can

be accessible after the exploitation of the vulnerability
identified during the previous iteration. To reach these
pages, it is necessary to cross the edges index.html and
login.php. The set of traces executed for the second

Figure 3 Structure of the Web site.

Akrout et al. Journal of the Brazilian Computer Society 2014, 20:4 Page 9 of 16
http://www.journal-bcs.com/content/20/1/4

Figure 4 Navigation graph of a non-authenticated user.

iteration includes 65 traces. These traces reach the fol-
lowing files, display.php, add.php, delete.php,
buy.php, or check.php. Then, the vulnerability iden-
tification phase is re-executed once for each new edge
generated during of the second iteration.We iterate in this
way until we get the final graph that covers the entire site
as shown in Figure 6. In the case of this example, the algo-
rithm stops after six iterations considering a maximum
depth of navigation set to 7. This means that there are no
more vulnerabilities discovered during the sixth iteration.
To automate the process, we have implemented algo-

rithms corresponding to the two main steps of our
approach: the crawling and the vulnerabilities discovery.
These algorithms are presented in next section.

2.3 Algorithms
This section presents the algorithms that we have devel-
oped to implement the approach described in the previous
section.
The search_vulns function in Algorithm 1 takes a nav-

igation as input parameter. The latest request of this
navigation is analyzed to identify vulnerabilities, consider-
ing different vulnerability classes (SQL injections, XPATH
injections, OS commanding, etc.). This function returns
a list of navigations and, for each of them, one of the
identified vulnerabilities. Each new navigation includes
one more navigation state that results from the exploita-
tion of one vulnerability. These new navigations are then
analyzed by the crwl function.

Algorithm 1 Vulnerability identification algorithm -
search_vulns
Require: path = navigation
Ensure: vulns = set of navigations
1: vulns ← ∅
2: for class ∈ vuln_classes do
3: vulns ← vulns ∪ wasapy(path, class)
4: end for
5: return vulns

The crwl function is presented in Algorithm 2. This
function is used to continue the crawling of the Web
site starting from a specified navigation provided as an
input parameter. The remain variable holds the set of

Figure 5 Vulnerability graph of first iteration.

navigations that have just been discovered but not been
crawled yet. This algorithm ends when there are no more
navigations to crawl, which means that the remain set
is empty, or when the maximum exploration depth is
reached. Before starting the crawling of any navigation,
the cookies are removed. Then, each request of the nav-
igation is executed step by step, from the first one to the
last one. The content of the response associated to this last
request is analyzed in order to identify new HTML links.
These are provided by the get_response function (line 9 of
the Algorithm 2). The analysis is only made for this last
request because all the requests of the navigation except
the last one have already been analyzed during previous
iterations of the algorithm. Each HTML link identified in
this response is used to build a new navigation of the site
(using the concatenation operator ⊕). This operation is
repeated iteratively until all the HTML links have been
discovered or until the maximum exploration depth is
reached. The set of the new navigations discovered by crwl
is saved in the traces variable.

Algorithm 2 Crawling algorithm - crwl
Require: path, dm
Ensure: new_paths = traces
1: remain ← {path}
2: traces ← ∅
3: d ← |path|
4: while remain �= ∅ ∧ d ≤ dm do
5: next ← ∅
6: for trace ∈ remain do
7: free_cookies()
8: for i ∈ 1..(|trace| − 1) do
9: get_response(tracei)

10: end for
11: links ← get_response(trace|trace|)
12: for link ∈ links do
13: next ← next ∪ {trace ⊕ link}
14: traces ← traces ∪ {trace ⊕ link}
15: end for
16: end for
17: remain ← next
18: d ← d + 1
19: end while
20: return traces

Akrout et al. Journal of the Brazilian Computer Society 2014, 20:4 Page 10 of 16
http://www.journal-bcs.com/content/20/1/4

Figure 6 Final vulnerability graph.

The main function of Algorithm 3 executes the two
previous functions. During the first iteration, the crwl
function discovers the Web site considering only ‘normal’
requests. Then, thanks to the RPNI algorithm, a graph
is built from the navigations obtained. Each state of the
graph is then analyzed in order to identify vulnerabilities
(search_vulns function). At the end of the first iteration,
all the navigations including at most one vulnerability are
identified. The exploitation of these vulnerabilities may
enable to discover new parts of the Web site. Then, the
next iteration begins. The beginning of each iteration i
of the main function corresponds to the exploration of a
sub-part of the site, more precisely the part that has been
discovered thanks to the exploitation of the (i − 1)th vul-
nerability of the navigation. At the end of the crawling
of each iteration i, the vulnerability identification step is
carried out, considering navigations including i − 1 vul-
nerabilities and ending with a normal request. At the end
of the ith iteration, all the navigations including at most
i vulnerabilities are obtained. Finally, the main algorithm
stops when the maximum exploration depth is reached or
when no further vulnerability can be identified.

Algorithm 3 Main algorithm
Require: urls
Ensure: (G = (S,N ,R), vulns)
1: G ← RPNI(urls)
2: ntraces ← urls
3: traces ← urls
4: vulns ← ∅
5: while |ntraces| �= 0 do
6: for nt ∈ ntraces do
7: if |nt| < dm then
8: traces ← traces ∪ crwl(nt, dm)

9: end if
10: end for
11: H ← RPNI(traces)
12: new_nodes ← H .N \ G.N
13: ntraces ← ∅
14: for nn ∈ new_nodes do
15: ptnn ← shortest_path(H .R,H .S, nn)

16: if |ptnn| < dm then
17: nptv ← search_vulns(ptnn)

18: for np ∈ nptv do
19: new_vuln ← np|np|
20: vulns ← vulns ∪ {new_vuln}
21: end for
22: ntraces ← ntraces ∪ nptv
23: end if
24: end for
25: G ← H
26: end while
27: return (G, vulns)

Akrout et al. Journal of the Brazilian Computer Society 2014, 20:4 Page 11 of 16
http://www.journal-bcs.com/content/20/1/4

3 Results and discussion
This section presents the experiments that we have car-
ried out to validate and assess our algorithm. We have
considered several applications using Wasapy and the
three open-source vulnerability scanners discussed in this
paper: W3af 1.1, Skipfish 1.9.6b, and Wapiti
2.2.1. The experiments are run on a Gnu/Linux (2.6
kernel) host running several virtual machines thanks
to the VirtualBox utility. All the virtual machines
run the Apache Web server 1.3.37 or 2.2.8
with PHP 4.0.0 or 5.0.0 and MySQL database
server 5.
This section is organized as follows. Section 3.1 presents

conventions and abbreviations. Section 3.2 presents the
first experiments carried out in order to assess our
approach. Five Web applications including SQL vulnera-
bilities are used. We purposely injected these vulnerabili-
ties to calibrate Wasapy. Section 3.3 presents the second
set of experiments with vulnerable off-the-shelf applica-
tions, without any modification of these applications. This
subsection compares Wasapy to other vulnerability scan-
ners on non-purposely injected vulnerabilities. For some
of these applications, evaluation reports based on com-
mercial scanners are available in [16]. We reported some
of these results in order to compare these scanners with
Wasapy. Section 3.4 presents the summary of all these
experiments.

3.1 Notations
The results of our experiments are presented in different
tables. We use the following conventions and abbrevia-
tions:

✓ The vulnerability has been detected by the
corresponding scanner

✗ The vulnerability has not been detected by the
corresponding scanner

− The injection point is not tested by the scanner
SQLi stands for SQL Injection
XPa stands for XPath Injection
OsC stands for OS Commanding
FIn stands for File Include

CVE reports the CVE reference of the considered
vulnerability if it exists

NR The vulnerability does not have a CVE

A vulnerability is considered as detected if the scan-
ner actually sends an alert for this vulnerability, whatever
the method used to detect it. A vulnerability is consid-
ered as not detected if the scanner actually tested the
corresponding injection point without sending any alert.
A vulnerability is considered as ignored by the scanner
if the corresponding injection point is not tested by the
scanner.

3.2 Experiments with modified applications
The five applications chosen for this first set of experi-
ments are described hereafter:

• phpBB-3: This application (http://www.phpbb.com)
is a forum manager written in PHP and using a
MySQL database. We modified the authentication
form of the application by inserting a vulnerability
(v1) that can be exploited by an SQL injection. This
vulnerability allows an attacker to reach the restricted
administration area of the forum.

• SecurePage: This application (http://www.01php.
com/fiche-scripts-126.html) written in PHP, is
designed to protect the access of a Web site through
authentication. Valid pairs for this authentication are
stored in a MySQL database. A vulnerability (v2)
similar to v1 was purposely injected.

• HardwareStore: We developed this application, in
PHP 5.0. This application allows a user to inventory
computer equipments in a database and to
interrogate this database. The user needs first to be
authenticated. Five SQL vulnerabilities were injected
in this application. v3 allows SQL injection in a
search form and allows an attacker to access the
whole database. v4 allows SQL injection in the
authentication form. v5 allows SQL injection in a
parameter of an HTML request. For this vulnerable
HTML page, we have purposely disabled the error
message reporting, in order to compare the behavior
of W3af and Wapiti in such a situation with the
behavior of Wasapy. Vulnerability v6 is similar to
v4 but it is used in a different context: the error
message reporting is deactivated. Vulnerability v7
can only be exploited after the successful exploitation
of v4. Indeed, this vulnerability is included in a page
that can only be accessed after successful
authentication on the application or after a successful
bypass of the authentication mechanism (through
exploitation of v4). XPATH, OS Commanding, and
File Include vulnerabilities were also injected in this
application. Vulnerability v10, in the authentication
page, allows an attacker to bypass the authentication
through a XPATH injection. v11 is an Os
Commanding vulnerability that can be exploited only
after v4 is successfully exploited. Indeed, this
vulnerability is included in a page that is only
accessible after authentication (or bypass of the
authentication through successful exploitation of
v4). Vulnerability v12 is a File Include vulnerability,
it is inserted in the same page as v11 and can be
exploited in the same conditions as v11.

• Insecure: This application was developed in Ruby
on Rails in the context of the Dali projecte. It is an
e-commerce site, including user sessions through

http://www.phpbb.com
http://www.01php.com/fiche-scripts-126.html
http://www.01php.com/fiche-scripts-126.html

Akrout et al. Journal of the Brazilian Computer Society 2014, 20:4 Page 12 of 16
http://www.journal-bcs.com/content/20/1/4

Table 1 Summary of a list of sets

Vulnerabilities Scanners

Type Application ID Skipfish W3af Wapiti Wasapy

phpBB3 v1 ✗ ✗ ✓ ✓

SecurePages v2 ✗ ✗ ✓ ✓

v3 ✓ ✓ ✓ ✓

v4 ✓ ✓ ✗ ✓

SQLi HardwareStore v5 ✓ ✗ ✗ ✓

v6 ✗ ✗ ✗ ✓

v7 − − − ✓

Insecure v8 ✓ ✓ ✗ ✓

DVWA v9 ✓ ✓ − ✓

XPa HardwareStore v10 ✗ ✗ ✗ ✓

OsC HardwareStore v11 − − − ✓

FIn HardwareStore v12 − − − ✓

Number of detections 5 4 3 12

virtual shopping carts. A vulnerability (v8), which
allows an attacker to inject SQL code, was purposely
included in the authentication form of the application.
This vulnerability, functionally equivalent to v4, is
anyway different because Insecure is implemented
in Ruby and the error reporting messages differ from
the Apache error reporting messages.

• Damn Vulnerable Web Application (DVWA): This
application (http://www.dvwa.co.uk) is written in
PHP and uses MySQL server. A vulnerability v9,
similar to v3, was introduced in the application.

Table 1 shows that the performances of W3af and
Wapiti are similar in average, even if the vulnerabilities
detected are not the same (Wapiti successfully detects
v1 and v2 whereas W3af does not detect them; on the
other hand, W3af detects v4 and v8 whereas Wapiti
does not detect them). This result is consistent with the
fact that both scanners use a patternmatching-based algo-
rithm. The observed variations are related to the genera-
tion of different requests by these tools. Wasapy allows
us to detect all these vulnerabilities. This confirms that

Table 2 Vulnerability detection results for Cyphor
application

Vulnerability

Type CVE Location Skipfish W3af Wapiti Wasapy

NR search.php ✓ ✓ ✓ ✓

SQLi 2005-3236 lostpwd.php ✓ ✓ ✓ ✓

2005-3236 newmsg.php ✓ ✓ ✓ ✓

2005-3575 show.php ✓ ✓ ✓ ✓

False positive 1 0 0 0

the vulnerability detection clustering algorithm presents a
better coverage than the pattern matching algorithm for
these vulnerability classes.
Regarding vulnerabilities v1 and v2, we manu-

ally checked the injections performed by Skipfish
(’", \’\" and \\’\\") and stored the correspond-
ing responses (respectively A, B et C). As discussed in
Section 1.2, Skipfish considers that A and C must be
different so that a vulnerability is present. Unfortunately,
for these two injection points, this is not the case. The
responses correspond to SQL error messages that are very
similar.
Regarding vulnerabilities v5 and v6, they are included

in PHP pages for which we purposely deactivated the
error reporting message featuref in the configuration file
of PHP5. In this particular case, none of the three scan-
ners (Skipfish, W3af, and Wapiti) is able to detect
vulnerabilities.
Regarding v7, Wasapy is the only scanner that is able

to detect it. Moreover, it is the only scanner that is
able to test the corresponding injection point. Indeed,

Table 3 Vulnerability detection results for Seagull
application

Vulnerability

Type CVE Location Skipfish W3af Wapiti Wasapy

SQLi 2010-3212 index.php ✗ ✗ ✗ ✓

2010-3209 container.php ✗ ✗ ✗ ✗

FIn 2010-3209 QuickForm.php ✗ ✗ ✗ ✗

2010-3209 NestedSet.php ✗ ✗ ✗ ✗

2010-3209 Output.php ✗ ✗ ✗ ✗

False positive 0 0 0 0

http://www.dvwa.co.uk

Akrout et al. Journal of the Brazilian Computer Society 2014, 20:4 Page 13 of 16
http://www.journal-bcs.com/content/20/1/4

Table 4 Vulnerability detection results for Fttss application

Vulnerability

Type CVE Location Skipfish W3af Wapiti Wasapy AppScan WebInspect Acunetix

OsC NR index.php ✗ ✓ ✗ ✓ ✗ ✗ ✗

False positive 0 0 0 0 0 0 0

this injection point is included in an HTML page that
can only be accessed after a successful authentication
or after the successful exploitation of vulnerability v4.
As Wasapy is the only scanner able to actually exploit
v4, it can automatically access the page including vul-
nerability v7. For the other scanners, it is necessary to
manually perform the exploitation of v4 so that it is pos-
sible to access the page including v7. Vulnerabilities v11
and v12 were identified only by our tool for the same
reasons: they remain masked until the authentication is
bypassed.
The purpose of these initial tests was the calibration

of Wasapy. The calibration of our tool consists in defin-
ing empirically the number of requests to generate for
each group and injection point. We set this number to 30
for all the applications tested (i.e., 90 requests per injec-
tion point). We have observed that a higher number does
not provide significantly higher accuracy, while a lower
number generates false negatives.
These initial tests also allowed us to check the gram-

mars that we presented in the previous section. Of course,
the corresponding vulnerabilities have been identified
for this purpose. So, these results are not aimed to
be used to make an absolute comparison between the
scanners. A more representative comparative assessment
of the different tools should be based on vulnerable
applications in which vulnerabilities have not been delib-
erately injected by ourselves. These experiments are pre-
sented in the next subsection.

3.3 Experiments with non-modified vulnerable
applications

This second set of experiments allowed us to have a
more precise idea of the coverage of our detection

algorithm. For that purpose, we compared it to the
detection algorithms of Skipfish, W3af, and Wapiti
on non-purposely modified vulnerable Web applica-
tions. For some of these applications, we could compare
our algorithm with some commercial vulnerability scan-
ners, considering the results available in [16]. In this
document, the author presents the vulnerability detec-
tion results obtained with three commercial scanners:
WebInspect from HP, AppScan from IBM, and Web
Vulnerability Scanner from Acunetix. These
results provide only some preliminary indications to ana-
lyze the performance of our tool on the same set of
applications and are not meant to be used for a validation
purpose.
For our experiments, we selected five Web applications

(most of them tested in [16]), known to include vulnera-
bilities. These applications cover different functionalities
and execution contexts. We installed these applications
and performed vulnerability detection tests without mod-
ifying them.

• Cyphor (http://Webscripts.softpedia.com/script/
Snippets/Cyphor-27985.html) is a configuration
Webforum, which uses PHP 4.0.0 session capabilities
to authenticate users and a MySQL database.

• Seagull (http://seagullproject.org/) is an OOP
framework for building Web, command line, and
GUI applications. This project allows PHP developers
to integrate and manage code resources, and build
complex applications. This application requires the
following configuration: PHP 4.3.0 or newer, MySQL
4.0.x or newer, Apache 1.3.x or 2.x.

• Fttss is a research project (http://fttss.sourceforge.
net) that implements a Text-To-Speech System based
on PHP (4.3.0 or newer) and MySQL (4.1.2 or newer).

Table 5 Vulnerability detection results for Riotpix application

Vulnerability

Type CVE Location Skipfish W3af Wapiti Wasapy AppScan WebInspect Acunetix

NR edit_post.php ✗ ✗ ✗ ✓ ✗ ✗ ✗

NR edit_post_script.php ✗ ✗ ✗ ✗ ✗ ✗ ✗

SQLi NR index.php ✗ ✗ ✗ ✗ ✗ ✗ ✗

NR message.php ✗ ✗ ✗ ✓ ✗ ✗ ✗

NR reader.php ✓ ✓ ✗ ✓ ✗ ✗ ✗

False positive 0 0 0 0 0 0 0

http://Webscripts.softpedia.com/script/Snippets/Cyphor-27985.html
http://Webscripts.softpedia.com/script/Snippets/Cyphor-27985.html
http://seagullproject.org/
http://fttss.sourceforge.net
http://fttss.sourceforge.net

Akrout et al. Journal of the Brazilian Computer Society 2014, 20:4 Page 14 of 16
http://www.journal-bcs.com/content/20/1/4

• Riotpix (http://www.riotpix.com/) is an
open-source discussion forum for the Web based on
PHP (4.3.0 or newer) and MySQL (4.1.2 or newer).

• Pligg (http://www.pligg.com/) is a social
networking open-source CMS (Content Management
System) that permits visitors to register on the
Website, submit content and connect with other
users. This software creates Websites where stories
are created and voted on by members. PHP (4.3.0 or
newer) and MySQL (4.1.2 or newer) are required.

We inspected manually the results provided by each
scanner to have more confidence on the number of
detected vulnerabilities and false-positives.
Table 2 presents the results for Cyphor application. All

the scanners detected all the vulnerabilities because error
messages are reported to the client. Thus, it is easy to dis-
tinguish successful vulnerability exploitation from error
messages. The underlined results correspond to detec-
tions made possible by supplying a valid (login/password)
to the scanners to perform authentication. In other
words, the corresponding vulnerability is only visible
when logged in the site (the authentication page does
not contain any SQL-injection vulnerability, it is the only
way for any scanner to access the page including the
vulnerability).
The results reported for Seagull in Table 3 show that

Wasapy is the only one that reports a vulnerability in
this application. Others are unable to do so because the
application does not report errors to the client. Regard-
ing File include vulnerabilities, the injection points which
allow their exploitation are not directly accessible from
the client interface. Hence, the source code is necessary to
identify these vulnerabilities. This explains the failure of
all scanners.

Fttss is an application that has been tested in [16].
Hence, some results associated to the three commer-
cial scanners considered are available (cf. Table 4). The
commercial scanners do not detect the OS command-
ing vulnerability, which is the only vulnerability known
of this application. In contrast, W3af and Wasapy are
able to identify this vulnerability. It is noteworthy that
none of tested scanners reports false positives in this
case.
Regarding Riotpix (cf. Table 5), the results are similar

to those of Cyphor. The vulnerabilities are only accessi-
ble to successfully authenticated users. Therefore, we had
to provide a valid login/password to all scanners. Two
vulnerabilities have not been found by any scanner. They
correspond to code injection into variables that are not
visible to the client and thus cannot be discovered by
scanners (their identification would require a source code
analysis). These results also show that Wasapy is efficient
for this kind of vulnerability.
Regarding the Pligg application (cf. Table 6), all vul-

nerabilities but the first two are available on hidden injec-
tion points. The scanner must be aware of the presence
of the injection point in order to test the vulnerability. For
the first two vulnerabilities, Wasapy found them, whereas
the other scanners found only one of these vulnerabili-
ties. This is due to the fact that error messages are not
forwarded to the client.

3.4 Summary
The main lessons learned from all our experiments are
summarized in the following:

• Wasapy is an efficient scanner, especially in
particular conditions for which it has been designed:
(1) it is more efficient than the other freeware

Table 6 Vulnerability detection results for Pligg application

Vulnerability

Type CVE Location Skipfish W3af Wapiti Wasapy AppScan WebInspect Acunetix

2008-7091 login.php ✗ ✗ ✗ ✓ ✗ ✓ ✗

2008-7091 story.php ✓ ✗ ✓ ✓ ✓ ✓ ✓

NR userrss.php ✗ ✗ ✗ ✗ ✓ ✓ ✓

2008-7091 out.php ✗ ✗ ✗ ✗ ✓ ✗ ✓

2008-7091 trackback.php ✗ ✗ ✗ ✗ ✗ ✗ ✗

SQLi 2008-7091 cloud.php ✗ ✗ ✗ ✗ ✗ ✗ ✗

2008-7091 cvote.php ✗ ✗ ✗ ✗ ✗ ✗ ✗

2008-7091 recommend.php ✗ ✗ ✗ ✗ ✗ ✗ ✗

2008-7091 submit.php ✗ ✗ ✗ ✗ ✗ ✗ ✗

2008-7091 vote.php ✗ ✗ ✗ ✗ ✗ ✗ ✗

2008-7091 edit.php ✗ ✗ ✗ ✗ ✗ ✗ ✗

False positive 0 0 0 2 1 1 0

http://www.riotpix.com/
http://www.pligg.com/

Akrout et al. Journal of the Brazilian Computer Society 2014, 20:4 Page 15 of 16
http://www.journal-bcs.com/content/20/1/4

scanners tested when the error reporting is disabled,
(2) it is more efficient than the other scanners to
discover and exploit vulnerabilities that are included
in pages not directly accessible (pages that require the
successful exploitation of a vulnerability to be
accessed). Indeed, Wasapy is the only one which is
capable of actually exploiting the vulnerability and
supplying the exact corresponding injection requests.

• Wasapy is globally as efficient as the other
vulnerability scanners tested on non-modified
vulnerable applications.

• Our clustering algorithm can be easily adapted to
different kinds of vulnerabilities. Besides SQL
injections, the results of the experiments show that
Wasapy also detects XPATH, OS Commanding and
File Include vulnerabilities and that it is at least as
efficient as the other vulnerability scanners.

4 Conclusion
In this paper, we proposed a new methodology that is
designed to automatically identify Web applications vul-
nerabilities and to exhibit attack scenarios targeting these
applications. This methodology is based on the dynamic
analysis of the application following a black box approach.
It is also aimed at reducing the number of false posi-
tives by providing the queries that allow the successful
exploitation of the detected vulnerabilities. This advan-
tage is twofold since the effective exploitation of vul-
nerabilities also allows us to discover new pages in the
Web application that we could not reach before. These
new pages may contain new injection points and pos-
sibly new vulnerabilities. To validate and evaluate our
approach, we have carried out two sets of experiments
on different types of applications. This approach led also
to the development of a new vulnerability scanner called
Wasapy.
Various directions will be considered for extending

the results obtained so far. First, regarding the pro-
posed approach for detecting vulnerabilities and gener-
ating attack scenarios based on the elaboration of the
Website navigation graph, optimisations would be neces-
sary to master the size of the graph, especially when it
is to be applied to complex Web sites. Another perspec-
tive would be to enrich the grammars implemented in
Wasapy to allow the generation of a larger variety for
injections covering the vulnerabilities included so far, as
well as new vulnerabilities.

Endnotes
aSee [9] for a more detailed description of these

vulnerabilities.
bBNF stands for Backus Normal Form. It is a notation

for grammar writing.

cThe cookie stores at the client side a variety of
information about the running session (keys, contents,
user preferences, etc.).

dFor simplicity, only the HTML links activated by the
request appear, without explicitly specifying the
parameters associated with these requests.

eFrench funded ANR’s program ARPEGE(2009-2011).
fThe configuration file of PHP5 includes - For

production Web sites, you are strongly encouraged to
turn this feature off, and use error logging instead.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
All authors have contributed to the different conceptual and experimental
aspects of the approach presented in this paper. All authors read and
approved the final manuscript.

Acknowledgements
This work was supported by the Agence Nationale de la Recherche through
project DALI and by the french project Secured Virtual Cloud.

Received: 6 July 2013 Accepted: 30 October 2013
Published: 23 January 2014

References
1. IBM X-Force (2012) Mid-year Trend and Risk Report, September 2012.

http://www-01.ibm.com/common/ssi/cgi-bin/ssialias?infotype=SA&
subtype=WH&htmlfid=WGL03014USEN

2. Alata E, Kaaniche M, Nicomette V, Akrout R (2013) An automated
vulnerability-based approach for web applications attack scenarios
generation. In: LADC-2013: Latin-American Symposium on Dependable
Computing, Rio De Janeiro, 02–05 April 2013, p 9

3. Dessiatnikoff A, Akrout R, Alata E, Kaaniche M, Nicomette V (2011) A
clustering approach for web vulnerabilities detection. In: IEEE Pacific Rim
International Symposium on Dependable Computing (PRDC 2011),
Pasadena, 12–14 December 2011, p 10

4. Stefan K, Kirda E, Kruegel C, Jovanovic N (2006) SecuBat: a Web
vulnerability scanner. In: Proc. of the 15th Int. conf. on World Wide Web
(WWW ’06), Edinburgh, 23–26 May 2006

5. Huang YW, Huang SK, Lin TP, Tsai CH (2003) Web application security
assessment by fault injection and behavioral monitoring. In: Proc. 12th
Int. Conf. on World Wide Web (WWW’03), Budapest, 20–24 May 2003

6. Fonseca J, Vieira M, Madeira H (2007) Testing and Comparing Web
vulnerability scanning tools for SQL injections and XSS attacks. In: Proc.
2007 IEEE Symposium Pacific Rim Dependable Computing (PRDC 2007),
Melbourne, 17-19 December 2007, pp 330–337

7. Bau J, Bursztein E, Gupta D, Mitchell J (2010) State of the art: Automated
black-box Web application vulnerability testing. In: Proc. 2010 IEEE
Symposium on Security and Privacy, Oakland, 16–19 May 2010

8. Doupé A, Cova M, Vigna G (2010) Why Johnny can’t pentest: An analysis
of black-box Web vulnerability scanners. In: Proc. DIMVA 2010, Bonn,
8–9 July 2010

9. Akrout R (2010) Web Applications Vulnerability Analysis and Intrusion
Detection Systems Assessment. PhD Thesis, University of Toulouse,
October 2012 (in French). http://homepages.laas.fr/rakrout/PhD_Thesis.
pdf

10. Levenshtein V (1965) Leveinshtein distance. http://en.wikipedia.org/wiki/
Levenshtein_distance. Accessed on 22 February 10

11. Johnson SC (1967) Hierarchical clustering schemes. Psychometrika J 2:
241–254

12. Kiezun A, Guo PJ, Jayaraman K, Ernst MD (2009) Automatic creation of
SQL Injection and cross-site scripting attacks. In: Software Engineering,
2009. ICSE 2009. IEEE 31st International Conference on Vancouver,
29–31 August 2009

http://www-01.ibm.com/common/ssi/cgi-bin/ssialias?infotype=SA&subtype=WH&htmlfid=WGL03014USEN
http://www-01.ibm.com/common/ssi/cgi-bin/ssialias?infotype=SA&subtype=WH&htmlfid=WGL03014USEN
http://homepages.laas.fr/rakrout/PhD_Thesis.pdf
http://homepages.laas.fr/rakrout/PhD_Thesis.pdf
http://en.wikipedia.org/wiki/Levenshtein_distance
http://en.wikipedia.org/wiki/Levenshtein_distance

Akrout et al. Journal of the Brazilian Computer Society 2014, 20:4 Page 16 of 16
http://www.journal-bcs.com/content/20/1/4

13. Gutesman E (2008) gFuzz: An instrumented web application fuzzing
environment. In: Hack.Lu ’08, Luxembourg, 22–24 October 2008

14. Dupont P (1994) Regular grammatical inference from positive and
negative samples by genetic search: the GIG method. In: Proc. of the 2nd
Intl. Colloquium on Grammatical Inference and Applications (ICGI ’94),
Alicante, 21–23 September 1994, pp 236–245

15. Dupont P (1996) Incremental regular inference. In: Proc. of the Fourth Intl.
Colloquium on Grammatical Inference and Applications (ICGI ’96),
Montpellier, 25–27 September 1996, pp 222–237

16. http://anantasec.blogspot.com/. Accessed 09 December 2010

doi:10.1186/1678-4804-20-4
Cite this article as: Akrout et al.: An automated black box approach for web
vulnerability identification and attack scenario generation. Journal of the
Brazilian Computer Society 2014 20:4.

Submit your manuscript to a
journal and benefi t from:

7 Convenient online submission

7 Rigorous peer review

7 Immediate publication on acceptance

7 Open access: articles freely available online

7 High visibility within the fi eld

7 Retaining the copyright to your article

 Submit your next manuscript at 7 springeropen.com

http://anantasec.blogspot.com/

	Abstract
	Keywords

	Background
	Introduction
	Background and related work
	Error pattern matching approach
	Similarity approach
	Discussion and contributions

	Methods
	Html page clustering for Web vulnerability detection
	Principles
	Distance
	Requests generator
	Extension to other vulnerability classes

	Attack scenarios with multiple vulnerabilities
	Definitions
	Principles
	Example

	Algorithms

	Results and discussion
	Notations
	Experiments with modified applications
	Experiments with non-modified vulnerable applications
	Summary

	Conclusion
	Endnotes
	Competing interests
	Authors' contributions
	Acknowledgements
	References

