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Abstract

We investigated the bipolar resistive switching characteristics of the resistive random access memory (RRAM) device
with amorphous carbon layer. Applying a forming voltage, the amorphous carbon layer was carbonized to form a
conjugation double bond conductive filament. We proposed a hydrogen redox model to clarify the resistive switch
mechanism of high/low resistance states (HRS/LRS) in carbon RRAM. The electrical conduction mechanism of LRS is
attributed to conductive sp2 carbon filament with conjugation double bonds by dehydrogenation, while the
electrical conduction of HRS resulted from the formation of insulating sp3-type carbon filament through
hydrogenation process.

Keywords: Carbon; Hydrogen redox; Conjugation double bond; RRAM
Background
Recently, portable electronic products which are com-
bined memory circuits [1-3], display design [4,5] and IC
circuits have popularized considerably in the last few
years. To surmount the technical and physical limitation
issues of conventional charge-storage-based memories
[6-11], the resistance random access memory (RRAM) is
constructed of an insulating layer sandwiched by two elec-
trodes. This structure is a great potential candidate for
next-generation nonvolatile memory due to its superior
characteristics such as lesser cost, simple structure, high-
speed operation, and nondestructive readout [12-21].
The carbon-based resistive memory (C-RRAM) has

emerged as one of a few candidates with high density and
low power. The resistive switching of C-RRAM relies on
the formation and rupture of filaments due to redox
chemical reaction mechanism, which is similar to most
other reported RRAM devices [22-43].
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In this paper, we investigated the resistive switching
characteristics of amorphous carbon films prepared by RF
magnetron sputter deposition technique for nonvolatile
memory applications. Reliable and reproducible switching
phenomena of the amorphous carbon RRAM with Pt/a-C:
H/TiN structure were observed. In addition, the resistive
switching mechanism of the amorphous carbon RRAM
device is discussed and verified by electrical and material
analysis.
Methods
The experimental specimens were prepared as follows.
The carbon thin film (around 23 nm) was deposited on
the TiN/Ti/SiO2/Si substrate by RF magnetron sputter-
ing with a carbon target. After that, the Pt top electrode
of 200-nm thickness was deposited on the specimen by
DC magnetron sputtering. The photolithography and
lift-off technique were used to shape the cells into
square pattern with area of 0.36 to 16 μm2. The elec-
trical measurements of devices were performed using
Agilent B1500 semiconductor parameter analyzer (Santa
Clara, CA, USA). Besides, Fourier transform infrared
spectroscopy (FTIR) and Raman spectroscopy were used
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Figure 1 Current–voltage sweeps of Pt/a-C:H/TiN memory device.
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to analyze the chemical composition and bonding of the
amorphous carbon materials, respectively.

Results and discussion
Figure 1 shows the bipolar current–voltage (I-V) charac-
teristics of the carbon memory cell in semi-logarithmic
scale under DC voltage sweeping mode at room
temperature. After the electroforming process (inset of
Figure 1), the resistance switching behavior of the as-
fabricated device can be obtained repeatedly, using DC
Figure 2 Endurance (a), retention properties (b), and sizing effect me
voltage switching with a compliance current of 10 μA.
By sweeping the bias from zero to negative value
(about −1.5 V), the resistance state is transformed from
low resistance states (LRS) to high resistance states
(HRS), called as ‘reset process’. Conversely, as the vol-
tage sweeps from zero to a positive value (about 1.5 V),
the resistance state is turned back to LRS, called as ‘set
process’. During set process, a compliance current of
10 mA is applied to prevent permanent breakdown.
To further evaluate the memory performance of

amorphous carbon RRAM, the endurance and retention
tests were shown in Figure 2. The resistance values of
reliability and sizing effect measurement were obtained
by a read voltage of 0.2 V. The device exhibits stable
HRS and LRS even after more than 107 sweeping cycles
(Figure 2a), which demonstrates its acceptable switching
endurance capability. The retention characteristics of
HRS and LRS at T = 85°C are shown in Figure 2b. No
significant degradation of resistance in HRS and LRS
was observed. It indicates that the device has good reli-
ability for nonvolatile memory applications. Figure 2c
reveals the resistance of LRS and HRS states with
various sizes of via hole, which is independent with
the electrode area of the device. According to the
proposed model by Sawa [44], the resistive switching
behavior in carbon RRAM is attributed to filament-
type RRAM.
asurement (c) of Pt/a-C:H/TiN memory device.



Figure 3 Raman spectra of C sp2 and C sp3 in amorphous carbon film (a); FTIR spectrum of amorphous carbon film (b).
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To investigate the interesting phenomena, we utilized
the material spectrum analyses to find out the reason of
working current reduction and better stability. The sput-
tered carbon film was analyzed by Raman spectroscopy
and the spectra revealed in Figure 3a. The broaden peak
from 1,100 to 1,700 cm−1 demonstrates the existence of
amorphous carbon structure [45].
In order to further testify the existence of the carbon

layer and find its chemical bonding type, FTIR was used
to analyze the sputtered carbon thin film. C-H stretch
peak can be observed at the wave number of 2,800 to
3,000 cm−1, as shown in the FTIR spectra of Figure 3b.
To clarify the current transportation mechanism, the

current vs. voltage (I-V) is presented in Figure 4. The
LRS shows symmetric I-V curve at positive and negative
Figure 4 I-V curve fitting of Pt/a-C:H/TiN memory device with various
electrical field. The electron transport exhibits Poole-
Frenkel and Hopping conduction at middle and high
voltage. However, the I-V curve is asymmetric in HRS,
but the current transportation mechanism is Schottky
emission and Hopping at middle and high voltage. The
resistive switching mechanism of LRS and HRS is given
in detail as follows.
On the basis of the electrical and material analyses, we

proposed a reaction model to explain the transfer of car-
rier conduction mechanism of the amorphous carbon
RRAM as shown in Figure 5. The conductive filament
will be formed after the forming process, which is attrib-
uted to the connection between sp2 carbon fractions in
the amorphous carbon layer [46]. Due to the current com-
pliance, there is remaining amorphous carbon between
carrier transport mechanisms.



Figure 5 Hydrogen redox model of Pt/a-C:H/TiN memory device
in LRS and HRS states.
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conductive sp2 regions, as shown in left insert of
Figure 5. Because the current pass through the bound-
aries of sp2 regions, the current fitting is dominated by
Poole-Frenkel conduction in LRS. As higher voltage
was applied, the significant barrier lowering caused the
conduction dominated by hopping conduction through
conjugation double bonds of sp2 carbon filament.
When the bottom TiN electrode is applied with a ne-
gative bias to perform a reset process, hydrogen atoms
were pulled from the Pt electrode and absorbed by
double bonds of sp2 carbon, namely hydrogenation
process. The hydrogenation reaction will transfer the
conductive sp2 carbon filament into insulated sp3 car-
bon filament. As shown in the right insert of Figure 5,
the region of filament near Pt electrode forms insulated
sp3 carbon dominated, which leads to the current con-
duction exhibit Schottky conduction in HRS. The Hop-
ping conduction is attributed to significant barrier
lowering as the higher voltage was applied. Contrari-
wise, the hydrogen atoms were repelled to Pt electrode
to form sp2 carbon filament during set process, called
as dehydration process. Based on the hydrogen redox
model, a repeatable switching behavior can be obtained
in C-RRAM device.

Conclusion
In conclusion, the amorphous carbon RRAM has been fab-
ricated to investigate the resistive switching characteristics.
The device has good resistive switching properties due to
hydrogenation and dehydrogenation of H atoms in carbon
RRAM. The material and electrical analyses give convin-
cing evidence of hydrogen redox induced resistance switch-
ing in amorphous carbon RRAM. The current conduction
of LRS was contributed to formation of conjugation
double bonds in the carbon layer after dehydrogenation.
Moreover, the current conduction of HRS was dominated
by insulating sp3 carbon after hydrogenation at a reverse
electrical filed.
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