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Abstract

impact on the pH even at low concentration.

We examined the toxicity of four carbon-based nanomaterials (unmodified) by using carbon quantum dots (CQDs),
graphene quantum dots (GQDs), graphene oxide (GO), and single-walled carbon nanotubes (SWCNTs) to cultivate
bean sprout. Results showed that the toxicity of these four carbon nanomaterials increases with the increasing of
concentration and cultivating time. In addition, pH test was applied to study the effect of carbon-based nanomaterials on
water. pH of culture solution displayed unconspicuous dose-dependent, but nanomaterials indeed have a considerable

Keywords: Toxicity; Bean sprout; Carbon-based nanomaterials

Background

Nanotechnogy has undergone rapid development in
recent decades. But at the same time, it has aroused a vast
concern on the safety of nanomaterials [1-5], especially in
biomedicine [6,7] and food science [8,9], and its effect on
the environment (air, water, and soil) [10]. So far, there is
not a universally accepted standard to test and assess the
toxicity of nanomaterials in their practical applications. In
effect, risk assessment of nanomaterials is a challenge,
which needs to consider its size distribution, morphology,
structure, solubility, surface charge, mass concentration,
and uncertainties in practice, but indeed essential [11,12].
A large research on testing the toxicity of nanomaterials
had been implemented to make sure that it could be used
in vivo and in vitro as nanocarrier or bioimaging [13,14],
and generally, the dosage used to examine is principally
only in microgramme [6,7,15-17]. However, in fact, the
dosage released to the environment or contained in a
product is more than that tested in most researches. Thus,
it is vital to test the toxicity of nanomaterials in a wide
range of mass concentration.
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Among multifarious nanomaterials, carbon-based nano-
materials have inspired intensive research interests due to
their unique physical and chemical properties. Various
forms of carbon-based nanomaterials have been actively
explored with novel applications such as in material
science [16-19], biosensing [20-22], biomedicine [7,15-17],
and nanoelectronics [23,24]. Recently, the toxicity of CQDs
was tested via cultivating bean sprouts and cells in culture
solution which contains nanomaterials [5,25]. Except for
using the cell to examine the toxicity of nanomaterials,
bean sprouts are also a reasonable option because they are
suitable for hydroponics and they are sensitive to toxins.
They can also reflect the toxicity at the early stage of
exposure.

In this study, we investigated the toxicity of four types
of soluble pristine carbon-based nanomaterial (unmodi-
fied), carbon quantum dots (CQDs), graphene quantum
dots (GQDs), graphene oxide (GO), and single-walled
carbon nanotubes SWCNTs, through cultivating bean
sprouts in a culture solution where the concentration of
carbon-based nanomaterial ranged from 50 pg/mL to
1.2 mg/mL. To our knowledge, no systematic research
has been made on their relative toxicity in such a large
range of concentration. The length of green gram was
measured as a parameter to judge toxicity, and then the
distribution of CQDs in green gram was examined by
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direct visualization. Furthermore, pH test was applied to
study the effect of carbon-based nanomaterials on water.

Methods

Materials

All reagents were analytical grade and were used without
further purification. Citric acid was analytical-reagent
grade and purchased from Aladdin Chemistry Co. Ltd
(Aladdin Chemistry Co. Ltd, Shanghai, China). Graphite
rod was purchased from Carbon Co., Ltd (Carbon Co.,
Ltd, Shanghai, China). Urea, methanol, dichloromethane,
sodium hydroxide (NaOH), sodium nitrate (NaNO3),
potassium permanganate (KMnQO,), hydrogen peroxide
(H20,), and hydrochloric acid (HCl) were purchased
from Sinopharm Chemical Reagent Co., Ltd (Sinopharm
Chemical Reagent Co., Ltd, Shanghai, China). Green
grams were obtained from the supermarket. Deionized
water with a resistivity of 18.1 MQecm was used for all
experiments.

Characterization

The morphologies of the samples were observed by trans-
mission electron microscope (TEM, JEM-2100, JEOL,
Akishima-shi, Japan), atomic force microscopy (AFM,
Multimode Nanoscope, Digital Instruments, Santa Barbara,
USA) and field emission scanning electron microscopy
(FESEM, Carl Zeiss Ultra 55, Jena, Germany). The photo-
luminescent (PL) spectra were performed through a
fluorescent spectrophotometer (F-4600, Hitachi, Japan).
The ultraviolet-visible near-infrared (UV-vis-NIR) absorption
spectrum was recorded by a UV-Vis-NIR spectrophotometer
(Perkin-Elmer Lambda 950, Waltham, MA, USA).

Preparation of carbon quantum dots

The modified method was based on previous report
[25]. To a vigorously stirred 35 mL of deionized water,
we added 10 g of citric acid and 10 g of urea. After the
mixture turned to transparent solution, it was heated in
a domestic microwave oven (800 W) for 5 min. Over the
course, the solution was changed into black solid, which
indicates the formation of CQDs. Then, the obtained
solution was concentrated before transferring to a silica
gel column. Next, the solution was eluted with mixture
of methanol and dichloromethane in a ratio from 1:2 to
1:1 (V:V) to obtain N-doped CDs. Finally the resulting
N-doped CQDs were evaporated into solid powders for
further characterization and usage.

Preparation of graphene quantum dots

Electrochemical method was applied to prepare GQDs
[26]. Electrolysis process was performed on APS3005S.
Graphite rod and carbon fiber were used as cathode and
anode, respectively, and parallelly inserted into 100 ml
of 0.1 M NaOH aqueous solution. After electrolysis

Page 2 of 6

overnight, the colorless solution turned to brown. And
then, the resulting solution from the electrolysis was
adjusted to neutral through sodium cation exchange
resin. Further, it was purified by vacuum suction filtra-
tion to remove residue in solution, and GQDs powders
were obtained by evaporation.

Preparation of graphene oxide

Modified Hummer's method [27] was used to prepare GO.
Briefly, 1 g of graphite was added to 25 ml of concentrated
sulfuric acid solution with vigorous stirring at room tempe
rature, and then NaNOj3 (1.25 g) was added to the mixture.
After continuous stirring for 1 h, the mixture was cooled to
0°C through ice-water bath. Next, 3.7 g of KMnO, was
slowly added in 2 h, after which the temperature was
increased to 35°C, and the suspension was allowed to react
for another 2 h. Afterward, 0.1 L of ice water and 3.5 mL of
H,0, were added to quench the oxidizing reaction. The
prepared GO was filtered and washed with distilled water
till the solution was neutral. Finally, GO got dried in an
oven.

Preparation of single-walled carbon nanotubes

The synthesis of SWCNTs was performed by arc dis-
charge method as described earlier [28]. For further purifi-
cation [29], 3 g of SWCNTs was transferred to muffle at
380°C for 2 h. Under sonication, the oxidized SWCNTs
were added to 300 ml of concentrated hydrochloric acid,
and then the suspension was centrifuged and washed with
deionized water till neutralized. The purified SWCNTSs
were obtained after drying in an oven at 150°C for 24 h.

Cultivation of the bean sprouts with different
concentration of carbon-based nanomaterial

For the experimental group, 6 mL of different concentra-
tion (50, 100, 400, 800, and 1.2 mg/mL) of carbon-based
nanomaterial aqueous solution was injected to every
culture dish with 5.5 c¢cm in diameter. Every experiment
consists of four parallel tests, and the weight deviation of
15 green grams in every dish was 0.03 + 0.02 g among each
group. Under room temperature (about 25°C to 27°C), the
dishes were placed, as far as possible away from light, with-
out lids so as to make sure the sufficient oxygen supply.
During the growth, appropriate water was supplemented to
the dishes to keep the fixed volume of solution due to the
evaporation. The average length (n = 60) of bean sprouts
was measured every 24 h within 120 h, and their growth
situation was photographed. For the control group, it is
only changing carbon-based nanomaterial solution to
deionized water which was the solvent for carbon-based
nanomaterial in this study.
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Results and discussion
Figure 1 shows the typical images of nanoparticles and par-
ticle size distribution by counting the average sizes of 100
nanoparticles (Figure 1b,d). CQDs and GQDs are uniform
in size and present a nearly spherical shape with an average
size of 2.10 and 5.00 nm, respectively (Figure 1a,c). GO and
SWCNTs with a small size are obtained by ultrasonic cell
disintegrator, and then the suspension was filtered with
0.22 pm cellulose filtration membrane to remove large and
agglomerated particles (Figure lef). UV-vis-IR absorption
spectrum displays obvious characteristic absorption peak of
four carbon-based nanomaterials (Figure 2a). The absorp-
tion peaks of GQDs and GO both center at approximately
230 nm, and SWCNTs exhibit two broad peaks around 700
and 1,050 nm. CQDs have three absorption peaks at 270,
340, and 405 nm. The PL spectrum of CQDs and GQDs
demonstrate emission peak at 445 and 438 nm, respectively
(Figure 2b). All these imply the successful preparation of
the nanomaterials.

All of these nanomaterials, which consist of carbon
element but with different structure, exhibit different effect
on the length of the bean sprouts. Additional file 1 (Figure
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S1-S4) shows some typical growth situations of the bean
sprouts with time. In the initial stage (before 72 h), no ob-
vious difference is observed among all the samples; how-
ever, nanoparticles with high concentration (=800 pg/mL)
show inhibitive effect on this plant after 96 h (Figure 3a,b,
c,d,e). Figure 3e shows the detailed comparison of the
averaged growth lengths (# = 60) in all groups, the length
of bean sprouts generally decreases with increasing the
concentration of nanomaterials, and it is clear to see that
GQDs exhibit remarkable inhibition at high concentration
and more dose-dependent than others. Except for GQDs,
the other three can promote the growth of bean sprout at
the concentration less than 800 pg/mL, demonstrating
nontoxicity of these nanomaterials. But for the high
concentration (1,200 pg/mL), all these nanoparticles show
different degree of inhibition. It is worth noting that the
length curve of SWCNTs changes more obviously over the
96 h due to its low solubility (compared to the other three
carbon-based nanomaterials), and the final results
(Figure 3e) imply that SWCNTs display less dose-
dependent and toxicity after a complete growth circle
(120 h). Interestingly, it finds that 100 pg/mL seems to be

Figure 1 TEM, SEM, and AFM images and particle size distribution. TEM images of (a) CQDs and (c) GQDs. Particle size distribution of
(b) CQDs and (d) GQDs. SEM image of (e) SWCNTs, and inset is the TEM image. AFM images of (f) GO.
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Figure 2 UV-vis-NIR absorption and PL spectra. (a) UV-vis-NIR absorption spectrum of four carbon-based nanomaterials. (b) PL spectrum of
CQDs and GQDs excitated by 360 and 320 nm, respectively. Inset are photos of CQDs and GQDs solution under sunlight (the left two) and under
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Figure 3 Average growth length (n = 60) of bean sprouts with time in different culture media. (a) 24, (b) 48, (c) 72, (d) 96, and (e) 120 h.
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Figure 4 Images of dehydrated and aquiferous bean sprouts. Images of (a) dehydrated bean sprouts and (b) aquiferous bean sprouts in
bright. Images of (c) dehydrated bean sprouts and (d) aquiferous bean sprouts in dark irradiated by a 365-nm UV beam. The solution in (a) and
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the most conducive concentration for the growth of green
gram sprouts. All these imply that the toxicity of these
nanoparticles is time/dose-dependent. So dosage should
be concerned in practice, especially particle with such
small size can permeate throughout the cytoderm and
cytomembrane with good biocompatibility [25,30,31]. As
shown in Figure 4, bean sprouts cultivated at high concen-
tration of CQDs emit green fluorescence as marked by red
circle when irradiated by a 365 nm UV beam in dark
(Figure 4d); however, no fluorescence was observed at low
concentration. After drying at room temperature, bean
sprouts still possess fluorescence (Figure 4c).

In addition, the impact of nanomaterials on environment
also deserves our full attention. Although the initial con-
centration of nanoparticles presents irregular influence on
pH mainly due to dispersibility of nanoparticles in water,
the pH indeed changes with different degrees compared to
control group over all the concentration (Figure 3f), which
would affect aquatic organism and even lead them to
toxicosis.

Conclusions

Through cultivating bean sprouts, the biomedical and
environmental safety of four widely used pristine carbon-
based nanomaterials have been systematically investigated.
The growth of bean sprouts shows dose-dependent on the
concentration of carbon-based nanomaterials, for which
100 and 1,200 pg/mL exhibit obvious promotion and
inhibition, respectively. Moreover, nanomaterials indeed
have a considerable impact on the pH of water even at low

concentration. Thus, when utilizing the excellent proper-
ties of a nanomaterial, we should also consider its negative
effect, especially to the environment and find out the
related solutions. Risk assessment of nanomaterials is a
long-term and complicated mission, and we believe that
these results would provide valuable information for nano-
materials in practical applications.

Additional file

Additional file 1: Figure S1-S4. Photograph of the bean sprouts.
Typical growth situations of the bean sprouts with time.
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