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High performance of carbon nanotubes/silver
nanowires-PET hybrid flexible transparent
conductive films via facile pressing-transfer
technique
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Abstract

To obtain low sheet resistance, high optical transmittance, small open spaces in conductive networks, and
enhanced adhesion of flexible transparent conductive films, a carbon nanotube (CNT)/silver nanowire (AgNW)-PET
hybrid film was fabricated by mechanical pressing-transfer process at room temperature. The morphology and
structure were characterized by scanning electron microscope (SEM) and atomic force microscope (AFM), the optical
transmittance and sheet resistance were tested by ultraviolet-visible spectroscopy (UV-vis) spectrophotometer and
four-point probe technique, and the adhesion was also measured by 3M sticky tape. The results indicate that in this
hybrid nanostructure, AgNWs form the main conductive networks and CNTs as assistant conductive networks are
filled in the open spaces of AgNWs networks. The sheet resistance of the hybrid films can reach approximately 20.9
to 53.9 Ω/□ with the optical transmittance of approximately 84% to 91%. The second mechanical pressing step can
greatly reduce the surface roughness of the hybrid film and enhance the adhesion force between CNTs, AgNWs, and
PET substrate. This process is hopeful for large-scale production of high-end flexible transparent conductive films.
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Background
Flexible transparent conductive films (FTCFs) have re-
ceived much attention because of their electrical and op-
tical properties and their feasibility in bending, folding,
and mounting to a surface, which have a great potential
to be applied in a large-area display, touch screen, light-
emitting diode, solar cell, semiconductor sensor, etc.
[1-7]. Indium tin oxide (ITO) as a traditional transparent
conductive material has been widely used for organic
solar cells and light-emitting diodes; however, it cannot
meet the market demand of FTCF due to its rising cost
and brittleness and hence it has limited applicability in
flexible electronic devices [8-10]. Carbon nanotubes
(CNTs) [11,12], graphene [13,14], or a hybrid of them
[15] have attracted significant interest and have been
successfully used as transparent conductive materials on
flexible substrates in organic light-emitting diodes and
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solar cells. However, their performance in terms of sheet
resistance and transparency is still inferior to ITO. Metal
nanowires (MNWs) are a promising replacement of
ITO, CNTs, or graphene because of their high dc con-
ductivity and optical transmittance [16,17]. Gold nano-
wire (AuNW) [18], silver nanowire (AgNW) [19-23],
copper nanowire (CuNW) [24-27], aluminium nanowire
(AlNW) [28], and hybrid [29,30] films have been demon-
strated to have optical transmittance comparable to an
ITO film at the same sheet resistance. Especially MNWs
on a plastic substrate can have better mechanical prop-
erties than ITO.
Nevertheless, researchers found that MNW films have

electrically nonconductive open spaces (approximately
200 to 1,000 μm), and the open spaces become bigger
for sparser networks [31,32], and some applications re-
quire continuously conductive or low nonconductive re-
gions. The large openings in a MNW network could be
problematic for some device applications when the
charge diffusion path length is less than the hole size.
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One strategy to overcome the defect of MNW films is to
fill components such as graphene [32-34], CNTs [35],
conductive polymers [36-39], or metal oxides [40], but
these reported methods may cause processing and cost
problems. Increasing the density of MNWs may also re-
duce the open spaces and the sheet resistance, but the
optical transmittance may also be greatly affected.
Meanwhile, the price of MNWs, especially AuNWs and
AgNWs, is still too high to be heavily used for decreas-
ing manufacturing cost. Significant improvement is
needed for new materials or processes which can bring
cost-effective and reliable transparent conductive films.
In this work, we attempted to mix and use CNTs and

AgNWs as conductive materials and transfer CNT/
AgNW hybrids on flexible polyethylene terephthalate
(PET) film and then form CNT/AgNW-PET films by a
facile two-step mechanical pressing technique. In this
design, AgNWs were the main conductive networks, and
CNTs as the assistant conductive networks were filled in
the open spaces of the AgNW networks; both of them
had good connections, which made the CNT/AgNW-
PET films possess low sheet resistance and high optical
transmittance.

Methods
The silver nanowires with a diameter of approximately
50 to 90 nm and a length of approximately 10 to 20 μm
and the multi-walled carbon nanotubes with a diameter
of approximately 20 to 50 nm and a length of approxi-
mately 5 to 15 μm used during the fabrication of the
films were purchased from Nanjing Xianfeng Tech Co.,
Ltd (Nanjing, Jiangsu, China) and supplied with a con-
centration of 10 and 2 mg/mL in alcohol, respectively.
The suspensions were further diluted to a concentration
(a)

(b) (c)

Figure 1 Transfer preparation of CNT/AgNW-PET films (a) and suspen
of 0.1 and 0.01 mg/mL, respectively, in alcohol which
was subsequently used in all the transfer processes.
The schematic representation of the preparation

process of CNT/AgNW-PET films is shown in Figure 1a.
First, the hybrid suspensions of CNTs/AgNWs with dif-
ferent ratios (mL/mL approximately 0.5/2, 1/2, 2/2, 4/2,
2/1, 2/3, 2/4) were obtained by direct mixing of CNT
and AgNW suspensions, diluting to a volume of 10 mL
and then supersonic dispersing treatment for 30 min.
Then, the hybrid suspension was vacuum filtered by
using a polyvinylidene fluoride (PVDF) filter membrane
(Φ5 cm, hole diameter of 0.2 μm). Third, the hybrid
CNT/AgNW film was transferred onto a PET substrate
by pressing the filter membrane using a stainless steel
plate and a press machine at a pressure of 3 MPa for 10
s. Then, the CNT/AgNW-PET film was obtained after
lifting the pressure and removing the PVDF filter mem-
brane slowly. When the semi-finished product was dried
at room temperature for more than 30 min, to enhance
the adhesion of CNT/AgNW networks on the PET sub-
strate and reduce the junction resistance between CNTs
and AgNWs, a second pressing at a pressure of 10 MPa
for 30 s was implemented using a bare glass plate as a
counter. As a comparison, a hybrid film was heated to
120°C for 30 min to test the effect of heating on the
optical transmittance and sheet resistance.
Optical transmittance (T) was obtained using a Beijing

PGeneral TU-1900 ultraviolet-visible spectroscopy (UV-
vis) spectrophotometer (Beijing Purkinje General Instru-
ment Co., Ltd., Beijing, China) with a blank PET as the
reference. The surface morphology and structural pic-
tures were obtained using a JEOL JSM-7001 field emis-
sion scanning electron microscope (SEM; JEOL Ltd.,
Tokyo, Japan) and Shanghai Zhuolun MicroNano D3000
(d)

sions (b); SEM pictures of AgNWs (c) and CNTs (d).
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atomic force microscope (AFM; Shanghai Zhuolun
MicroNano Instrument Co., Ltd., China). Sheet resist-
ance (Rs) was measured using four-point probe tech-
nique by depositing silver paint with a thickness more
than 80 nm at the corners in a square shape with sides
of approximately 3 mm and at least ten locations across
the sample, and the values reported in this work are the
mean value obtained across the entire film. The adhe-
sion test was carried out by observing the remaining
nanowires adhering to the PET substrate and measuring
the Rs and T of films when the 3M sticky tape was
peeled off.

Results and discussion
Figure 1a shows the schematic representation of the
transfer process of CNT/AgNW networks onto the PET
substrate. It can be found that this process has several
distinguishing features. The entire process is imple-
mented at room temperature and takes only several mi-
nutes. It is very critical for actual production due to
avoiding the disadvantages from high temperature and
complicated process. The process is also easy to control
and adjust. First, the measured amount of CNTs and
AgNWs are mixed in alcohol and sonicated for 30 min
without adding any surface active agent that is enough
to guarantee that the suspension is stable for more than
12 h, and the suspension and SEM pictures of AgNWs
and CNTs are shown in Figure 1b,c. The nanowires can
be dispersed very well by this method. Then, the suspen-
sion is filtered on a commercially available PVDF filter
membrane to obtain a uniform film of CNTs/AgNWs.
Whereafter, the PVDF membrane bearing the CNTs/
AgNWs is pressed against the PET substrate at a moder-
ate pressure of 3 MPa, because we found that in our ex-
periments the sheet resistance of AgNW film has little
a

d   

Figure 2 SEM pictures of CNT/AgNW films at different ratios. The differen
change when pressed at a pressure of more than 3 MPa,
so 3 MPa is enough for a AgNW film to reduce resist-
ance. When the pressure is released after a few seconds
and the PVDF membrane is peeled off slowly from the
substrate, the CNT/AgNW film is entirely transferred
onto the substrate. The size of the hybrid film is limited
only by the size of the starting PVDF filter membrane.
We note that the static pressing step can be replaced by
rolling pressing to realize massive production. In the last
step, a high pressure of 10 MPa is needed to enhance
the junction between CNTs and/or AgNWs. Actually,
the high pressure treatment is also very important to re-
duce surface roughness and adhesion of films that will
be mentioned in the later section. In brief, these above-
mentioned features are beneficial for the large-scale pro-
duction of flexible transparent conductive films.
Figure 2 shows the SEM pictures of CNT/AgNW films

at different ratios on PET substrates fabricated with the
mechanical pressing-transfer process. From Figure 2a, it
can be seen that the transfer process is extremely uni-
form over the entire area of the film leading to a uni-
form density of nanowires everywhere on the substrate.
With the different ratios of CNTs/AgNWs shown in
Figure 2b,c,d,e,f, the AgNWs form the main conductive
networks, and CNTs as the assistant conductive networks
are filled in the open spaces of the AgNWs networks; both
of them have good connections. The difference between
them is the density of CNT networks due to the different
addition amount of CNTs.
The corresponding optical transmittance and sheet re-

sistance of CNT/AgNW-PET films of several different
ratios are shown in Figure 3. It can be seen that most of
the films have a constant transmittance from 400 to 900
nm and low sheet resistance. When the adding amount
of CNTs to AgNWs is approximately 0.25 to 2, the sheet
b  c  

e  f

t ratios are (a) and (b) 1:10, (c) 2:10, (d) 0.5:10, (e) 0.25:10, and (f) 1:15.
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Figure 3 Optical transmittance and sheet resistance of CNT/AgNW-PET films by pressing-transfer process, a blank PET substrate was
the reference.
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resistance of hybrid films can reach approximately 20.9
to 53.9 Ω/□ with the optical transmittance of approxi-
mately 84 to 91% at λ = 550 nm (T550). Too much
addition of CNTs or AgNWs would affect the sheet re-
sistance and transmittance of hybrid films because of the
absorption of visible light by CNTs and reflection by
AgNWs [31]. Meanwhile, we note that when the amount
of AgNWs is fixed and with the increase of CNTs from
0.5 to 2, the optical transmittance and sheet resistance
of AgNW film have a relatively small change, while the
amount of CNTs is fixed and with the increase of
AgNWs from 5 to 20, the optical transmittance and
sheet resistance of AgNW film have a distinct decrease
simultaneously, so it can be concluded that the AgNW
network plays a major part for the optical transmittance
and sheet resistance of CNT/AgNW-PET films, while
the CNT network just plays an assistant role.
For practical applications such as displays and solar

cells, low roughness and enhanced adhesion are also al-
ways required [41-45]. In our study, these requirements
a

Figure 4 SEM and AFM images of CNT/AgNW-PET film and CNT/AgNW
for 30 s; AFM images of the CNT/AgNW network (b) before and (c) after se
were realized by second mechanical pressing at room
temperature. Figure 4a shows the SEM image of a CNT/
AgNW-PET film after pressing at 10 MPa for 30 s. The
compressed, closely contact points between CNTs and/
or AgNWs can be seen distinctly, and it will be benefi-
cial for strong adhesion, low roughness, and junction re-
sistance. As a consequence, the AFM images of the
CNT/AgNW-PET film before and after second pressing
in Figure 4b,c show that the surface roughness decreases
greatly from 97.6 to 28.1 nm after second mechanical
pressing. Adhesion tests were implemented by 3M sticky
tape. Although it is enough for the hybrid film to reduce
the junction resistance under 3 MPa, and second mech-
anical pressing has little effect on the transmittance and
sheet resistance of the hybrid film as shown in Figure 5,
we note that comparing with those without second
pressing the hybrid film after second mechanical press-
ing has stronger adhesion to the PET substrate, and we
tried to peel off the CNT/AgNW film from the PET sub-
strate using 3M sticky tape by firmly attaching it on the
b  c  

network. (a) SEM image of CNT/AgNW-PET film pressed at 10 MPa
cond pressing.
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Figure 5 Rs and T550 of CNT/AgNW films before/after second mechanical pressing, adhesion test (3M sticky tape), and heating (120°C).
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surface of the CNT/AgNW film, but the film remained
on the PET without visible change indicating its strong
adhesion between CNTs/AgNWs and substrate. Mean-
while, from the results of Rs and T550 of the CNT/
AgNW film before and after adhesion test, the Rs of the
film without second pressing increases rapidly from 20.9
to 117 Ω/□; the T550 also changes from 87% to 91%.
While with second pressing the Rs just increases from
20.4 to 22.3 Ω/□, the T550 changes from 85% to 85.5%.
Therefore, we believe that the main role of the second
mechanical pressing is reinforcing the adhesion force be-
tween CNTs, AgNWs, and PET substrate except for re-
ducing surface roughness. To compare the effect of
second pressing with traditional heating process [46], a
film of pressing transfer without second pressing was
heated at 120°C and also tested by 3M sticky tape as
shown in film 2 of Figure 5. The Rs and T550 of film 2 by
heating process decrease from 41 to 32 Ω/□ and 90% to
86%, respectively, while the Rs of the heated film after
adhesion test rises dramatically to 198 Ω/□, which
means that the heating process plays a role not as much
as second mechanical processing for adhesion enhance-
ment. Furthermore, comparing with other reported re-
sults, e.g., AgNW film with Rs approximately 20 Ω/□
and T550 approximately 80% prepared via meyer rod
coating and pressing under 18 GPa by Cui's group [31],
AgNWs film with Rs approximately 8.6 Ω/□ and T550

approximately 80% prepared via drop-coating and mech-
anical pressing under 25 MPa by Noji's group [45], and
AgNW/CNT film with Rs approximately 17 Ω/□ and
excellent stretchable property, but no T information pre-
pared via vacuum filtration and plasmonic welding
process by Woo and co-workers [35], our results and
this simple technique have an obvious advantage and
potential to be applied to practice from the economic
and practical point of view.

Conclusions
CNT/AgNW-PET flexible transparent conductive films
were fabricated by mechanical pressing-transfer process
at room temperature. AgNWs form the main conductive
networks, and CNTs as the assistant conductive net-
works are filled in the open spaces of the AgNWs net-
works; both of them have good connections, and the
sheet resistance of the hybrid films reaches approxi-
mately 20.9 to 53.9 Ω/□ with the optical transmittance
of approximately 84 to 91%. The second mechanical
pressing step can greatly reduce the surface roughness of
the hybrid film and reinforce the adhesion force between
CNTs, AgNWs, and PET substrate. This process is more
hopeful to be used in practical production of flexible
transparent conductive films compared with traditional
heating-treatment process.
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