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Abstract

The output power of the light from GaN-based light-emitting diodes (LEDs) was enhanced by fabricating gold (Au)
nanoparticles on the surface of p-GaN. Quasi-aligned Au nanoparticle arrays were prepared by depositing Au thin
film on an aligned suspended carbon nanotube thin film surface and then putting the Au-CNT system on the
surface of p-GaN and thermally annealing the sample. The size and position of the Au nanoparticles were confined
by the carbon nanotube framework, and no other additional residual Au was distributed on the surface of the
p-GaN substrate. The output power of the light from the LEDs with Au nanoparticles was enhanced by 55.3% for
an injected current of 100 mA with the electrical property unchanged compared with the conventional planar LEDs.
The enhancement may originate from the surface plasmon effect and scattering effect of the Au nanoparticles.
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Background
Much research has been devoted towards gallium nitride
(GaN)-based semiconductor devices, especially in terms
of applications for light-emitting diodes (LEDs), which
operate in the blue and green wavelength regions. GaN-
based LEDs have attracted interest for use in full-color
display panels and solid-state lighting [1] because they
have advantages such as low energy consumption, long
lifetimes, and relatively small sizes. However, in conven-
tional planar LEDs, the light extraction efficiency is lim-
ited by several factors including the high refractive index
of p-GaN (approximately 2.52), leading to a low total in-
ternal reflection (TIR) angle [2]. To enhance the output
light power, various approaches, such as surface textur-
ing [3,4], photonic crystals [5-7], and metal oxide nano-
particles [8-11], have been studied.

Surface plasmons (excitations on a rough metallic sur-
face by the interaction between light and the metal
nanoparticles) were suggested as a way to significantly
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enhance the light emission efficiency in LEDs [12]. Se-
veral methods have been suggested to fabricate metal
nanoparticles (NPs) on LEDs to improve their efficiency.
These include thermal annealing process [13-16], chem-
ical synthesis [17], and gas etching technique. For noble
metal nanoparticles on GaN surfaces, the collective os-
cillations of the electrons are localized surface plasmons
(LSPs) [18,19]. Under the resonance condition, this LSP
effect enables the metallic nanoparticles to capture the
trapped light in the p-GaN layer of the LEDs, enhancing
the extracted efficiency of the light. However, the LSP
resonance effect is affected by the geometry and separ-
ation of the nanoparticles. When noble metal nanopar-
ticles are fabricated with a thermal annealing process, it
is important to control the distribution and size of the
nanoparticles. Furthermore, the residual metal after the
annealing process has a negative influence on the device
performance.

We report a simple method for making quasi-aligned
Au nanoparticle arrays on p-GaN surfaces using supe-
raligned multiwall carbon nanotubes (CNTs). The LED
devices containing quasi-aligned Au particles exhibited
efficient electrical properties, and the optical output po-
wer was significantly increased compared with devices
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without Au particles. By eliminating any chemical or
etching processes, this method has potential for excellent
integration with semiconductor technologies. Further-
more, we observed that the quasi-aligned Au nanoparticle
arrays also had an effect on the polarization performance
of the LEDs.

Methods

The CNT thin films were directly drawn out from the
CNT arrays [20], which were composed of CNTs with
diameters around 10 nm and were aligned parallel in
one direction. This method is convenient for mass pro-
duction of CNT films at a low cost. In our experiment,
the CNT thin films were pulled out from a superaligned
CNT array grown on a 4-in.silicon wafer and fixed to
metal frames. We then fabricated the Au films using
electron beam evaporation on the suspended CNT films
with thicknesses in the range of 1 to 5 nm. The GaN
LED wafers consisted of a 200-nm-thick p-type GaN
layer, a layer containing InGaN/GaN quantum wells,
an n-type GaN layer, and a GaN buffer layer. The as-
prepared Au-CNT films were transferred directly onto
the GaN substrates. We used alcohol on the Au-CNT/
GaN interface to make the carbon nanotubes shrink,
allowing the film to form a close contact with the sub-
strate. Afterwards, the Au-CNT films were thermally
annealed at 600°C for 30 min in ambient air, and then
the CNT films were completely removed because of the
high temperature, inhibiting a decrease in the transmit-
tance of the carbon nanotubes. During the annealing
process, the metal Au films in the Au-CNT system formed
Au nanoparticles that were bound to the surface. The
fabrication process of the Au nanoparticles using an
Au-CNT system is illustrated in Figure 1.

A scanning electron microscope (SEM) image of a car-
bon nanotube thin film is shown in Figure 2a. Figure 2b,c
shows top views of the scanning electron microscope im-
ages of the Au nanoparticles on GaN substrates that were
derived from the 2- and 5-nm Au-CNT systems through
an annealing process. The schematic representation of a
GaN LED with embedded Au nanoparticles is shown in
Figure 2d with a cross-sectional view of the local region.
From Figure 2, it can be seen that the Au nanoparticles
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distributed along the former CNT path and the quasi-
aligned particle arrays were formed. The CNT films played
an important role in acting as a frame and could be easily
removed with an annealing process. The Au was deposited
around the CNTs, and there was no redundant Au depo-
sited on the device surface. Thus, there was no residual
Au that needed to be removed after the annealing process,
preventing any negative impacts on the performance of
the device from the optical and electrical aspect. Further-
more, we could control the distribution of the nanoparti-
cles by adjusting the deposition volume. The size and
density of the Au nanoparticles depended on the thickness
of the Au film evaporated on the CNTs. Larger particles
and a higher density distribution could be fabricated from
the Au-CNT system with a thicker Au film. The size of
the particles and their quantity changed continuously with
the Au thickness on the CNT films. Figure 2 shows a
comparison of the 2- and 5-nm Au-CNT systems to inves-
tigate the morphology of the Au nanoparticles obtained.
Compared with the Au nanoparticles derived from the
2-nm Au-CNT system, the Au nanoparticles derived from
the 5-nm Au-CNT system were larger in both size and
quantity. The average diameters were around 20 to 25 nm
and 30 to 35 nm for the nanoparticles derived from the
2- and 5-nm Au-CNT systems, respectively. The heights
were measured using an atomic force microscope (AFM)
acquired with a Veeco Dimension V (Veeco Instruments
Inc., Plainview, NY, USA). The spaces between the nano-
particles were from 20 to 70 nm for the 2-nm Au-CNT
system. The spaces between the nanoparticles from the
5-nm Au-CNT system were around 30 to 70 nm.

After fabricating the Au nanoparticles, the GaN wafers
were used to fabricate LEDs using standard procedures
with a mesa area of 1 mm?> A transparent conducting
layer (TCL) of Ni (2 nm)/Au (5 nm) was deposited on
the p-GaN surface. Ni (5 nm)/Au (100 nm) electrodes
were then deposited by photolithography exposure and
electron-beam evaporation on the n-GaN layer and the
TCL as n- and p-pads, respectively. For comparison, a
standard LED device was fabricated with a TCL depo-
sited directly on the p-GaN surface with all other fabri-
cation processes kept the same as those used for the Au
nanoparticle LEDs.
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Figure 1 Fabrication process of the Au nanoparticles using an Au-CNT system.
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with embedded Au nanoparticles.

Figure 2 SEM images and schematic 3D representation. (a) SEM image of a carbon nanotube thin film (the scale bar is 2 pm). SEM images of
Au nanoparticles from a (b) 2-nm and (c) 5-nm Au-CNT system where the scale bars are 500 nm. (d) Schematic 3D representation of a GaN LED

-

Results and discussion

To evaluate the optical properties of the as-prepared
LEDs, we performed electroluminescence (EL) spectros-
copy experiments for all of the devices. The EL spectros-
copy was measured from the top of the samples with

forward injection currents from 10 to 100 mA at room
temperature. Figure 3 shows that the devices with and
without Au nanoparticles exhibited similar spectra peaks
at 470 nm and similar full-width half-maximum values
of about 18 to 19 nm, demonstrating that the annealing
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Figure 3 EL spectra of LEDs. The LEDs are with Au nanoparticles from the 2- and 5-nm Au-CNT systems with an injection current of 100 mA
measured at room temperature, using a planar LED as a reference. The inset shows optical microscope images of the LEDs (a) without any Au
nanoparticles, (b) with Au nanoparticles from the 5-nm Au-CNT system, and (c) with Au nanoparticles from the 2-nm Au-CNT system. All of the
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process used to fabricate the Au nanoparticles on the
p-GaN layers did not damage the GaN-based LED struc-
ture. With an injection current of 100 mA, the EL spec-
tra intensities were enhanced by approximately 55.3%
and 41.3% for the Au nanoparticles fabricated from the
2- and 5-nm Au-CNT systems, respectively, compared
with the reference conventional planar LEDs. In our EL
spectra counting, the peak intensity of LEDs with Au
nanoparticles from the 2- and 5-nm Au-CNT systems
were 290.8 and 264.6, respectively, compared with 187.2
for conventional LEDs. According to the research status
of surface plasmon in LED devices based on GaN mate-
rials [12-14,16], the improvement in the optical output
power could be attributed to the surface plasmon effect
from the Au nanoparticles. Meanwhile, the Au nanopar-
ticles on the surface of LED devices could increase the
roughness of the surface. So the enhancement of optical
output power may also originate from the surface scat-
tering effect. When comparing the Au nanoparticles
from the 5-nm Au-CNT system with the LEDs that had
Au nanoparticle arrays from the 2-nm Au-CNT system,
the latter showed more enhanced light emission Optical
microscopy images of the LEDs with and without the Au
nanoparticles with an injection current of 100 mA are
shown in the inset of Figure 3. Further optimization of
the particle-forming conditions would lead to an even
higher increase in the efficiency of the LEDs with nano-
particles from the metal-CNT system in the future.
Figure 4a shows the optical output power for the LEDs
with and without Au nanoparticles on p-GaN surfaces
versus the injection current (L-I) characteristics for all of
the devices. The enhancement factor in the optical out-
put power increased as the injection current increased.
The voltage—current (I-V) characteristics for the LEDs
with and without an Au nanoparticle layer are shown in
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Figure 4b. The forward voltage for LEDs with Au nano-
particles on the p-GaN surface was 2.7 V, which is al-
most the same as that of the planar LEDs without any
Au nanoparticles, indicating that fabricating Au nano-
particles on the p-GaN surfaces did not cause the elec-
trical properties to deteriorate.

To further confirm these results, photoluminescence
(PL) spectra measurements were taken for all of the
LEDs. The samples were pumped at a normal incidence
angle with light from a He-Cd laser source (A = 325 nm)
with an excitation laser power of 10 mW at room
temperature. The polarization direction of the laser was
perpendicular to the Au nanoparticle chains. The laser
beam penetrated through an attenuator and then was
focused on the sample from the top using a 40 x UV ob-
jective lens with a focused spot diameter of approxi-
mately 5 um. Figure 5 shows that the results for the
devices from the PL measurements were in agreement
with that in the EL experiments. The PL intensity of the
LEDs with Au nanoparticles was much higher than that
for the planar LEDs. The PL intensity peaks of the
LEDs with Au nanoparticles were enhanced by 3.3
and 2.7 times for the 2- and 5-nm Au-CNT systems,
respectively.

As the Au nanoparticles were distributed along the
CNT direction, polarization measurements were per-
formed on the LEDs with Au nanoparticles for the
Au-CNT system. Figure 6 shows that the P polarization
is defined as the direction that is parallel to the quasi-
aligned Au particle array, while the S polarization in-
dicated the vertical direction of the array. There was
almost no difference in the intensity between the S and
P polarizations with respect to the planar LED, which il-
lustrated that the planar LED was a non-polarized lighting
source. For the LEDs with embedded Au nanoparticles
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Figure 4 Optical output power and I-V characteristics. (a) Optical output power as a function of the injection current with Au nanoparticles
from the 2- and 5-nm Au-CNT systems, compared with a planar LED. (b) -V characteristics of GaN LEDs with Au nanoparticles from the 2- and
5-nm Au-CNT systems compared with a planar LED.
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Figure 5 Room-temperature PL spectra of GaN LEDs. The LEDs are with Au nanoparticles for the 2- and 5-nm Au-CNT systems with a planar
LED as a reference.

derived from the Au-CNT system, polarization was ex-
hibited to a certain degree. The polarization degree was
approximately 2.1 and 1.3 for the LEDs with Au nanopar-
ticles derived from the 5- and 2-nm Au-CNT systems, re-
spectively. Compared with the Au nanoparticles derived
from the 2-nm Au-CNT system, the 5-nm Au-CNT sys-
tems could get Au nanoparticles with a more efficient
morphology array for the polarization and a relatively high
density. However, the distance between nanoparticle ar-
rays was irregular, and in one nanoparticle array, the space
between particles was relatively large in both situations.

This gives reason for the unsatisfactory polarization mea-
surements and also provides an effective method in opti-
mizing the Au nanoparticle system.

Conclusions

In conclusion, the optical output power of the LEDs was
enhanced by employing Au nanoparticles fabricated
from an Au-CNT system. The enhancement was mainly
originated from the surface plasmon effect and surface
scattering effect from the Au nanoparticles. The optical
output power of these LEDs was enhanced up to 55.3%
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Figure 6 Polarization measurements of LEDs with Au nanoparticles from 2- and 5-nm Au-CNT systems compared with planar LED.
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for an input current of 100 mA. The Au nanoparticle ar-
rays also affected the polarization to a certain degree.
Compared with the traditional metal annealing process,
Au nanoparticles with a more regular distribution and a
controllable size in the subwavelength region could be
made using this CNT-based annealing process. This me-
thod is simple, cheap, and suitable for mass production
in the semiconductor industry.
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