Azevédo et al. Journal of the Brazilian Computer Society 2014, 20:2
http://www.journal-bcs.com/content/20/1/2

® Journal of
the Brazilian Computer Society

a SpringerOpen Journal

A path to automated service creation via

semi-automation levels

Ernani Azevédo', Carlos Kamienski?, Ramide Dantas', Borje Ohlman® and Djamel Sadok’

Abstract

The manual creation of new Internet- and [T-based applications is currently a limiting factor in enabling new and
innovative services to be quickly available. We advocate that semi-automated service creation techniques are
feasible, whereas fully automated ones are not a reality yet. Consistently increasing the level of automation may
lead to a better comprehension of the problem that will pave the way for the introduction of higher levels of
automation in the future. We have developed two versions of a service creation tool, with different levels of
automation, which have so far confirmed our expectations that the experience with semi-automation is a promising
approach for continually speeding up the service creation process.

Keywords: Service-oriented computing; Service creation; Service composition; Pattern; Template

Background

The use of ‘services’ as the basic unit in the provision of
access to shared IT systems and Internet-based appli-
cations is becoming more frequent, both because of the
direct application of the concepts involved with the
service-oriented computing (SOC) paradigm and because
new and well-known applications are being made
directly available over the Internet. One of the most
interesting features of SOC is its ability to create new
services out of existing ones, thus fostering the reuse of
existing proven solutions.

However, service creation is currently a bottleneck
when it comes to enabling a faster time to market for
new and innovative services. These services will be made
available to Internet and IT users, and this will allow
companies to come up with new products, promotions,
and offers, even to non-Internet users. The main reason
for this is that most services are manually created, with
little help from automated techniques, thus slowing
down the rate at which innovation can be made available
to a variety of highly demanding customers.

Most strategies proposed in the literature for dealing
with this problem try to resolve the complex challenge
of fully automated service creation, which is a very

* Correspondence: ernani@gprt.ufpe.br

Federal University of Pernambuco, Professor Moraes Régo Av., 1235, Cidade
Universitaria, Recife 50670-901, Brazil

Full list of author information is available at the end of the article

@ Springer

important open research challenge that still lacks a proper
and operational solution. Existing solutions do not ef-
fectively clarify the many problems involved in fully
automated service creation approaches because they
concentrate on particular techniques and environments,
rather than placing themselves as a part of a generic
service creation architecture, that is, able to participate on
the myriad of different technologies and methodologies
present in service creation, execution, and management
contexts. Fully automated techniques are currently
hindered from being used in operational systems because,
among other causes, they require services to have
advanced semantic descriptions in addition to the basic
interface. Since this is not currently required, service
creators do not necessarily have the needed skills. Also,
services used as examples by automated techniques
presented in the literature are usually too simple, such as
sending an SMS. Therefore, it is not clear whether the
algorithms would work for more complex, and real,
services.

It must be possible for non-experts in particular
technologies to create new services relatively easily. In
an ideal scenario, an entrepreneur with a computer, a
connection to the Internet, a good, solid idea, and a
credit card should be able to create a new Internet
service and launch it automatically in any data center in
the Internet cloud. The same reasoning applies to busi-
ness analysts who work in companies that increasingly

© 2014 Azevédo; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction
in any medium, provided the original work is properly cited.

mailto:ernani@gprt.ufpe.br
http://creativecommons.org/licenses/by/2.0

Azevédo et al. Journal of the Brazilian Computer Society 2014, 20:2
http://www.journal-bcs.com/content/20/1/2

depend on IT and telecom systems to provide services
and products and to start new successful marketing
campaigns.

The objective of this paper is to show that semi-
automated service creation techniques are feasible,
whereas fully automated ones are not a reality yet. Also,
we advocate that increasing the level of automation may
also increase the expressiveness and power of service
creation tools. Service creation will always require some
human intervention because ideas will always have to be
expressed in a way that an automated tool will under-
stand so that it can generate the needed code and
configuration scripts. Therefore, we need to find out
exactly what the minimum level of intervention required
is, according to the knowledge we have at a particular
point in time, and then continually add new levels of
automation to the system. An interesting way of discov-
ering this minimum level is by dealing with different
approaches toward service creation with different
automation levels. In other words, the introduction of
automation should be made by evolution and not
revolution.

We developed two versions of a service creation tool
with different levels of automation based on an under-
lying framework called service refinement cycle (SRC),
and both use the service code [1] to describe the final
executable service. We found that by increasing the level
of automation, we could significantly improve the
functioning of the activities related to service creation,
in terms of both human effort and the expressiveness of
the solution.

The first approach, called quasi-manual service
creation, has been developed with the strategic goals of
shedding light on the problem and gaining insight from
it, by exploring what we consider to be one of the most
basic forms of automation that could be used to help the
users with service creation. We call it ‘quasi-manual’ as
a reference to this approach, wherein service design and
building are completely up to the business and IT pro-
fessionals. The second approach, called pattern-based
service creation, is aimed at providing a more productive
environment for translating a high-level service specifi-
cation into an executable service code. Building on our
experience with the quasi-manual approach, this approach
adds up the existing knowledge about the use of patterns
for system design and goes a step forward in the long
spectrum line, from manual to automated service creation.
The quasi-manual approach requires more manual effort
to develop a new service, whereas the pattern-based one
requires a more elaborate design and a more powerful
tool, in order to help service creators.

The impacts of this work are manifold. Firstly, the
experience of working with two different versions of a
service creation tool so far confirmed our expectations

Page 2 of 20

that the experience with semi-automation is a promising
approach for continually speeding up the service
creation process. Secondly, our service specification
proposal - the service code - plays an important role in
the design of service creation frameworks, once one
could guide the description of a service by referring to
the final format defined in the service code. Thirdly, we
make the point that service creation does not necessarily
need bind the final solution to particular technologies
since the beginning of the process, which provides
flexibility and eases the deployment in many different
environments.

The rest of the paper is structured as follows: some
background and related work are presented, and the
main underlying concepts of a service refinement cycle
and of service code are presented. The methodology
used for the development of this work is explained, and
the concepts of service creation and a generic service
creation tool are presented and the quasi-manual and
pattern-based service creation approaches are intro-
duced. Finally, the lessons learnt are discussed, where we
pose some conclusions and present possibilities for fu-
ture work in the lessons learnt section.

Service-oriented computing

Service-oriented computing is a paradigm that employs
services as the basic unit for the separation of concerns
in the development of computing systems [2]. For the
purposes of this discussion, we adopt the definition of
services [3] that describes it as ‘a mechanism to enable
access to one or more capabilities using a prescribed
interface and which is exercised in a manner consistent
with the constraints and policies specified by the service
description’.

Service-oriented architecture (SOA) is an architectural
model which advocates for the provisioning of function-
alities in the form of services. SOA is believed to facili-
tate the growth of large-scale enterprise systems, allow
Internet-scale provisioning and service usage, and reduce
costs through cooperation between organizations [2], in
that it can provide a simple, scalable, and interoperable
paradigm for organizing large networks. Web services [4]
are the most common technologies used to implement
SOA services over the Internet.

Service composition

A service composition is a coordinated aggregate of
services that have been assembled to provide the func-
tionality required to automate a specific business task or
process [2]. SOA advocates that any service is expected
to be capable of participating as an effective composition
member. This is shown in Figure 1, where the circles at
the top represent atomic services and the polygons at

Azevédo et al. Journal of the Brazilian Computer Society 2014, 20:2
http://www.journal-bcs.com/content/20/1/2

o M O /,,»""E:omposite
/ services
o . 0
@0 o

Figure 1 Atomic and composite services.

Atomic
services

the bottom represent composite services made up by
combining atomic services.

The composition of web services has been classified as
orchestration and choreography [5]: two concepts related
to the coordination or control of individual services that
work together. Orchestration refers to the coordination
of services from the point of view of one regent partici-
pant, who is able to control the flow needed for the
process to be executed correctly. Choreography, oppos-
itely, demands a certain protocol to ensure harmony and
interoperability among the interacting participant ser-
vices, without the need for a centralized control.

Policy refinement

Policy refinement is usually defined as the process of
deriving low-level enforceable technology-oriented policies
from high-level business-oriented goals or guidelines
[6]. A typical methodology for policy refinement is
the process of incremental decomposition, wherein
at each refinement step (level), the generated policies
are checked against the requirements of the policies
from previous step for correctness and consistency.
Although policies are intrinsically related to services
and the problems of policy refinement and service com-
position are similar, proposals to address both problems
together are not common.

Related work

The literature on service composition presents a consid-
erable number of proposals [7], although most of them
deal with the more challenging and complex problem of
automated service composition, what relies on a number
of intelligent techniques that have not proven feasible
for all environments so far.

The proposal in [8] presents an approach based on
automated planning, in which the composition is
mapped to a plan and the existing services are used as
its subtasks. The major setback in using this approach is
the need of a detailed and correct semantic description

Page 3 of 20

of the services and their components. Because this is such
a cumbersome and error-prone activity, the authors used
parameter descriptions of the services (inputs-outputs)
based on the data types extracted from WSDL descrip-
tions. Since a full-blown service composition demands an
impracticable computational complexity - especially in the
cloud computing environment - a graphical user interface
was designed to allow partial specification of the service,
that is, developers are able to specify input, output, and
possibly intermediate parameters and subservices through
the tool and trigger the planning algorithm to obtain a
composition that leads from the inputs to the desired
outputs.

Another proposal for automation of service creation
is presented by [9]. It describes an architecture-based
approach for the creation of services and their subse-
quent integration with service-requesting client applica-
tions. Their technique uses an architecture description
language to properly describe the services and achieve
the runtime integration using middleware technologies.
In order to obtain deployable software, the developer
implements a client concerning the services that it must
invoke to form an application. All other necessary codes,
including the code necessary to realize the connections
between the client and employed services, are generated
based on the specifications describing clients, services,
and connectors.

We believe that a continuous progress of semi-auto-
mated techniques is much more useful for understand-
ing the real problems and trade-offs in this area than
attempting a fully automated approach, ignoring the
many details that will be left unsolved along the path,
such as the necessity to address many existing standards
and technologies. With the continuous automation
approach, we expect to achieve the final goal of fully
automated techniques sometime in the future. Auto-
mated service composition techniques sometimes recur
in what we call ‘mystic boxes’ in their architectures
because they are frequently poorly described, making it
difficult to understand what exactly has been done and
to evaluate their results.

Service composition may happen offline or online, i.e.,
at creation or execution time. However, this very import-
ant difference is not always made clear in proposals.
Agarwal et al. [10] present some approaches for dealing
with the multifaceted problem of web service compos-
ition and execution, defining it as the process of creating
workflows which realize the functionality of a new
service and their subsequent deployment and execution
in a runtime environment. Our work acknowledges the
difference between service creation and service exe-
cution, and the approaches for semi-automated service
creation presented here are mostly targeted to work
offline, even though the actual subservices to be executed

Azevédo et al. Journal of the Brazilian Computer Society 2014, 20:2
http://www.journal-bcs.com/content/20/1/2

are only selected at execution time due to the late binding
feature.

The authors of [11] are motivated by the business need
to quickly develop and deploy solutions, in order to
reduce the time to market for telecom services. They
address the use of templates to skip the repeated
development phases of traditional creation techniques.
In order to become a new service template, a workflow
must be carefully analyzed so that its use can be general-
ized. If approved for that purpose, the general behavior
of the service must be extracted and the specific parts of
the workflow must be marked as service configurable
points. Like in our proposal, generic workflows may be
instantiated for different solutions according to parame-
ters specific to each case. Still, this approach does not
make clear the role division between business and IT
personnel, whereas our approach does consider different
levels of templates of patterns and delegates different
responsibilities in the service creation process. We
advocate that this separation of activities is important
to leverage the flexibility of service creation (i.e., allow
the creation in various environments) and that a well-
defined role assignment helps to understand each part
of the creation and eases the automation of these specific
activities.

At last, motivated by the promising low cost and
agility in software development glimpsed by automated
service creation concept, the authors of [12] gather the
results of a long-term observation on techniques to
accelerate service description and deployment. In the pre-
liminary background knowledge presented, the paper
points out two composition categories (manual and
automated), ignoring the benefits of a midterm approach,
namely the semi-automated creation. They also refer
to many commonly used standards and underlying
technologies, all related to service-oriented comput-
ing and architecture. After listing the used criteria of
their research on service definition automation, such
as description, matchmaking, combination, and selec-
tion, a summarization of the state of the art on this
matter is presented, along with the future challenges
and directions considered by the authors.

Case study

The necessity of the proposed creation approaches is
illustrated, and nowadays' weaknesses in offering a new
service is pointed out: suppose an entrepreneur detects
the lack of a DVD rental store home delivery service,
though there are available online DVD reservation and
delivery services whose owner companies provide access-
ible interfacing for their services. In order to maximize the
profits and reduce time to market, the entrepreneur
should be able to create and deploy the idea with least
necessary interaction to other people.

Page 4 of 20

In the manual creation, all the mentioned services
must be individually designed and implemented. The
entrepreneur must hire a developer, whose technical
expertise will permit the successful integration of all
subservices. At the design phase, a feasibility study of
the technologies and standards must be addressed, that
is, programming languages and web technologies com-
patible with the existent solutions. Hereinafter, a number
of specific integrated development environments (IDEs)
are used to implement the final application in a tech-
nical (programming) language, which comprises calls to
the existing DVD rental service, delivery service, and
billing service. The front-end design and the hosting for
the final service are other concerns.

We advocate that a company which follows one of the
approaches presented in this paper may offer service
creation and hosting facility for this environment, which
in its turn pans by a minimal set of creation-involved
people. Possible embodiments of this scenario are
presented further in this text to illustrate the use of the
proposed creation approaches.

Service refinement cycle and service code

Service creation is all about the refinement of a high-
level business idea into running code. A key part of our
proposal is the concept of service refinement, a combin-
ation of service composition, and policy refinement
which involves refining a higher level service specifica-
tion into an integrated composite of lower level services.
Two important underlying concepts in our proposal are
the service refinement cycle and the service code.

The service refinement cycle

SRC [1], which is a result of the service refinement
approach, is an integrated abstract framework for deal-
ing with the service life cycle, which defines a common
‘language’ (or structure) for specifying and understand-
ing service composition. It is composed of a sequence of
phases (service, process, policy, and binding), as depicted
in Figure 2, where each phase adds some features for
enhancing the capacity of services to adapt their behavior,
according to different requirements. Transitions represent

Figure 2 The service refinement cycle.

Azevédo et al. Journal of the Brazilian Computer Society 2014, 20:2
http://www.journal-bcs.com/content/20/1/2

the way in which an execution engine passes from one
phase to the other.

Phases contain the information that defines services
and that is generated during service creation, when the
user is assisted by an appropriate tool. The objective of
and reason for each phase is as follows:

e Service. This contains a standardized service
description following the SOA paradigm which
assumes that services must be widely advertised.

e DProcess. Complex services are usually defined as
being composed of other services, which always
follows a process. The process phase is composed of
one or more abstract tasks (not real services yet),
which interact with each other in certain ways.

e Policy. The role of policies in service refinement is
to provide flexibility to both the composition of
services and to the resulting ability to adapt
behavior.

e Binding. The binding phase isolates the internal
phases (service, process, and policy) from the
outside world. It maps internal abstract services to
external real ones.

Transitions specify links between phases which are
designed during service creation and followed by an
engine at execution time. Internal transitions link phases
of the same service entity, whereas external transitions
link different services. The transitions between internal
phases are dynamically bound by default, which means
that one phase sends a request to the next phase, to be
evaluated at runtime. Since the structure of the refine-
ment cycle is flexible, each phase within a particular
refinement chain contains a pointer to the next phase.
For each application programming interface (API) func-
tion of the service phase, there must be an associated
logical refinement. However, a single incoming external
request received by the service phase may cause many
outgoing external requests to be issued by the binding
phase.

Only the service phase is mandatory for the refine-
ment of a given service API function. The use of the
process, policy, and binding phases is optional, which
means that there may be transitions that skip certain
phases. Whether or not to use a particular phase in a
refinement is up to the service designer and may also be
modified by the system administrator at runtime.

The main reason for dividing service refinement into
four phases is to provide separation of concerns. It
creates independence between phases when designing a
new service. Service description, process, and policies
may even be created by different people or by different
intelligent systems, regardless of the actual services that
will implement the external functions. By dividing a

Page 5 of 20

service refinement into pieces, we can expect service
creation (manual or automated) to become easier.

In Figure 2, the service refinement cycle is represented
as an iterative process, where the subservices that make
up a particular composite service may in turn be refined
into a composition of other services, and so on. The
interaction between different subservices builds, at
runtime, multiple layers (of services) that participate in
the implementation of a single, higher level service.

The service code

The main realization of the SRC is the service code,
which contains executable specifications (code) for the
four phases of the cycle. In other words, the service code
is the outcome of a service developed according to the
SRC. If the content of the service code is packed into a
standard file (similar to a .jar file), any compatible engine
should be able to execute it.

Service creation and execution

Three important stages of the service life cycle that are
supported by our framework for service refinement are
service creation, execution, and management. The inter-
face between those stages is the service code, which is
generated by a service creation tool and deployed to be
run by a service execution engine. Given that the SRC
defines the specification of services as the service code,
automation of service execution should be possible by a
generic engine. A service management tool has access to
this code and is able to update it on the fly according to
demand.

Methods

The service creation approaches we developed are based
on the service refinement cycle, which has been
designed as part of a project involving the concepts of
service composition and policy refinement. The particu-
lar work described in this paper consists of three steps.
The first step is the development of a generic service
creation tool (SCT), i.e., the platform that supports vari-
ous service creation approaches. The second and third
steps involved are, respectively, the design of the quasi-
manual and pattern-based service creation approaches
and the development of the associated tools.

Since our goal in proposing automation in service
creation is to make it more accessible to a non-technical
user, for prototyping, we aimed at eliminating the need
of development environments, making the tools available
according to the cloud computing paradigm. As far as
software development is concerned, our tools are based
on the Web as a platform paradigm in order to be able
to easily cope with the software as a service (SaaS)
concept. The usability issues usually associated with
web-based applications have been overcome by the use

Azevédo et al. Journal of the Brazilian Computer Society 2014, 20:2
http://www.journal-bcs.com/content/20/1/2

of state-of-the-art technology, thus avoiding noticeable
negative impacts for users, when compared to stand-
alone tools. Our tools use Asynchronous JavaScript and
XML (AJAX) [13] because (a) it fulfills the required
development agility, (b) it is able to create applications
with high levels of usability from the user point of view,
and (c) it has been widely adopted by the web develop-
ment community. Our tools for service creation have
similar roles, so common architecture and development
technologies were wused to implement them. For
example, we developed a common XML parsing and
generation module and a shared information model. In
AJAX, client-side modules of the application hold the
widgets that will be executed on the browser, while a
server-side module provides some advanced features.
Therefore, all user interactions that use the service cre-
ation tools happen through the client-side application,
whereas complex operations such as parsing, generation,
and remote communication are done on the server side.

Google Widget Toolkit (GWT) [14] is a framework
that is publicly available and has been widely adopted
for fast AJAX-based development because it reduces the
complexity of dealing with client and server sides,
remote invocation, and diagramming of graphical com-
ponents for the current variety of browsers. Developers
deal with a simple Java library to invoke a few routines
and are mainly concerned with program logic, while
GWT handles the translation and deployment of the
application. We used a GWT plug-in for the Eclipse IDE
[15] due to its smooth integration and testing facilities.

We also developed a service execution environment
which can be used to run the service code created by
our tools, but the description of this tool is outside of
the scope of this paper.

Service creation tool

Service creation is the process of building the service
code, given a high-level specification of a service and the
availability of particular subservices for implementing
the process. It is a sequence of steps that start from the
initial conception of a new service up to its deployment.

Service creation approaches

A challenge is how to fill in the refinement cycle phases
with the content that is necessary for specifying a ser-
vice. An important issue raised by this approach is that
the refinement cycle is orthogonal to service creation
approaches. In other words, as long as the relationship
among its four phases is observed and represented in
the service code, the particularities of each approach do
not interfere in the final result. The importance of this
concept is that it opens up new research opportunities
and a clearer view of the area because it allows different

Page 6 of 20

methodologies to be compared under a single frame-
work, which is not common in this area.

Currently, we envision at least three general approaches
for service creation:

o Manual service creation. This occurs when service
design is done completely by a human operator, who
may or may not use a tool for assisting him/her with
the generation of the service code.

o Fully automated service creation. An intelligent
technique, e.g., based on reasoning, can
automatically find optimal services, processes,
policies, and bindings for fulfilling a higher level
service description. This is currently an interesting
open research problem [7], although it is not yet
operational given its higher complexity.

o Semi-automated service creation. Along the line
between the extremes of exclusively manual or
automated creation, there may be a myriad of semi-
automated techniques. This means that the service
designer might be assisted by a tool that provides
different levels of automation for particular activities
but still requires some level of manual intervention.

The two proposals for service creation presented in
this paper follow the semi-automated approach for
service creation, with an increasing level of automation.
We found out that with a little increase in the computa-
tional skills of the users, a corresponding increase in the
expressiveness and power of the technique (and tool)
may be obtained.

Architecture of a generic service creation tool
The activity of service creation is supposed to be assisted
by an SCT, which should follow two basic guidelines.
The first guideline states that services should be easily
created by non-experts in a particular technology. In an
ideal scenario, an entrepreneur with a computer, a
connection to the Internet, a good solid idea, and a
credit card should be able to create a new Internet
service and execute it automatically in any data center
on the Internet. That is to say, a service creation service
and a service execution service should be available for
entrepreneurs using cloud computing concepts [16],
specifically SaaS and IaaS technologies [17]. The same
reasoning is applicable for service creation within an
organization, where both service creation and execution
services are supposed to be available only via intranet.
Unfortunately, technology is not yet ready for such a
level of automation in service creation and execution.
Also, not all services are created equal, and frequently,
they are not simple enough for operators without sound
technical skills. Currently, it requires those professionals
to interact with complex concepts such as business

Azevédo et al. Journal of the Brazilian Computer Society 2014, 20:2
http://www.journal-bcs.com/content/20/1/2

process modeling languages or even general purpose
programming languages. Therefore, the second guideline
states that business and IT experts should be assisted by
a semi-automated tool to speed up service creation and
consequently time to market.

Figure 3 depicts how an SCT fits into such a scenario
and outlines the role of the professionals involved in
creating a new service. The outcome of the service
creation activity is the service code as well as a service
graphical user interface (GUI), which invokes the fea-
tures of the service code. Both are executed by a service
execution environment that may be located anywhere in
a data center in the Internet cloud.

As shown in Figure 3, service creation is divided into
three different modules or subservices which are oper-
ated by people with different skill sets. The service
designer allows an entrepreneur or a business analyst
from an organization to specify a new service in an
abstract way that more closely resembles the business
language. This high-level service specification may be
composed of, among other information, a service descrip-
tion, a service AP, a set of business policies, and eventu-
ally, hints for business processes. The latter is provided as
a feature of a particular service creation tool (such as the
one that follows our quasi-manual one) that allows the
service designer to provide a list of subservices to be
used in the refinement of a particular higher level
service. The output of the service designer is an ab-
stract service specification, called service guideline,
expressed in an ontology-based language such as Web
Ontology Language (OWL).

Service builder is a tool to be used by a system devel-
oper (an IT expert) and contributes to the development
of the service code from the service guideline, coming

Page 7 of 20

from the service designer. For any given service guide-
line, many different versions of service builders may
exist, with different levels of automation and which use
different techniques and approaches. As a matter of fact,
we have developed two versions of it, increasing the
automation level with each version. Nevertheless, since
its purpose in service creation is fully defined, service
designer is expected to be preserved in a generic SCT, as
long as the service guideline description it generates is
able to express meaningful services and works well with
different embodiments of the service builder.

We have developed two variations of semi-automated
service builders using the architecture presented in
Figure 3. An interesting side effect of our developments
has been a generic platform that may be used to design,
implement, test, and compare different strategies for
semi-automated service creation. Given a service guide-
line, different strategies may be used to build the resulting
service code, which may be compared using qualitative
and quantitative approaches.

In spite of the paramount importance of creating the
service code, its aim is not to be directly accessed by
service users but rather to be accessed by programs via
an APIL Therefore, in any practical scenario for creating
and executing services in the future Internet, a GUI
should be made available for invoking service features.
The front-end designer is a tool used by a GUI designer
that transforms user ideas into calls to the service APL
It makes the transition from the user to the service
realms. However, despite of the importance of the front-
end designer, it is out of the scope of this paper, since
the GUI is orthogonal to the service itself and different
types of GUI may be used, such as versions for the Web
and for smartphones.

Service Creation

-

~

(Oufput\ / Service\

N

L /’
. Front-end| | || R%8
Designer
GUT Designer Service GUI

Figure 3 A generic architecture for a service creation tool.

/AN

Execution
Business Systems
Analyst Developer
! Servi 1
! ervice 1 .
Guideline Service Code
i : / E‘ The Internet
Service Sarviiae ﬁ. x
Designer Builder oo L
—/

/

Azevédo et al. Journal of the Brazilian Computer Society 2014, 20:2
http://www.journal-bcs.com/content/20/1/2

Quasi-manual service creation

The first version of our SCT has been developed with
the strategic goal of shedding light onto the challenge of
service creation and gaining insights from it, by explor-
ing what we consider to be one of the most basic forms
of automation used to help users with the process of
service creation. We call it quasi-manual as a reference
to this approach, where service design and building is
completely up to the business and IT professionals. As a
matter of fact, during the design and implementation of
this technique, concepts such as the service guideline
emerged and shaped the particular format and content
of the service code, thus leveraging the development of
more advanced representation forms as well as new
and innovative ways to deal with the service creation
problem.

Overview

In order to provide flexibility for service creation, the
quasi-manual approach is divided into two phases, which
follow the generic architecture (Figure 3). As depicted in
Figure 4, the design phase is aimed at capturing the idea
for a new service of the business analyst or entrepreneur
and to transform it into a service guideline. Next, in the
building phase, the system developer who is using the ser-
vice guideline, as well as his/her technical skills, is respon-
sible for assembling the necessary technologies for the
realization of the service and the generation of the final
code that is to be deployed. As the picture implies, service
designer and service builder are distinct software applica-
tions to be used by people in different professional roles
with complementary skills, although a single person may
play both roles in some organizations. The job of the ana-
lyst and the developer is mostly manual but includes some
assistance, thus explaining the name quasi-manual.

Outcomes: service guideline and service code
Service guideline is a description of the service behavior
in natural language, though it is written as an ontology,

Page 8 of 20

and should represent the expectations of the business
manager, including features and constraints. Its main
purpose is to organize the service description into well-
defined sections to allow the developer to implement the
solution using a formatted ‘requirements document’,
which is less prone to presenting inconsistencies. If the
creation of a service is seen as a project, the guidelines
may be considered a requirements document. In addition,
service guidelines also encourage reuse as they are
designed for a particular purpose in a particular context
but can be used elsewhere and can even be implemented
in different ways.

The description of the service guideline, presented in
Table 1, contains some attributes of SOA, as proposed
by the Open Group SOA Ontology. Important attributes
of the service guideline are functions, policies, inputs/
outputs, and processes. A service is composed of one or
more service functions, and each one is responsible for a
particular operation performed by the service. Functions
may be invoked individually from a service API, whereas
a service may be considered a wrapper used to group
the functionalities provided by its functions. Policies
define constraints that may be applied to an entire
service or to particular functions only. As functions are
the parts of a service that are actually invoked and exe-
cuted, criteria to access them are needed and should be
represented as input and output parameters. Process
definition is needed in the service guideline for the
quasi-manual approach since there is no automation in
the building phase for composing multiple services
together. However, in a more automated solution, it may
be changed by altering the ‘pre’ and ‘post’ conditions of
the service functions.

Figure 5 depicts a possible structure of a sample
service guideline for a delivery function in an online
bookstore service. Important components of a service
description are the function policies, such as P1 and P2,
the parameter, and returning types of the functions, the
function process.

-

Manual (assisted)

Manual (assisted)
A

Service
Guideline

\

Service
Code

v

Business
idea

Service
Designer

&

Analyst

Figure 4 Activity flow of the quasi-manual approach.

Developer

Service
Builder

Azevédo et al. Journal of the Brazilian Computer Society 2014, 20:2
http://www.journal-bcs.com/content/20/1/2

Table 1 Attributes of a service guideline description

Attribute name Description

Service ID An identifier for the service being worked on

Service description Natural language description to help the actors

involved in the service development

Service owner The domain of the service to help on legal matters

Service version Internal version control

Service policies Definition of the constraints that apply to all
components of a service. It is composed of a

name and a description in natural language

Function 1D The identification of a functional part of a service,
i.e, a function that may be invoked from the

service API, always associated with a service ID

Function description A description in natural language of how the
function should behave to help developers

during the service building
Function version Internal version control of each functional part

Function inputs
and outputs

Input and output parameters of service functions
represented as a pair name-type

Function policies The same as service policies but specific to

individual functions

Function process Describes the steps of a workflow in natural
language, so the developer can translate it to

service code more easily

Service code is a concept, so it does not depend on
any particular technology. However, technologies for the
four phases of the service refinement cycle must be
specified to create a running system. The combination
of all standards and technologies used to define a service
must be easily understood by an execution engine. As
the service refinement cycle claims, services for cloud
computing and SaaS paradigm should, in general, be
flexible and portable enough to be enforced even when
using mixed technologies. In this context, the concept of
service code was created to name the set of documents
defined in computer language technologies that together

Service: Online Book Store

Owned by XXX

Version 1.0

Function: Deliver Order (int orderID, int[] products, int clientID):boolean status

Version 1.0

Description: “invokes delivery service”

Policies
P1: check if there is more than X items in stock
P2: check if Logistics can deliver products in Y days

Process
1. check the number of items available in stock, proceed if is greater than
the number requested
2. decrement the number of items from stock

Figure 5 Service guideline example for a single function.

Page 9 of 20

describe a service in a back-end level. Some options used
for the quasi-manual approach are as follows:

e Service. Service description is specified using
the Open Group SOA ontology [18] based
on OWL [19].

e Process. Web Service-Business Process Execution
Language (WS-BPEL) [20] is used to specify our
processes. Alternatively, an ontology language may
be used, such as OWL services (OWL-S) [21].

e DPolicy. Policies are written in an extended version of
Extensible Access Control Markup Language
(XACML) [22], but they may be also expressed
using an ontology language like Semantic Web Rule
Language (SWRL) [23].

e Binding. The binding phase is also specified in OWL.

The Open Group SOA Ontology states the informa-
tion model to pave the building of valid service-oriented
approaches. WS-BPEL is the reference for process
orchestration in web-based environments, and XACML
has a complete framework to handle access control
entitlement, extended by [24] to deal with more classes
of policies. SWRL is a project in ongoing evolution,
targeted at adding more information to ontology
descriptions and leveraging semantic reasoning.

Modules: service designer and service builder

We developed two tools for the quasi-manual approach:
service designer and service builder. The service de-
signer is used for service specification, which results in
the service guideline, which is the formatted description
in natural language of the service and its components. It
consists of a web GUI, where the business user can
input the component parts of the guideline. The most
advanced GUI feature of this tool is the capability pro-
vided to the user to define the abstract natural language
workflow of the processes via an intuitive drag-and-drop
workflow assembling component. The mastermind of
the service, referred to here as the analyst, uses the
service designer tool to write the expected behavior of
the functions, interfaces, and constraints. Once the
service description work is finished, the service guideline
is ready to be possibly shared and addressed by a variety
of different service building tools, although for the
quasi-manual approach, we developed one particular
tool for fulfilling our purposes.

The service builder, which is responsible for generating
the service code, works as an ‘aggregation’ of back-end
technology editors since it is able to translate the
abstract description into many executable standards
which will comprise the service code. Its development
gave special attention to the fact that technology
descriptors for the whole service specification must be

Azevédo et al. Journal of the Brazilian Computer Society 2014, 20:2
http://www.journal-bcs.com/content/20/1/2

provided, according to the Reference Model for Service
Oriented Architecture [25]. Via the service builder, the
IT professional called developer is able to implement the
guidelines according to a few predetermined standards
for workflow definition and entitlement specification,
that is, the tool is able to translate the service specifica-
tion to specific back-end executable technologies, such
as BPEL + XACML, XPDL [26] + Ponder [27], and Java
+ Rei [28]. In other words, a specific instance of the tool
has to be used according to its desired output. This is
where the general architecture for the SCT plays a very
important role. It is aimed at providing flexibility by
relying on the fact that a guideline that is specified in
natural language can be accomplished by more than one
different building tool.

Case study: DVD delivery

In order to obtain results about the aforementioned
scenario illustration using the proposal in this section,
John, the entrepreneur, should describe the business
idea, the ‘DVD Delivery’, using a web platform of service
designer in order to obtain a proper service guideline,
though, to make the solution available as a service, he
should use a provider infrastructure. For that sake, John
contacts Paul, a system developer, who is able to develop
a fully working implemented version of John's guideline.
Paul will use the specific service builder which generates
service code for the provisioning plan chosen by John
(the customer of the service provider).

A snapshot of this scenario is showed in Figure 6
where the chosen technologies for service code are WS-
BPEL for workflows, XACML for policy entitling, and
SQL for data storage. Optionally, builders that would
generate service code for different technologies could be
used, as Java for workflows, Ponder for policy entitling,
and LDAP for storage.

In the first moment, from the developer's point of
view, this approach reduces development time and
complexity because, instead of being concerned with
the complete creation process, expert users split the
implementation into smaller problems, each of which
inside the context of its own expertise. Using the
same assumption, we also make the point that activities
developed by both John and Paul can have a significant
improvement, which is avoiding repetitive tasks. This

Page 10 of 20

insight, which resulted from the observation of this minor
modification in service description, leads us to rely on a
known software engineering artifact, aimed at accelerating
specification time and becoming less error-prone design
patterns.

Pattern-based service creation

The pattern-based semi-automated service creation pro-
posal is aimed at providing a more productive environ-
ment for translating a high-level service guideline into
an executable service code. Building on our experience
with the quasi-manual approach, this approach adds up
the existing knowledge the use of patterns for system
design and takes a step forward in the long spectrum
line from manual to automated service creation.

Overview

When a new service proposal is conceived of by its
creator (the analyst), the process usually starts as soon
as the service requirements are defined and the needed
resources are gathered. After that, the implementation
begins according to the methodologies established by
the organization. The pattern-based service creation
approach is an attempt to both provide a higher level of
assistance to the developer during service building and
to develop services without the need to bind the solu-
tions to specific technologies, at first. This we learned
from our experience with the quasi-manual approach,
and we believe that service descriptions should contain
the main components which consistently define their
behavior, constraints, and interfaces and should be
dependent on the system onto which they are going to
be executed. The translation of the service code into the
languages and standards that will actually be enforced
should happen in the very last moment, immediately
before deployment.

The pattern-based approach involves describing the ser-
vice and its components in a way that fosters reutilization
of previously developed services. Three levels of infor-
mation representation provide the maximum balance of
simplicity and flexibility, and each of them is assisted by a
pattern/template used by a corresponding tool. Service
guidelines are similar to the quasi-manual approach pre-
sented in Table 1. Abstract service code is all an ontology-
based and technology-independent version of the service

Service
Designer

“DVD
Delivery”

Figure 6 Use flow of quasi-manual proposal to develop DVD delivery service.

BUILDING

Service
code
[BPEL,

Service
Builder

XACML,
sat)

Azevédo et al. Journal of the Brazilian Computer Society 2014, 20:2
http://www.journal-bcs.com/content/20/1/2

code presented in the ‘Outcomes: service guideline and
service code’ subsection. Finally, the executable service
code is the concrete description of the service ready to be
deployed, ie., the very service code presented in the
‘Outcomes: service guideline and service code’ subsection.

In order to speed up the generation of such descrip-
tion files, this approach leverages the use of patterns and
templates to guide the first steps of development. Design
patterns guide the creation of a formal requirements
document (the service guideline) which, in turn, can be
translated into a technology-free consistent description
(abstract service code) assisted by implementation pat-
terns. The abstract service code is finally compiled into
the executable service code, with the help of technology
templates. In the pattern-based approach, we added a
third phase in the service creation process, which is
aimed at the compilation of the service to generate the
final service code.

Each tool used in this approach may generate a new
outcome, in addition to the service representation forms,
which are patterns and templates. The service designer
uses design patterns together with the business idea to
generate a guideline. The service builder uses implemen-
tation patterns to assist with the process of transforming
the guidelines into actual descriptions, not yet efficiently
executable. The service compiler generates executable
service code using the output of the builder, using
templates to translate the generic description into
concrete technologies that are ready to be deployed. The
actors responsible for designing, building, and compiling
phases are respectively the analyst, the developer, and
the administrator of the service provider, and they are
allowed to deploy the solution in an execution environ-
ment, as shown in Figure 7.

By doing this, we expect to provide flexibility to the
service descriptions because the outputs will be used by
different professionals and organizations, in addition to
being specified in a self-contained fashion. Compared to
the quasi-manual approach, the level of automation is

Page 11 of 20

greater in the pattern-based approach due to the use of
patterns and templates as well as to the reutilization of
previous efforts in service creation. Figure 7 shows that
the service builder provides much more assistance to the
user and therefore is considered a semi-automated tool
and that the service compiler is a fully automated tool.
The service designer also provides more assistance to
the user, but it may be considered a manual tool since
its activity is highly human-dependent.

Outcomes

The outcomes (intermediate and final) of the pattern-
based approach are the service guideline, the abstract ser-
vice code, and the executable service code. The service
guideline for the pattern-based approach is similar to that
of the quasi-manual approach, as presented in the ‘Out-
comes: service guideline and service code’ subsection.

The abstract service code (ASC) is the bundle of
descriptions that correspond to the machine-like spe-
cifications of the service components. The ASC is the
output of the service builder, built from the service
guidelines as well as the input for the service compiler.
It is “abstract’ because its content is not tied to any tech-
nology and yet is considered ‘service code’ because it is
representative and generic enough to be translated into
any computer language. The foundations of the abstract
service code are based on building blocks that represent
every part of a service description in a syntax that is
supposed to be easily translated into programming
language grammars. This feature is useful for the
compiling phase of the pattern-based approach. A pos-
sible instantiation of the abstract function deliverOrder
is depicted in Figure 8, where some components of
implementation described in the service guidelines, like
the attribute names and workflows, are now specified in
a computer-interpretable manner. That is to say, a
processing of the information can be done in order to
obtain a more specific description. Although the language
used in the picture does not correspond to any existent

Manual (assisted)
\ \

Semi-automated (assisted)

Automated

[[

Implementation

Design Pattern

Pattern

<src

Service
Guideline

Analyst

Developer

Figure 7 Activity flow of the pattern-based service creation approach.

I}
))
Compilation
Template

Executable

Ab
stract Service Code

Serwce Code

o
Administrator

Azevédo et al. Journal of the Brazilian Computer Society 2014, 20:2
http://www.journal-bcs.com/content/20/1/2

Page 12 of 20

BookStoreService

1.0

deliverOrder (int orderID, int[] products, int clientID):boolean status

1.0

P1: COND [!(numProdStock > 10)] / ACT [promptStock]
P2: COND [checkSchedulelnDays(3)] / ACT [return true]

(if stockContains(id) > ordered(id)) {

[[INVOKE UPDATE FUNCTION]
}

Figure 8 Example of the abstract service code for the deliverOrder function.

technology, we suggest the use of ontologies to describe
the abstract service code in order to take advantage of its
semantic features. Still in the figure, policies (P1 and P2)
are now represented as condition-action pairs, and a snip-
pet of a programming code can be seen in the workflow
description.

The abstract service code is supposed to achieve an
excellent balance between design, implementation, and
execution since it combines the intentions of the service
design with the particularities of the implementation
while also taking into consideration the singularities of
enforcement. The ASC is more implementation-driven
than the service guideline but is not tied to any particu-
lar technology like the executable service code is. There-
fore, it is the perfect stage of the service representation
at which to add semantic behavior, which would not be
straightforward in the other two stages. In addition, this
capability may add a higher level of automation to the
system since a proper execution engine can solve build-
ing time issues, like the lack of appropriate components,
or can suggest more appropriate ones in certain cases.
The ASC can be also thought of as an intermediate
code, similar to the Java byte code in that it must be
translated to a particular underlying technology to be
executed in a target computing platform.

A service creation tool must be prepared to generate
an executable code, i.e. files whose structure can be
interpreted and enforced by some execution engine. Ser-
vice guidelines are descriptions for business people, and
the ASC is a format targeted at representing the service
implementation in a computer-like ontology-based lan-
guage. The final output of the framework must be able
to be deployed in an execution environment, as stated
by the service refinement cycle. The executable service
code (ESC) is the equivalent of the service code in the
quasi-manual approach. It is a package of files generated
by the service compiler, allowed to be deployed, and
executed in real systems.

The use of patterns and Templates

A design pattern is usually defined as a proven solution
to a commonly occurring problem which is well
documented and part of a collection of similar solutions
[29]. Although it is not a finished design that can be
transformed directly onto useful artifacts, it contains an
abstract description that points out how to solve a prob-
lem, even in different application domains.

Inspired by this view, design patterns for service
creation are used to support the definition of services in
the topmost business level, i.e., they act as a reference
for the definition of service guidelines. In other words,
design patterns for the service design stage of service
creation assist business analysts by providing advice on
how to solve a problem by referring to proven working
solutions. Design patterns in our proposal come as a
natural language description of the requirements for
generating service guidelines. They will assist the busi-
ness level part of service creation, taking advantage of
the layered nature of the framework; that is to say,
design patterns may also be specialized to compose
functions that have been refined differently yet are simi-
lar in behavior. An illustration of how design patterns
look is shown in Figure 9. Similar to a service guideline,
in this picture, one can notice tips and hints for defining
policies (P1 and P2) as well as a high-level description of
how the workflow should behave.

Design patterns represent a useful guide for the stage
of service creation that is performed by the business
analyst, though it leaves the actual ‘coding’ of the service
still unassisted. Therefore, we use implementation pat-
terns to speed up the work of the system developer dur-
ing the service building stage. Implementation patterns
are specializations of design patterns, and one will notice
that the former are closer to source code syntax and
must be dealt with by system developers, whereas the
latter are business level specifications and must be dealt
with by business personnel.

Azevédo et al. Journal of the Brazilian Computer Society 2014, 20:2
http://www.journal-bcs.com/content/20/1/2

Page 13 of 20

Service to sell products over the internet

Function for product delivery

“this function is used to make a client receive the product it bought”

P1: use policy-based trigger to alarm about stock critical count
P2: verify through policies the availability of delivery companies

delivered.

This function should have a flow which calls a new order for delivery
company, using parameters as the destination and the items to be

Figure 9 Example of a design pattern for selling products on the Internet.

Implementation patterns must define the framework
for all further development, including constraints, inter-
facing, and even the operation execution flow. Alterna-
tively, implementation patterns may be also considered
templates for the abstract service code with blanks that
must be filled in on a case by case basis, according to
the particularities of the service being created. For in-
stance, if the process that implements a service function
points out that in a certain step a policy engine should
be invoked, the blank for policy enforcement - in the
instance of the implementation pattern - should be
developed by each organization. Figure 10 depicts an
example of an abstract service code with empty blanks
for describing an implementation pattern.

As mentioned, in the last stage of service creation, it is
mandatory to translate all service description data to a
standard that is allowed to run on execution engines. In
most current deployments, a service specification is
manually implemented before becoming part of an exe-
cution environment. Our purpose is to skip the manual
coding at the programming language level by providing

compiling templates to service developers. Compiling
templates take advantage of the building blocks of the
ASC to perform mappings from their abstract represen-
tation to their respective counterparts in the computer
language of the ESC. Every structure of a particular ASC
instance must be converted to one or more computer
language structures that can consistently perform the
designed behavior. Compiling templates represent the
most visible automation level in the pattern-based
service creation approach since they completely elimin-
ate computer language writing by hand. The service
compiler deals with templates in order to consistently
translate its inputs into specific computer languages.

Module: service designer, service builder, and service compiler
As shown in Figure 7, the service designer is the first
tool used in the service creation process by a business
analyst for defining the general guidelines of a service.
The service designer does not force the use of patterns;
they are optional because a helpful pattern will not
always be available. The analyst may choose to create a

Service to sell products over the internet

Function for product delivery

(int orderlD, int[] products, int clientID):boolean status

P1:

notification function}]
P2:

[return Permit]

COND [{retrieve item count from stock} < {threshold}] / ACT [{invoke

COND [{check availability of delivery company in {threshold} days}] / ACT

if({retrieve item count from stock} > {retrieve item count from order}) {
{invoke function do decrement stock count}

Figure 10 Example of an implementation pattern: a mix of computer language and natural description.

Azevédo et al. Journal of the Brazilian Computer Society 2014, 20:2
http://www.journal-bcs.com/content/20/1/2

service from scratch, which may produce another useful
pattern for future usage. Therefore, the service compiler
also plays the role of a design pattern creation tool, as
shown in Figure 11. Once design patterns follow the
same rules used for service guidelines, the service
designer can cause both artifacts to fully conform with
one another. This tool includes simple editing features
that permit the shaping of a requirements document so
that it conforms with the service guideline specification.
As a tool targeted at non-technical users, like entre-
preneurs and business analysts, the service designer lets
them remain unaware that they are designing a stan-
dardized requirements document.

The service builder is the tool used to generate the
abstract service code. In addition, similarly to the way
that design patterns are generated by the service
designer, implementation patterns may be generated by
the service builder so that advanced users can create
new implementation patterns that comply with a given
design pattern. The creation of implementation patterns
with the same tool that uses them as inputs aims to pro-
vide better conformance between the implementation
patterns and the abstract service code.

Figure 12 depicts the inputs and outputs of the service
builder. The system developer takes a service guideline
as the main input for generating the ASC as the main
output and uses his/her technical skills to choose an
appropriate implementation template and to fill the blanks
with the other specific information. As a by-product, a
new implementation pattern may be generated.

The service builder is a definition tool whose output is
an abstract definition of a service written in a computer-
like language. Some service components - especially
process flow and policy description - must have a speci-
fication syntax whose dictionary embraces all possible
structures. For a process definition, flow control entities
must be part of the syntax as conditional deviations,

{ . 3
i Creationof new |

Design
Pattern

Service
Guideline

| Service

Q Designer
5
G
o

Analyst

Figure 11 Inputs and outputs of the service designer.

Page 14 of 20

Creationof new
Implementation
Pattern

i
<sre | Cmmmm-eol o

Abstract
Service Code

Service |
Guideline

\
'
'
'
i
i

Service
Builder

Developer

Figure 12 Inputs and outputs of the service builder.

loop occurrences, and external invocations in such a
way that the developer is enabled to define every
possible execution flow. The same reasoning can be
extended to apply to policies. A policy, as defined in the
literature, is composed of mandatory parts that demand
a language with specific syntax and semantics.

Advanced versions of the service builders may provide
many features for defining processes and policies, for
instance, whereas simpler versions must provide at least
the most basic structures. The latter will demand more
effort from the system developer but will allow any flow
to be defined. Our service builder belongs in the second
class, meaning that it is a simple tool. The service
builder is considered the main tool of the pattern-based
approach since it provides higher levels of automation
than the quasi-manual approach.

The service compiler is the tool that translates the
abstract service code into an executable service code for
a particular target service execution engine. The transla-
tion from the ASC into the ESC, using compilation tem-
plates, is allowed because the ASC syntax is fragmented,
meaning that the attributes and values of each fragment
can be read by the service compiler and translated into a
computer language. The specific computer language that
has been chosen as the standard for template translation
may have implementation issues related to scope decla-
rations and support files, which are not easily resolved
by a simple translator.

Unlike the service designer and builder, where the use
of patterns is optional, for the service compiler, the use
of compilation templates is mandatory because it is a
fully automated tool. The compilation templates are
dictionaries that keep record of how each part of the
ASC syntax should be addressed by the compiler in
the corresponding executable language. Templates
follow a limited yet complete syntax that refers to every
possible part of policies, assignments, and processes.

Azevédo et al. Journal of the Brazilian Computer Society 2014, 20:2
http://www.journal-bcs.com/content/20/1/2

Summarizing, all tokens such as conditionals, loops,
operators, and literals in the ASC syntax must have an
equivalent in the technology-specific language of the ESC
in order for the compiling process to succeed. The service
compilation process is based on Simple Transformer
(SiTra), a model transformation framework targeted at
creating prototypes, which has been used for the transla-
tion of OWL-S into BPEL [30].

The service compiler also has the ability to generate
new compilation templates, as depicted in Figure 13.
The system administrator configures the compiler, which
does not need human intervention to generate the exe-
cutable service code, using a compilation template.

Implementation issues

A service specification, as described here, involves a set
of functions with a certain level of independence from
each other and from the service they belong to. This
resemblance to the object-oriented (OO) paradigm is
intentional and aims to take advantage on some of the
known characteristics of OO, such as modularity and
aggregation based on roles.

We developed a proof-of-concept prototype as an
evolution of the work for the quasi-manual approach,
and in this section, we focus on the outcomes of the
proposal, which were service guidelines, ASC and ESC.
Unlike the service builder for the quasi-manual approach
where policies and processes are targeted to XACML and
BPEL, the ASC is based on generic description languages,
not running technologies.

ASC is entirely written in OWL and particularly
based on the Open Group SOA Ontology. However,
since this ontology does not fulfill all the needs of
the service code, it was extended. The ASC uses
OWL-S for the specification of the process phase of
the service refinement cycle because OWL-S contains
language structures (e.g., decision and repetition) needed
for representing a workflow.

Compilation
Template

Creationof new
i compilation templates |

Abstract
Service Code

Service
Compiler

-
Administrator

Figure 13 Service compiler inputs and outputs.

Page 15 of 20

As far as the specification of abstract policies is
concerned, there is an additional challenge involved in
this task. Policy languages are usually tied to particular
application domains, and even more general policy
languages provide the means for binding their operation
with environment. Therefore, the specification of ab-
stract policies and their translation into executable pol-
icy language through the use of templates pose a new
level of difficulty to the specification. Table 2 presents
the main attributes for the specification of a generic pol-
icy considered for the ASC. An abstract policy language
based on OWL and SWRL [23] was designed in order to
have a generic description according to Table 2. SWRL
has been chosen because it includes a high-level abstract
syntax for rule definition in OWL, which gives more
descriptive power to the language. Also, the specification
of constraints is completely fulfilled by SWRL in our
proposal. Since policies refer to the external world by
calling services through the binding phase, all external
references and details of particular application domains
are performed by services.

As far as the specification of patterns is concerned, we
think patterns should have the same structure as the
outcomes whose creation they assist with. Once patterns
can be considered ‘incomplete’ outcomes, the difference
between them (i.e., between patterns and outcomes) is
that patterns are identified by special tags in the syntax
that must be properly replaced during the service
creation process. For design patterns, these tags contain
hints that must be replaced for the specification of a
service guideline, whereas for implementation patterns,
the tags represent blanks that must be filled according
to the details of each service.

Specification of compilation templates is also an
important part of a real deployment of a pattern-based
service creation tool. In order for code generation to
take place, the parsing for each particular executable
code consists basically of two entities as defined in the
template: boundaries and body. Boundaries are snippets
that must be present at the beginning and at the end of
the codes, according to the syntax of any particular

Table 2 Attributes of a generic policy description

Attribute Description

Policy Encapsulates all necessary information for the processing
of rules
Target Responsible for the matching (selection) during policy
evaluation. Each policy has one target, and each target
may contain many name-value attributes
Constraint After the policy matching, more specialized rule verification
must be done. A constraint may trigger many actions
Action A description of an action to be taken
Attribute A name-value entity responsible principally for the matching

of policies

Azevédo et al. Journal of the Brazilian Computer Society 2014, 20:2
http://www.journal-bcs.com/content/20/1/2

language. The body stands for the actual functionality as
defined by the business analyst and implemented by the
system developer. Each ASC fragment is translated into
up to three types of executable code snippets: before
location, in location, and after location. Before-location
code is necessary for initializations, and it appears
immediately after the boundary declaration. In-location
code, as the name implies, refers to blocks placed exactly
where they appear in relation to the other blocks, com-
plying with the service specification in the ASC. After-
location code is only used if the technology demands
certain terminations after the work is done. Templates
have pointers to assist with the positioning of those
particular code fragments within the translated code.
Figure 14 depicts the use of a compilation template as a
translation map from ASC into ESC.

Other points worth highlighting about compiling
templates and code generation concern the flexibility
and compatibility of the code. As mentioned before, the
templates are ‘hardcoded’ to the implementation patterns,
meaning the structures of the template must be mapped
to the programming language-specific structures. For this
reason, it is expected that some executable languages may
lack a compliant compiling template as well as that some
programming structures be left unattended after template
creation. About the compatibility of the compiled codes,
this proposal advises the usage of a supporting platform
which wraps the generated outputs in order to make
them compatible among each other. In the case pro-
posed in this paper, the service refinement cycle takes
this role, mixing in a single execution environment
the process workflows, policy entitling modules, and
underlying systems such as databases.

Executable
Service Code

Abstract
Service Code
Service Compiler

-

(BIC

ESC snippet \
[Start Boundary]
: ESC snippet
\ [End Boundary]

Compilation Template

Figure 14 A compilation template as a translation map from
ASC into ESC.

Page 16 of 20

Case study: DVD delivery

Continuing the example in the ‘Case study: DVD deliv-
ery’ subsection of the ‘Quasi-manual service creation’
section, John is the business man which intends to offer
a novel service. John should use a service designer in
order to obtain a formalized description to be developed
as the solution; nevertheless, differently from the quasi-
manual approach, he is allowed to refer to design
patterns, that is, he may follow an accepted model which
is likely to assist at least a big part of his intentions, in
the mentioned example, John should use a ‘web delivery
(DPT)’ pattern.

Afterwards, John should address an experienced
developer who is able to implement the solution in a
complete yet generic manner, the abstract service code,
so the solution is one step away from deployment.
Aware that John used the mentioned pattern, Paul, the
developer, may look for an implementation pattern
which complies with John's choice and assists the im-
plementation of the service components, through the
service builder; in this case, he uses the ‘DVD Delivery’
guideline along with the ‘web delivery (IPT) pattern.
The step in which the ASC is obtained is of paramount
importance because of its relevance in this service
description paradigm, and the paths from the ASC are
two way: (1) it is a representative yet generic description
of the service behavior, as designed by the entrepreneur
and implemented by the developer; then, it can be
shared as a formal description; and (2) it is ready to be
compiled to any underlying technology, whereas there is
an appropriate compiling template.

Hereinafter, the developer must take actions in order
to make the ASC description executable and available.
For that purpose, he must join a service provider com-
pany that offers possibly many different provisioning
plans. Examples of these plans are WS-BPEL, Java or C,
or others for workflow; XACML, Ponder, Rei, or others
for policy entitling; and LDAP, SQL, XPeer, etc. for
storage, among other standards that could be addressed
in a more evolved service creation framework.

The advantage over quasi-manual creation approach
is, additionally to the possible assistance by patterns, the
division of deliverables in another format, the ASC,
permits a bigger flexibility in deployment. Once the ASC
is available, the entrepreneur may choose one among
the many compiling templates, such as the ‘BPEL_-
XACML_SQL’ template of the example, offered by the
service provisioning company to get a customized ser-
vice code tailored to be executed on service refine-
ment cycle, which in turn will provide the abstraction
layer that will merge together all the generated
technology standards. Service compiler is the tool for
this function, and the administrator from a provision-
ing company is the one responsible for this phase.

Azevédo et al. Journal of the Brazilian Computer Society 2014, 20:2
http://www.journal-bcs.com/content/20/1/2

The whole process mentioned here can be found in
Figure 15.

Similar to the previous scenario, this approach also
tends to reduce development time and complexity due
to the same aforementioned reasons. In addition, one
should intuitively notice that it tends to improve the
quality of the developed deliverables since the design
and implementation patterns prevent incorrect service
descriptions by suggesting the use of valid and proven
solutions. In a first version of pattern-based approach,
the observed gain in description provided by design and
implementation patterns represented a step forward in
the specification automation. A larger step is made pos-
sible by the insights coming from the generic abstract
service code and the SiTra [30] approach, which lever-
aged the development of the fully automated part of the
creation - the service compiler.

Results and discussion

Increasing levels of semi-automation

Semi-automated service creation represents a good
balance between the manual and fully automated ap-
proaches mainly because a myriad of different techniques
may be explored with increasing complexity between both
extremes. Obviously, full automation is the ‘Eldorado’ that
is sought after in service creation, yet it remains an open
research problem. We advocate that experience with dif-
ferent levels of semi-automation will teach us important
lessons that are still missing in the path towards full auto-
mation. Semi-automated service creation is feasible and
may significantly contribute to accelerating the time to
market for the creation of new services.

Different levels of automation within semi-automated
techniques may require different skill sets and may pro-
vide different outcomes in terms of the user-friendliness
of the tool, its power and flexibility in expressing

“web delivery(DPT)" “web delivery(IPT)"

~
~
~

~
Service “DVD >

Designer delivery"

Paul

Service
Builder

BPEL_XACML_SQL

“Deliver
DVD"

&

Adm\inis‘rra'ror

Service Service
code Compiler

Figure 15 Use flow of pattern-based proposal to develop DVD
delivery service.

Page 17 of 20

business goals and technology characteristics, and its
ability to create meaningful services. Lower levels of
automation intrinsically demand more human inter-
action, whereas higher levels of automation reduce the
need for user intervention, thus speeding up the service
creation flow and providing cleaner outputs. Semi-
automated techniques tend to generate a more robust
code, for as long as the solutions prove to be correct,
and they grant the user less power to interfere in the
final lower level outcome. In effect, using a well-known
design and implementation patterns, we expect the
pattern-based approach to be less prone to errors.

For the proposed scenario, a fully automated approach,
in our vision, would discard the expertise of the devel-
oper, being able to ‘communicate’ directly with the
entrepreneur. That is to say, semantically described
services would be able to compose with each other from
high-level specifications. In other words, if the online
available services (DVD rental and delivery) are properly
described, with complete interfacing and behavior
details, a tool - the service designer - would translate the
semantics in service description to a human-friendly
language. A possible user-tool interaction should be
done through typed keywords. John defines the types,
for example, in this scenario, ‘DVD, rental, delivery,
address, billing, and semantic reasoner matches these
keywords with service description found in a repository.
A composition module, using the matching services,
considers the inputs and outputs and shows to the user
the possibly many compositions found, also in a high
level way, so the user can finally select the workflow
which is closest to the expected service (and then hire a
developer to adapt the workflow, if necessary). A similar
proposal to address automated service creation using
ontology descriptions for the types was developed in [8].

Comparison: quasi-manual vs. pattern-based approach
We developed two approaches for service creation and
found out that increasing the level of automation can
cause a significant improvement for the activities related
to service creation in terms of both human effort and
expressiveness of the solution. The quasi-manual approach
requires more manual effort to develop a new service,
whereas the pattern-based one requires a more elaborate
design and a more powerful tool in order to help service
creators.

Both approaches require skilled users, though most
likely with different skill sets, but the pattern-based
approach tends to soften the burden for business ana-
lysts and system developers by requiring less human
intervention. The quasi-manual approach requires the
business analyst to have a clear idea of the new service,
including the business goals and processes involved,
when operating the service designer tool. The system

Azevédo et al. Journal of the Brazilian Computer Society 2014, 20:2
http://www.journal-bcs.com/content/20/1/2

developer needs a simple and easy-to-understand service
guideline in order to ‘program’ the service. On the other
hand, within the pattern-based approach, the design pat-
terns may help the business analyst with the business
process, thus freeing him to focus on the service goals
and making the job more straightforward for the system
developer. As far as the skills needed for using the ser-
vice builder are concerned, both approaches may require
experienced system developers who can map a service
guideline into an abstract or executable service code.

All minimally automated service creation approaches
will require some effort for setting up the environment.
For the service builder, the most noticeable support
feature is a service directory with semantic discovery
and matching capabilities. This is a challenging problem
and therefore is considered to be out of the scope of this
paper, as we assumed in our prototype that all services
needed by the system developer might be easily found.
The pattern-based approach also requires libraries of
existing design patterns, implementation patterns, and
compilation templates. Otherwise, a real deployment will
demand much effort during the initial phase because
patterns and templates will have to be created from
scratch.

We expect that by increasing the levels of automation,
the service creation life cycle will be more efficient and
agile, thus decreasing the time to market for new ser-
vices. In this regard, the quasi-manual approach heavily
depends on the skills of its users, which makes it more
susceptible to errors that will require corrective main-
tenance. On the other hand, multiple development
cycles may be avoided by the pattern-based approach, as
long as its users are able to correctly use design and
implementation patterns, which are expected to be less
error prone. Also, service compilation is a completely
automated phase that barely influences the whole service
creation process. With these slow steps of improvement,
one divides the service creation task in smaller problems
in which it is simpler to perceive how automation can
be increasingly merged to the overall creation activity.
This insight inspires moving on in solving the smaller
problems priorly than attempting to embrace the whole
creation once the results are more straightforward and
prone to be understood and applied.

Service specification formats
The existence of a well-defined service specification
format, the service code, plays a paramount role in the
design of service creation approaches and tools. The
well-known and well-accepted service code makes the
expected outcomes of each phase - and the software
components used in the tools - clear.

Service creation should be performed without a need
to bind the solution to specific technologies at first, like

Page 18 of 20

in our pattern-based approach, where an intermediate
abstract service code is generated. A service specification
should contain the main components that consistently
define its behavior, constraints, and interfaces and
should be independent of the environment it is going to
be executed on. This approach can foster the inter-
change of services - which can be run in different data
centers in the cloud - between different organizations.
The translation of the abstract service code into execut-
able languages and standards should be left to the very
last moment, immediately before deployment.

Because execution engines and specification languages
do not follow a single standard, we think that an
approach that adds flexibility to service development
and deployment is welcome. That is to say, a unified,
generic description of the outputs (using ontologies, for
instance) plays such an important role because it permits
the sharing of a business idea and its deployment to
many possible technologies.

Next steps in semi-automation

Based on our experience, we aim at advancing the levels
of automation for semi-automated service creation
techniques and tools. Some features may be added to
the pattern-based approach to increase its levels of
automation and make easier the job of service creators:

e Strengthening the connecting between design and
implementation patterns. For example, the tool
may automatically suggest one (or various)
implementation pattern given an existing
design pattern.

e Providing auto-completion features for
automatically suggesting services that may be used
in a certain process.

e Adding reasoning features to particular parts of
the service builder that will automatically suggest
services that fit in the process. Those features
should be added carefully on a step-by-step basis
in order to make it useful for service creators.

e Creating patterns based on the analysis of common
existing service compositions. The service creation
tool might suggest new patterns based on a network
theory analysis of services, similar to the analysis of
scientific workflows in [31].

Critical evaluation

Despite the advances advocated by this proposal and the
results illustrated in this work, some downsides of the
approach must be presented as well. The most relevant
limitation takes place because of the most advanced
feature of the proposal - the compiling templates are not
able to translate to every programming language. Once
the proposal is targeted at fostering compositions, final

Azevédo et al. Journal of the Brazilian Computer Society 2014, 20:2
http://www.journal-bcs.com/content/20/1/2

service codes (i.e., executable service code) whose process
programming language is dissimilar or incompatible with
the workflow paradigm should not be expected as possible
outputs in this proposal.

The approaches described in this paper were focused
on service composition, i.e., allowing the designer to
coordinately connect available subservices in order to
construct a service with more final value; therefore, the
proposal should preferably be used to this end. Services
with extreme performance requirements, such as those
that are process intensive or depending on legacy
resources, are not observed. Since third party services
are usually being part of the composition, quality of
service for the final service is also an unattended issue.

The motivation that led us to have a web-based service
creation proposal limited the interaction ability of the
developer. The tool interacts at a high level, and if
advanced details of service components' description are
necessary, they must be done in the executable service
code level in the appropriate development environments.
This depletes all the advocated advantages of the
abstract service code. In order to solve this issue, an
advanced manner to interact with the generated ASC
has to be done and remain fully compliant with the
compiling templates and the service compiler.

Conclusions

In this paper, we highlight the idea that continuously
adding automated features to a service creation tool may
contribute significantly to understanding the main prob-
lems and challenges of this area. Consequently, this
approach will help to build up the knowledge needed to
enable a move towards higher levels of automation by
transferring parts of the human effort to the existing tools.

We proposed two approaches for service creation and
developed tools for them. We found out that increasing
the level of automation can bring about a significant
improvement for the activities related to this activity, in
terms of both human effort required and the expressive-
ness of the solution. The quasi-manual approach re-
quires more manual effort to develop a new service,
whereas the pattern-based one requires a more elaborate
design and a more powerful tool in order to help service
creators. Both are based on the service refinement cycle,
generate services in the form of service code, and are
based on a generic platform of a service creation tool,
which makes the job of executing and comparing differ-
ent approaches easier.

In terms of future work, we intend to continue devel-
oping new approaches that add new automated features
so that we can compare more than two approaches.
Also, we will work towards defining metrics for and
performing qualitative and quantitative comparisons
among different approaches for service creation.

Page 19 of 20

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions

EA carried out this work along with his master degree thesis, performing
state-of-the-art studies, implementing, testing and reporting the presented
solutions; CK conceived the study, participated in its design and coordination,
helped to draft the manuscr ipt and helped to revise its final version;

RD collaborated with the state-of-the-art research, gathering background
technologies and assisted the development of the prototypes; BO participated
in meetings to discuss and define the methods, contributing with ideas for
requirements of the solutions; DS participated in the design of the study,
discussed about alternative solutions which aided the definition of the
architecture of the implementations. All authors read and approve the final
manuscript.

Authors’ information

EA received his master's degree in Computer Science from the Federal University
of Pernambuco (Recife, PE, Brazil) in 2010. He is currently an assistant research
fellow in the Networking and Telecommunication Research Group (GPRT) at the
Federal University of Pernambuco. CK received his Ph.D. in Computer Science
from the Federal University of Pernambuco (Recife PE, Brazil) in 2003. He is an
associate professor of computer networks at the Federal University of the ABC in
Santo André SP, Brazil where he currently holds the position of provost for
graduate studies. His research interests include service-oriented computing, cloud
computing, service composition, policy-based management, Internet traffic
analysis, and complex networks. He is also a senior research fellow in the
Networking and Telecommunication Research Group (GPRT) at the Federal
University of Pernambuco. RD received his Ph.D. in Computer Science from the
Federal University of Pernambuco (Recife PE, Brazil) in 2012. He currently holds a
professorial position at the Federal Institute of Paraiba, in Campina Grande, Brazil
and is an assistant research fellow in the Networking and Telecommunication
Research Group (GPRT) at the Federal University of Pernambuco. His research
interests include service-oriented computing, service composition, autonomic
computing, and network management. BO has a Master of Science degree in
Computer Science and History of Ideas and Sciences from Uppsala University,
Sweden. He started in telecommunications when he joined Ericsson in the late
80s. In the mid 90s, he moved to IP technology, especially QoS, and was active
in IETF in the standardization of DiffServ and policy-based networking. Since
2005, he has focused on future networking technologies. DS received his Ph.D.
degree from Kent University in 1990. From 1990 to 1992, he was a research
fellow in the Computer Science Department, University College London. He is
currently a professor at the Computer Science Department of the Federal
University of Pernambuco, Brazil. He is one of the cofounders of GPRT, a research
group in the areas of computer networks and telecommunications. His current
research interests include traffic engineering of IP networks, wireless
communications, broadband access, and network management. He is a senior
member of the IEEE Communications Society and currently leads a number of
research projects.

Acknowledgements

This article and the thesis where this originated from were supported by the
Network and Telecommunications Research Group, from the Informatics
Centre in Federal University of Pernambuco, Brazil. Its funding was provided
by Ericsson Research, Sweden, which kindly endorsed the research inside
one of its ongoing projects and authorized its publication as well.

Author details

"Federal University of Pernambuco, Professor Moraes Régo Av.,, 1235, Cidade
Universitaria, Recife 50670-901, Brazil. “Federal University of ABC, Santa Adélia
St, 166, Bangu, Santo André 09210-270, Brazil. 3Ericsson Research,
Torshamnsgatan, 23, Kista, Stockholm 164 83, Sweden.

Received: 26 September 2013 Accepted: 7 November 2013
Published: 23 January 2014

References

1. Kamienski CA, Dantas R, Fildago J, Sadok D, Ohlman B (2010) Service
creation and execution with the service refinement cycle. In: NOMS 2010.
Network Operations and Management Symposium IEEE, Osaka, April 2010.
IEEE, Piscataway, pp 829-832, 63

Azevédo et al. Journal of the Brazilian Computer Society 2014, 20:2
http://www.journal-bcs.com/content/20/1/2

2. Erd T (2007) SOA Principles of service design, 1st edn. Prentice Hall, Boston

3. Estefan JA, Laskey K, McGabe FG, Thornton D (2008) Reference Architecture
for Service Oriented Architecture — Version 1.0. OASIS, 23 April 2008,
Available at: http://docs.oasis-open.org/soa-rm/soa-ra/v1.0/soa-ra-pr-01.pdf.
Accessed 8 April 2009

4. Curbera F, Duftler M, Khalaf R, Nagy W, Mukhi N, Weerawarana S (2002)
Unraveling the web services web: an introduction to SOAP, WSDL, and
UDDI. IEEE Internet Comput 6(2):86-93

5. Peltz C (2003) Web services orchestration and choreography. Comput Mag
IEEE 36(10):46-52

6. Bandara AK, Lupu EC, Moffett J, Russo A (2004) A goal based approach to
policy refinement. In: POLICY 2004. Proceedings of the Fifth IEEE
International Workshop on Policies for Distributed Systems and Networks,
New York, 7-9 June 2004. IEEE, Piscataway, pp 229-239

7. Rao J, Su X (2004) A survey of automated web service composition
methods. In: Cardoso J, Sheth A (eds) Semantic web services and web
process composition. First International Workshop, SWSWPC 2004, San
Diego, July 2004. Lecture notes in computer science, vol 3387. Springer,
Heidelberg, pp 43-54

8. Dantas R, Azevedo E, Dias C, Lima T, Sadok D, Kamienski CA, Ohlman B
(2011) Facilitating service creation via partial specification and automated
composition. [EEE World Congress on Services Composition Workshop,
Washington, DC, July 2011. IEEE, Piscataway, pp 303-310

9. Gannod G, Mudiam S, Lindquist T (2004) Automated support for service-
based software development and integration. J Syst Software 74:65-71

10. Agarwal V, Chafle G, Mittal S, Srivastava B (2008) Understanding approaches
for web service composition and execution. In: COMPUTE '08. Proceedings
of the 1st Bangalore Annual Compute Conference, Bangalore, January 2008.
ACM, New York

11. Jin'L, Pan P, Ying C, Liu J, Tian Q (2009) Rapid service creation environment
for service delivery platform based on service templates. In: IM '09. 11th
IFIP/IEEE International Symposium on Integrated Network Management,
Long Island, June 2009. IEEE, Piscataway, pp 117-120

12, Syu'Y, Ma SP, Kuo JY, FanlJiang YY (2012) A survey on automated service
composition methods and related techniques. 2012 IEEE Ninth International
Conference on Services Computing (SCC), Honolulu, June 2012. [EEE,
Piscataway, pp 290-297

13. Paulson LD (2003) Building rich web applications with Ajax. IEEE Computer
38(10):14-17

4. GWT Project (2006) Google, Inc,, Mountain View., http://code.google.com/
webtoolkit. Accessed 8 May 2013

15. The Eclipse Foundation (2013) Eclipse Foundation, Inc, Ottawa., http://www.
eclipse.org. Accessed 8 May 2013

16. Hayes B (2008) Cloud computing. Commun ACM 51(7):9-11, 71

17. Armbrust M, Fox A, Griffith R, Joseph AD, Katz R, Konwinski A, Lee G,
Patterson DA, Rabkin A, Stoica |, Zaharia M (2009) Above the clouds: a
Berkeley view of cloud computing. Technical report (UCB/EECS-2009-28),
University of California, Berkeley

18. The Open Group (2010) Service-oriented architecture ontology, technical
standard, draft 3.2, http://www.opengroup.org/soa/source-book/ontology.
Accessed 7 May2013

19. McGuinness DL, van Harmelen F (2009) OWL 2 web ontology language
document overview. W3C recommendation., http://www.w3.0rg/TR/owl2-
overview. Accessed 22 Jan 2012

20. OASIS (2007) Web services business process execution language, version
2.0. OASIS, Burlington

21, Martin D, Burstein M, Hobbs J, Lassila O, McDermott D, Mcllraith S, Narayanan
S, Paolucci M, Parsia B, Payne T, Sirin E, Srinivasan N, Sycara K (2004) OWL-S:
semantic markup for web services. W3C, Cambridge, MA, USA

22. Parducci B, Lockhart H, Levinson R, McRae M (2005) Extensible access
control markup language, version 2.0. OASIS standard.,, http://www.o0asis-
open.org/committees/xacml. Accessed 22 Jan 2012

23, W3C (2004) SWRL: a semantic web rule language combining OWL and
RuleML. SWRL project homepage.,, Available at http://www.w3.0rg/
Submission/SWRL Accessed 8 May 2013

24. Kamienski CA, Fidalgo J, Dantas R, Sadok D, Ohlman B (2007) XACML-based
composition policies for ambient networks. In: POLICY '07. Eighth IEEE
International Workshop on Policies for Distributed Systems and Networks,
Bologna, June 2007. IEEE, Piscataway, pp 77-86

25.

26.

27.

28.

29.

30.

31

Page 20 of 20

MacKenzie CM et al (2006) Reference Model for Service Oriented
Architecture — Version 1.0, OASIS, 2006., http://www.o0asis-open.org/
committees/soa-rm, accessed 27/09/2011

Workflow Management Coalition (2008) XML process definition language
(XPDL), WFMC-TC-1025, version 2.1. Workflow Management Coalition, Hingham
Damianou N, Dulay N, Lupu E, Sloman M (2001) The ponder policy
specification language. In: Sloman M, Lupu E, Lobo J (eds) Policy for
distributed systems and networks. International Workshop, POLICY 2001
Bristol, UK, January 29-31, 2001. Lecture notes in computer science, vol
1995. Springer, London, pp 18-38

Kagal L, Finin T, Joshi A (2003) A policy language for a pervasive computing
environment. In: POLICY '03. Proceedings of the 4th IEEE International
Workshop on Policies for Distributed Systems and Networks, June 2003.
IEEE, Washington, DC, p 63

Erl T (2009) SOA Design patterns, 1st edn. Prentice-Hall, Boston

Bordbar B, Howells G, Evans M, Staiopoulos A (2007) Model transformation
from OWL-S to BPEL via SiTra. In: ECMDA-FA'07. Proceedings of the 3rd
European Conference on Model Driven Architecture-Foundations and
Applications, Haifa, June 2007. Lecture notes in computer science, vol 4530.
Springer, Heidelberg, pp 43-58

Tan W, Zhang J, Foster | (2010) Network analysis of scientific workflows: a
gateway to reuse. |[EEE Comput 43(9):54-61

doi:10.1186/1678-4804-20-2

Cite this article as: Azevédo et al.: A path to automated service creation
via semi-automation levels. Journal of the Brazilian Computer Society

2014 20:2.

Submit your manuscript to a SpringerOpen®
journal and benefit from:

» Convenient online submission

» Rigorous peer review

» Immediate publication on acceptance

» Open access: articles freely available online
» High visibility within the field

» Retaining the copyright to your article

Submit your next manuscript at » springeropen.com

http://docs.oasis-open.org/soa-rm/soa-ra/v1.0/soa-ra-pr-01.pdf
http://code.google.com/webtoolkit
http://code.google.com/webtoolkit
http://www.eclipse.org/
http://www.eclipse.org/
http://www.opengroup.org/soa/source-book/ontology
http://www.w3.org/TR/owl2-overview
http://www.w3.org/TR/owl2-overview
http://www.oasis-open.org/committees/xacml
http://www.oasis-open.org/committees/xacml
http://www.w3.org/Submission/SWRL
http://www.w3.org/Submission/SWRL
http://www.oasis-open.org/committees/soa-rm
http://www.oasis-open.org/committees/soa-rm

	Abstract
	Background
	Service-oriented computing
	Service composition
	Policy refinement
	Related work
	Case study
	Service refinement cycle and service code
	The service refinement cycle
	The service code

	Service creation and execution

	Methods
	Service creation tool
	Service creation approaches
	Architecture of a generic service creation tool

	Quasi-manual service creation
	Overview
	Outcomes: service guideline and service code
	Modules: service designer and service builder
	Case study: DVD delivery

	Pattern-based service creation
	Overview
	Outcomes
	The use of patterns and Templates
	Module: service designer, service builder, and service compiler
	Implementation issues
	Case study: DVD delivery

	Results and discussion
	Increasing levels of semi-automation
	Comparison: quasi-manual vs. pattern-based approach
	Service specification formats
	Next steps in semi-automation
	Critical evaluation

	Conclusions
	Competing interests
	Authors’ contributions
	Authors’ information
	Acknowledgements
	Author details
	References

