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Abstract

Time-resolved photoluminescence (PL) was applied to study the dynamics of carrier recombination in GaInNAsSb
quantum wells (QWs) emitting near 1.3 μm and annealed at various temperatures. It was observed that the
annealing temperature has a strong influence on the PL decay time, and hence, it influences the optical quality of
GaInNAsSb QWs. At low temperatures, the PL decay time exhibits energy dependence (i.e., the decay times change
for different energies of emitted photons), which can be explained by the presence of localized states. This energy
dependence of PL decay times was fitted by a phenomenological formula, and the average value of E0, which
describes the energy distribution of localized states, was extracted from this fit and found to be smallest (E0 =
6 meV) for the QW annealed at 700°C. In addition, the value of PL decay time at the peak energy was compared for
all samples. The longest PL decay time (600 ps) was observed for the sample annealed at 700°C. It means that
based on the PL dynamics, the optimal annealing temperature for this QW is approximately 700°C.

Keywords: GaInNAsSb; Quantum wells; Time-resolved spectroscopy
Background
Incorporation of small amounts of nitrogen into a GaI-
nAs host causes a strong reduction of the energy gap [1]
as well as a reduction of the lattice constant. A few per-
cent of nitrogen is enough to tune the energy gap of
GaInNAs to the 1.3- and 1.55-μm spectral regions. Be-
cause of that, GaInNAs alloys have attracted much at-
tention for low-cost GaAs-based lasers operating at II
and III telecommunication windows [2-4]. However, the
optical quality of Ga(In)NAs alloys strongly deteriorates
with increasing nitrogen concentration due to phase seg-
regation and the incorporation of point defects such as
gallium interstitials [5], nitrogen interstitials [6,7], ar-
senic antisites [6], and gallium vacancies [6]. Post-
growth annealing is the standard procedure to remove
defects in an as-grown material to improve its optical
quality [8,9]. The optical quality of strained GaInNAs al-
loys can also be improved by adding antimony to form
GaInNAsSb alloys with 2% to 3% Sb concentration. This
is due to the reactive surfactant properties of antimony,
which reduce the group III surface diffusion length
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suppressing phase segregation and roughening and
thereby improving alloy homogeneity [10,11]. The in-
corporation of antimony reduces the energy gap of the
alloy, and hence, it is possible to reach longer emission
wavelengths with lower nitrogen concentrations. Using
GaInNAsSb quantum wells (QWs), lasers and vertical-
cavity surface-emitting lasers operating at 1.3 μm [12]
and 1.55 μm [13,14] have been demonstrated. However,
the quality of an as-grown GaInNAsSb material can still
be improved by post-growth annealing [15,16]. The ef-
fects of annealing on the optical properties of GaIn-
NAsSb QWs have been studied in detail (see, for
example, [13] and references therein). The annealing
conditions for dilute nitrides are optimized based on the
peak or integrated photoluminescence (PL) intensity. Re-
cently, we demonstrated that the peak PL intensity in
1.3-μm GaInNAsSb QWs depends not only on the op-
tical quality of the QW but also on the efficiency of car-
rier collection of the QW [17]. In this paper, we applied
time-resolved photoluminescence (TRPL) to investigate
the carrier dynamics in GaInNAsSb QWs at low
temperature and identify the optimal annealing condi-
tions based on the parameters that describe the carrier
dynamics.
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Figure 1 PL decay curves and decay time constants. (a) PL
decay curves (taken at the maximum of PL emission) for samples
annealed at three different temperatures. There is a clearly visible
influence of the annealing temperature on the decay rate. Lines
represent single exponential fit. (b) Decay time constants for
all structures.
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Methods
The QW structures used in this study were grown by
molecular beam epitaxy on (001) n-type GaAs substrates
and consist of a 300-nm GaAs buffer layer, a 7.5-
nm Ga0.66In0.34 N0.008As0.97Sb0.022 QW surrounded by
20-nm strain-compensating GaN0.008As0.992 barriers, and
a 50-nm GaAs cap layer. It is worth noting that
GaN0.008As0.992 barriers do not compensate the strain in
the QW region, but they help improve the structural
quality of the Ga0.66In0.34 N0.008As0.97Sb0.022 layer. After
the growth, the samples were annealed for 60 s at differ-
ent temperatures from 680°C to 800°C in 20°C steps.
The growth conditions are similar to those used for a
1.55-μm GaInNAsSb QW and can be found elsewhere
[18]. For the TRPL experiment, the samples were held in
a vapor helium cryostat allowing measurements at vari-
able temperatures. They were excited by a mode-locked
Ti:sapphire laser with a 76-MHz repetition rate and a
pulse duration of 150 fs. The laser wavelength was set to
800 nm and its average excitation power density was ap-
proximately 3 W/cm2. The PL signal was dispersed by a
0.3-m-focal length monochromator, and the temporal
evolution of the PL signal was detected by a streak cam-
era with S1 photocathode while the time-integrated
spectrum was recorded by an InGaAs CCD camera. The
effective time resolution of the system is approximately
20 ps.

Results and discussion
Figure 1a shows the temporal evolution of the PL signal
from the samples annealed at various temperatures
taken at the peak energy of the PL spectrum at T = 5 K.
The decay curves can be very well fitted by a single ex-
ponential decay: I ~ exp(t / τPL), where τPL is the PL
decay time constant.
Figure 1b shows τPL constants extracted by fitting the

experimental data. It is clearly visible that the annealing
temperature has a significant influence on the PL decay
time. The τPL equals approximately 350 ps for the as-
grown QW and increases after annealing to 600 ps for
the QW annealed at 700°C. At higher annealing temper-
atures, τPL decreases with increasing annealing tempe-
rature reaching values comparable to the τPL of the
as-grown QW for annealing temperatures in the 780°C
to 800°C range.
The τPL constant is directly related to the optical qual-

ity of QW since τPL can be expressed in terms of the ra-
diative (τr) and nonradiative (τnr) lifetimes according to
the formula 1 / τPL = 1 / τr + 1 / τnr. The radiative life-
time is proportional to the wave function overlap which
does not change significantly during annealing. Obvi-
ously, the annealing can cause some QW intermixing
[19,20], but this change in QW potential shape is too
small to significantly reduce the wave function overlap.
Therefore, any differences in τPL arise from differences
in τnr. Stronger nonradiative recombination leads to
shorter τnr and hence shorter τPL. From the TRPL stud-
ies (see Figure 1), we can conclude that the optimal an-
nealing temperature (in the sense of the optical quality
of the QW layer) is approximately 700°C as it yields the
longest τPL. Annealing at higher temperatures creates
defects that act as new centers of nonradiative recom-
bination that degrade the optical quality of the QW.
This conclusion is consistent with our room-tempe-
rature TRPL studies for this set of samples [17]. It is
worth noting that the low-temperature TRPL measure-
ments presented in this work were performed at a rela-
tively low excitation power density (3 W/cm2) to
minimize the saturation of the localized states [21],
which can obscure the differences between the samples
annealed at different temperatures.
Despite the fact that antimony improves the homogen-

eity of GaInNAsSb QWs, we found evidence of carrier
localization in the investigated QW structures at low tem-
peratures. Figure 2 shows the temperature dependence of



Figure 3 Temporal evolution of PL spectrum (i.e., streak image) for
(a) as-grown and (b) annealed (720°C) GaInNAsSb QW samples.Figure 2 Dependence of PL peak maximum vs. temperature for

as-grown (square) and annealed (720°C) (diamond) GaInNAsSb
QW samples.

(a)

(b)

Figure 4 Temporal evolution of PL intensity and dependence
of decay time constant. (a) Temporal evolution of PL intensity at
different energies of detection. (b) Dependence of decay time
constant versus energy together with time-integrated
TRPL spectra.
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the peak PL energy for the as-grown and annealed GaIn-
NAsSb QWs (obtained under pulse excitation with an
average excitation power density of 3 W/cm2). The ob-
served higher emission energies for the annealed QW are
due to a rearrangement of the nitrogen nearest-neighbor
environment upon annealing [22,23]. In both cases, we
observe an S shape (but it is much stronger for the as-
grown sample) in the temperature dependence of the peak
PL energy, which is characteristic of a system where car-
rier localization is present [24-27]. The initial redshift is
caused by a redistribution of excitons over deep localized
states, while the blueshift is due to the escape of excitons
to delocalized states (blueshift). The further redshift of the
peak PL energy follows the reduction of energy gap with
temperature. Changes in peak PL energy are stronger for
the as-grown sample than for the annealed sample (see
Figure 2). As we can see, annealing reduces the blueshift
of the PL peak at low temperature, which means that an-
nealing reduces the density of localized states and/or re-
duces their localization energy. The presence of localized
states also has a significant impact on the dynamics of PL
at low temperature causing the PL decay times to be
longer on the low-energy side than on the high-energy
side. Figure 3 shows the temporal evolution of the PL
spectrum (i.e., streak image) for (a) as-grown and (b)
annealed (720°C) GaInNAsSb QWs. The characteristic fea-
ture of PL dynamics in dilute nitride [24,28] and other
[29-33] QW systems with localization effects (i.e., strong
asymmetry of PL decay time at 5 K) is visible in both cases,
but it is stronger for the as-grown sample. An example of
the detailed analysis of PL decays at different energies is
presented in Figure 4a,b. We can see that the PL decay at
the high-energy side is faster than that at the low-energy
side changing from approximately 100 ps to approxi-
mately 1,000 ps. This effect is due to the carrier
localization as is the S-shaped temperature dependence
of the PL peak energy. Exciton trapping and transfer be-
tween different localized states cause the PL decay time to
change with the emission energy [26,34]. The values of τPL
are reduced at higher energies because the exciton recom-
bination dynamics are affected by the energy transfer
process to lower energy states. Simultaneously, the exciton
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transfer from low energy states to high energy states is
damped since excitons do not have sufficient thermal en-
ergy for such a transfer. Due to this asymmetry of exciton
hopping rate between low and high energy localizing states,
the τPL at the low-energy side is elongated due to refilling
of states by relaxing excitons. The theoretical simulation of
PL spectra presented in the literature indicates that the
density of states is proportional to exp(−E/E0) in dilute ni-
tride structures [35-38]. In such case, the energy depend-
ence of the PL decay time can be described by the
following formula [34]:

τPL Eð Þ ¼ τrad
1þ exp E−Emð Þ=E0f g ð1Þ

where E0 is an average energy for the density of states,
τrad is the maximum radiative lifetime, and Em is defined
as the energy where the recombination rate equals the
transfer rate [26,34,39]. The obtained energy dependence
of the PL decay time can by very well fitted by Equation 1
as shown in Figure 4b. Using this approach to analyze
TRPL data, we are able to extract the E0 parameter
which describes the distribution of localized states. The
fits of experimental data to Equation 1 are shown in
Figure 5. It is observed that the value of the E0 param-
eter is clearly higher for the as-grown QW than for the
annealed QWs. Increasing the annealing temperature
up to 700°C reduces the average energy of localized
states E0 up to 6 meV. As the annealing temperature is
further increased, E0 starts to increase due to degrad-
ation of the optical quality of the QW. This means that
annealing not only reduces the density of localized
states but also changes the average energy distribution
of these states. Despite the large uncertainty in the
Figure 5 Average energy of localized states E0 as a function of
annealing temperature.
values of the E0 parameter, its dependence on annealing
temperature correlates well with the dependence on an-
nealing temperature of the PL decay time at the peak PL
energy (see Figure 1). The smallest value of the average
localization energy E0 is observed for the sample annealed
at 700°C which is characterized by the longest decay time.
This means that annealing reduces both the number of
nonradiative recombination centers and the deepness of
localizing states.
The values of E0 for the annealed 1.3-μm GaInNAsSb

QWs are in the range of 6 to 7 meV. These values are
comparable to the values of E0 for dilute nitrides re-
ported in the literature: approximately 6 meV for a
GaInNAs multiple QW structure with 1.5% of nitrogen
[26] and approximately 9 meV for a GaInNAs epilayer
with 1% of nitrogen [28].
Conclusions
In conclusion, 1.3-μm GaInNAsSb QWs annealed at
various temperatures (from 680°C to 800°C in 20°C
steps) were studied by low-temperature TRPL. It has
been shown that exciton dynamics in these QWs change
significantly with annealing temperature. Due to carrier
localization, strong energy dependence of the PL decay
time is observed for all samples at low temperatures.
This energy dependence was fitted by a phenomeno-
logical formula that assumes an exponential distribution
of localized states. The average value of E0, which
describes the energy distribution of localized states,
has been extracted from this fit, and its dependence
on annealing temperature was studied. The smallest
value of E0 was observed for the GaInNAsSb QW
annealed at 700°C. In addition, the PL decay time
measured at the peak PL energy was compared for all
samples. The longest PL decay time was also ob-
served for the QW annealed at 700°C. Based on these
parameters that describe the carrier dynamics at low
temperature, it can be concluded that the optimal an-
nealing temperature for this QW is approximately
700°C.
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