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Abstract

Hierarchically structured MWCNT (h-MWCNT)-based cold cathodes were successfully achieved by means of a
relatively simple and highly effective approach consisting of the appropriate combination of KOH-based pyramidal
texturing of Si (100) substrates and PECVD growth of vertically aligned MWCNTs. By controlling the aspect ratio (AR)
of the Si pyramids, we were able to tune the field electron emission (FEE) properties of the h-MWCNT cathodes.
Indeed, when the AR is increased from 0 (flat Si) to 0.6, not only the emitted current density was found to increase
exponentially, but more importantly its associated threshold field (TF) was reduced from 3.52 V/μm to reach a value as
low as 1.95 V/μm. The analysis of the J-E emission curves in the light of the conventional Fowler-Nordheim model
revealed the existence of two distinct low-field (LF) and high-field (HF) FEE regimes. In both regimes, the hierarchical
structuring was found to increase significantly the associated βLF and βHF field enhancement factors of the h-MWCNT
cathodes (by a factor of 1.7 and 2.2, respectively). Pyramidal texturing of the cathodes is believed to favor vacuum space
charge effects, which could be invoked to account for the significant enhancement of the FEE, particularly in the HF
regime where a βHF as high as 6,980 was obtained for the highest AR value of 0.6.
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Background
Carbon nanotubes (CNTs) are known to exhibit a unique
combination of properties that make them a material of
choice for field electron emission (FEE) applications. In-
deed, their low Z atomic number, unequalled aspect ratio
(of up to ≥ 104), and high charge carrier mobility along
with their mechanical strength and stiffness are highly at-
tractive for a variety of applications, such as cold cathode
emitters for lighting devices (Cho et al. [1]; Bonard et al.
[2]; Saito & Uemura [3]), field emission displays (Lee et al.
[4]; Choi et al. [5]) and miniature X-ray sources (Jeong
et al. [6]; Sugie et al. [7]; Yue et al. [8]). When used as elec-
tron emitters, multi-wall carbon nanotubes (MWCNTs)
are preferred to single-wall carbon nanotubes (SWCNTs),
because of their metallic-like behavior and their multi-
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layered structure, which confers them higher resistance to
degradation (by at least a factor of 10) (Bonard et al. [9]).
In order to further enhance the FEE performance of
MWCNTs, strategies are being developed to either in-
crease their electron current density or, even better, re-
duce their associated threshold field (TF). In this context,
researchers have proposed different approaches, including
strategies to increase the aspect ratio of the nanotubes (Jo
et al. [10]), to chemically functionalize them (Jha et al.
[11]) or to tailor their growth sites through patterning
techniques (Hazra et al. [12]). In particular, to reduce the
threshold field and thereby the power consumption of
the FEE devices, microfabrication techniques were
often used and shown to be effective in reaching rea-
sonably low TF values (in the 2 to 3 V/μm range)
(Zhang et al. [13]; Sanborn et al. [14]; Choi et al. [5]).
Such microfabrication-based approaches, though they
enable precise microtailoring of the shape of emitting
tips, are costly and involve relatively complex multi-
step plasma processing. Previous studies have shown
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that the TF of CNTs is affected by the shape of the
emitters (Chen et al. [15]; Futaba et al. [16]) and their
surface density through the screening effect (Hazra et al.
[12]; Pandey et al. [17]). By tailoring the emission sites as
well as changing their density, it is possible to minimize
this screening effect that can adversely affect the FEE
properties of the CNT samples (Bonard et al. [18]).
In the present paper, we report on a relatively simple,

fast, efficient, and very cost-effective approach to achieve
CNT-based cold cathodes exhibiting very low threshold
fields. Our approach is based on a hierarchical structur-
ing of the emitting cathode, which consists of a pyram-
idal texturing of a silicon surface by optimized KOH
chemical etching followed by a plasma-enhanced chem-
ical vapor deposition (PECVD) growth of MWCNTs on
the Si pyramids. This approach offers the advantage of
not only increasing the aspect ratio of the emitting
structures, but also increasing significantly the effective
electron emitting surface. By investigating the FEE of
these novel hierarchal MWCNT (h-MWCNT) cathodes,
in particular as a function of the initial aspect ratio of
the Si pyramids, we were able to optimize their TF and
reach a value as low as 1.95 V/μm, with a very easily af-
fordable process.

Methods
Fabrication of hierarchically structured MWCNT-based
cold cathodes
To fabricate the h-MWCNT cathodes, we have first per-
formed a KOH etching (under optimized conditions of
30-min etching time at 90°C in a 8 wt.% KOH solution)
of mirror-polished and n-doped Si (100) wafers (0.001 to
0.005 Ω·cm) to transform their initial smooth surface
into pyramids (with heights of several micrometers),
randomly and homogeneously distributed over all the
treated Si surface. To control the pyramid aspect ratio
(AR, defined as the ratio of their height to their base-
width), the KOH-etched Si substrates were subjected
to precise mechanical polishing. Thus, the Si substrates
with various AR values (ranging from sharp pyramids
to flat-topped ones (mesas)) were obtained. Prior to
the PECVD growth of the MWCNTs, 3D-textured Si
substrates were catalyzed by coating them first with a
sputter-deposited thin Al film (20 nm) and by post-
annealing them at 500°C for 30 min under air. Then,
an Fe-catalyst nanoparticle film (with a nominal thickness
of approximately 25 nm) was deposited by means of
pulsed laser deposition (Dolbec et al. [19]; Aïssa et al.
[20]). These Fe/AlxOy/Si-catalyzed substrates were intro-
duced into a PECVD reactor, operating at 13.56 MHz, for
CNT growth under the following operating conditions:
substrate temperature of 700°C, gas flow of 500 sccm
(Ar)/20 sccm (H2)/5 sccm (C2H2) at a total pressure of
600 mTorr, an applied RF power density of 0.44 W/cm2,
and a substrate biasing of −40 V. These conditions were
found to lead to the growth of vertically aligned
MWCNTs onto flat Si substrates with a length of approxi-
mately 2.8 μm.

Characterization of the FEE properties of the h-MWCNT
cold cathodes
The FEE properties of the MWCNTs grown on both
pyramidally textured (with various AR values) and flat
silicon (used as a reference sample having AR value of
zero) substrates were systematically characterized in our
FEE measurement setup, which is equipped with a high-
precision translation stage that positions the MWCNT
emitters at 100 ± 0.4 μm from the upper copper collect-
ing electrode. The FEE measurement chamber was
pumped down to 5.10−6-Torr base pressure before pro-
ceeding with the measurements. An increasing voltage was
then applied from 0 up to 400 V, and all the samples were
cycled several times until a stable FEE regime is reached to
allow meaningful comparison between the samples. This
cycling of the MWCNTcathodes enables soft and progres-
sive cleaning of the MWCNTs (Collazo et al. [21]).

Results and discussion
Figure 1a is a typical scanning electron microscopy
(SEM) image of the pyramidal texturing of the Si (100)
surface following its KOH chemical treatment. The Si
pyramids are generally clean and fairly uniform in size
and density. The PECVD growth of the MWCNTs was
performed on both pyramidally structured and flat sili-
con substrates (Figure 1b,c). The MWCNTs were found
to always grow perpendicularly to the substrate surface
either on the sides of the Si pyramids (as shown by the
cross-section SEM view of Figure 1b) or on the un-
treated flat Si substrates (Figure 1c). This vertical align-
ment of the MWCNTs with respect to the substrate
surface is a consequence of appropriate electrical biasing
of the substrate during the plasma growth process
(Bower et al. [22]). The growth of MWCNTs was per-
formed under the same PECVD conditions on all the
silicon substrates (with various AR values) in order to
obtain nearly identical density and morphology of emit-
ters, facilitating thereby their comparison. The SEM
images of Figure 1b,c confirm, to a certain extent, the
similarity of the MWCNTs whether on Si pyramids or
on flat Si substrates. One can nonetheless notice that a
minority of MWCNTs protrude from the main nanotube
forest (Figure 1b,c). Those protruding emitters, due to
their position above the CNT forest canopy, undergo
higher electric fields during the FEE measurements.
Figure 2a shows typical J-E curves of the developed

hierarchal MWCNT cathodes as a function of the AR of
the Si pyramids, while comparing them to that of the
MWCNTs grown on flat silicon (AR = 0), used here as a



Figure 1 Typical SEM images. (a) Pyramidal texturing of the Si
(100) substrates after their KOH chemical treatment; (b) illustration of
the PECVD grown MWCNTs on a silicon pyramid; (c) vertically
aligned MWCNTs grown by PECVD onto untreated, flat Si
(100) substrate.

Figure 2 Field electron emission properties of the developed
hierarchal MWCNT cathodes versus their AR. (a) Typical J-E
curves of the field electron emitting hierarchal MWCNT cathodes
with various pyramid AR values along with that of flat Si reference
substrate. The inset shows a zoomed-in part of the J-E curves to
compare their threshold field (TF). (b) Variation of the emitted
current density at an applied field of 4 V/μm as a function of the AR
of the Si pyramids.
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non-KOH-treated reference cathode. It is clearly seen
that the pyramidal structuring of the cathodes has a sig-
nificant effect on their FEE performance. Firstly, the
inset of Figure 2a shows that as the AR of the Si
pyramids is increased, from 0 (flat Si) to 0.6, the J-E
curves are seen to shift progressively towards lower elec-
tric field values, indicating a clear decrease of the TF.
This TF reduction is thought to be a consequence of the
hierarchal structuring of the cathodes as the onset of
electron emission occurs at the apex of the pyramids
where higher fields are felt by the MWCNTs (Saito &
Uemura [3]). Secondly, the J-E curves of Figure 2a show
that the emitted current density significantly increases as
the AR is increased from 0 to 0.6. Indeed, for an electric
field of 4 V/μm for example, Figure 2b shows that the
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current density exponentially increases with the AR.
This pyramidal texturing-induced enhancement of the
current density is believed to be due to a higher number
of MWCNT emitters because of the 3D structuring of
the cathodes, which provides larger surface area and
lesser screening effect on the pyramid sides. The analysis
of the J-E curves, according to the Fowler-Nordheim
(FN) model (Fowler & Nordheim [23]) where the total
current density (J in A/m2) can be expressed as follows:

J ¼ Aβ2E2

φ exp −Bφ
3
2

βE

� �
, where E is the applied field (V/m),

φ the work function of the emitter (4.6 eV for MWCNTs
(Ago et al. [24]; Su et al. [25])), A and B are constants
with values of 1.56 × 10−6 (A·eV/V2) and 6.83 × 109

(V·eV−3/2 m−1), respectively, and β is the field enhance-
ment factor that characterizes the ratio between the ap-
plied macroscopic field and the local microscopic field
felt by the apex of the emitter (Bonard et al. [26]). By fit-
ting the data of Figure 2 to the FN expression, Figure 3
clearly shows that regardless of the AR value of the cath-
odes, two different domains can be distinguished in the
FN plots, namely, high-field (HF) and low-field (LF)
Figure 3 Fowler-Nordheim analysis of the J-E curves of the
hierarchal MWCNT cathodes. (a) Fowler-Nordheim plots for the
h-MWCNT cathodes for the various AR values ranging from 0 to
0.6. (b) The table summarizes the deduced high-field (HF) and
low-field (LF) enhancement factors (β) as a function of the AR of
the Si pyramids.
regimes. Accordingly, separate βHF and βLF enhancement
factors were extracted from the slopes of the linear fits
(Figure 3) and tabulated in the table at the bottom of
Figure 3. First of all, in both HF and LF regimes, the en-
hancement factors are seen to increase significantly (by
a factor of 2.2 and 1.7 for βHF and βLF, respectively) as
the AR is increased from 0 to 0.6. Respective βHF and
βLF values as high as 6,980 and 2,315 were obtained for
the h-MWCNTS cathodes with an AR value of 0.6. This
confirms that the hierarchical texturing developed here
is effective in enhancing further the local microscopic
fields felt by the apex of the MWCNTs. On the other
hand, the occurrence of distinct HF and LF regimes in
the FN plots of MWCNT emitters has been reported by
other groups (Chen et al. [27]; Bai & Kirkici [28]). This
indicates that the conventional FN model that describes
the FEE of our h-MWCNT cathodes in the LF region
cannot be extended to the HF region. Indeed, the evi-
dent kink in the FN plots, which is found to occur at the
same field value for all the pyramidally texturized cath-
odes, denotes a clear regime change in the FEE of the
MWCNTs. Although there is no consensus about the
origin of this regime change (Chen et al. [29]), the en-
hanced FEE observed in the HF regime is often attrib-
uted to space charge effects surrounding the emission
sites (Xu et al. [30]; Barbour et al. [31]). Such vacuum
space charge buildup is expected to occur more easily
on textured substrate with high density of Si pyramids
(where higher electric fields are felt by the emitting tips)
than on a flat Si cathode (from which some individual
nanotubes protrude). This would explain the breakpoint
Figure 4 Threshold field dependence on the aspect ratio of the
Si pyramids. TF values obtained from the flat silicon substrate (AR = 0)
from the present work as well as from literature are also included. The
inset shows the SEM images of the MWCNT-coated Si pyramids for
different AR values (the white scale bar is 2 μm).
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(Figure 3) occurring at rather low-field values in the
pyramidally textured cathodes than in the flat Si ones
(approximately 2.1 V/μm versus approximately 3.8
V/μm, respectively).
To investigate the effect of the AR of the Si pyramids

on the TF of the h-MWCNT-based cathodes, while
allowing direct comparison with literature, we have de-
fined the TF as the electric field needed to obtain an
emitted current density of 0.1 mA/cm2. Figure 3 shows
that when the AR is varied from 0 (flat Si) to 0.6 (sharp
Si pyramids with no mechanical polishing, see the repre-
sentative SEM images in the inset of Figure 4), the TF
significantly decreases from 3.52 to 1.95 V/μm, respect-
ively. This represents a TF value diminution of more
than 40% of the initial value of flat Si. It is also worth
noting that the latitude of our hierarchal structuring
process permits a rather precise tuning of the TF of the
h-MWCNT cathodes over all the 1.9 to 3.6-V/μm range.
In the case of the flat Si substrates, the measured relatively
higher TF value (which compares well with literature data
(Futaba et al. [16]; Sato et al. [32]; Wu et al. [33]) as shown
in Figure 4) is mainly a consequence of the screening ef-
fects between the CNTs (Nilsson et al. [34]). In the flat Si
substrate configuration, the highly dense film of vertically
aligned CNTs can be approximated to an FEE device con-
sisting of two metal plates facing each other and between
which an electric field is applied. In this case, because of
the screening effects, the advantage of the high aspect ra-
tio exhibited by the CNTs is not fully exploited, except for
the few protruding nanotubes. Using our 3D-textured
h-MWCNT cathodes, the electric field lines are con-
centrated at the tips of the pyramids, resulting into
higher fields felt by the CNTs (Saito & Uemura [3]).
Moreover, the significant increase of the surface area
of the 3D-textured cathodes is also expected to minimize
the screening effect between the MWCNTs, particularly
on the pyramid sides. Our results clearly demonstrate that
the shape of the underlying substrate (i.e., pyramids) has a
significant effect on both the TF and current density of
the MWCNT cathodes. This corroborates well with the
results of the micro-patterned emitters, where the shape
of the emitters, more than the pitch between them, was
reported to play a more important role in the FEE proper-
ties of the CNT cathodes (Sato et al. [32]).

Conclusions
We have developed a relatively straightforward, effective,
and affordable approach to achieve hierarchal 3D struc-
turing of the h-MWCNT-based cold cathodes. Our
process is based on the optimized PECVD growth of
MWCNTs onto pyramidally KOH-texturized silicon
(100) substrates. By varying the aspect ratio of the Si
pyramids, we were able to show the significant improve-
ment of the FEE properties of the h-MWCNT cathodes,
compared to their Si flat counterparts. In particular, our
results show that the higher the AR of the Si pyramids,
the lower the TF of the h-MWCNT cathodes. A TF value
as low as 1.95 V/μm was achieved for the h-MWCNT
cathodes with an AR value of 0.6 (a decrease of more than
40%, compared to MWCNT forest grown on flat Si sub-
strates). The effectiveness of our approach is also reflected
by the higher enhancement factors in both low- and high-
field regimes. The prospect of a relatively easy scale up of
the hierarchal structuring process developed here makes
this approach highly attractive for applications where low-
cost and large-surface cold cathodes are needed.
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