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Abstract

In the study, we investigate the Josephson supercurrent of a superconductor/normal metal/superconductor
junction on the surface of a topological insulator, where a gate electrode is attached to the normal metal. It is
shown that the Josephson supercurrent not only can be tuned largely by the temperature but also is related to the
potential and the length of the weak-link region. Especially, the asymmetry excess critical supercurrent, oscillatory
character, and plateau-like structure have been revealed. We except those phenomena that can be observed in the
recent experiment.
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Background
Since the pioneering work of Kane and Mele [1], there
has been a great deal of theoretical and experimental in-
vestigations concerning the exotic new phase of conden-
sate matter-topological insulator (TI) [2-5]. Originally, a
TI state (first termed as the quantum spin Hall phase) is
prophesied in graphene based on the spin-orbit inter-
action and time-reversal symmetry [1]. Shortly after TI
state was first proposed in a 2-dimensional (2D) gra-
phene, the amazing quantum state was theoretically pro-
posed independently in HgTe quantum wells [6,7] and
the alloy Bi1−xSbx with a special range of x [8]. Unlike
the weak intrinsic spin-orbit coupling in graphene [9],
the amazing TI states have been observed experimentally
soon after the theoretical prediction [10,11]. In general,
we can first divide TI into two broad classes in a real-
space picture: the 2D TI holding a pair of 1D edge states
with Dirac-like dispersion and the 3D TI hosting the
2D massless Dirac fermion states on the surface. In
the 3D case, the weak TI and strong TI correspond to the
even and odd number of Dirac cones on the surface
[12-14]. Because the weak TI is adiabatically connected to
stacked layers of 2D TI, the strong TI has received a surge
of research activities due to the robustness of its surface
states as a genuine new state of matter [2-5,12-14].
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An intriguing pitch came into the field when a super-
conductor is proximate to the surface of strong TI. By
the proximity effect of superconductor on the surface
state, Majorana fermions are predicted to occur [15,16].
The appearance of such Majorana fermions is expected
to lead to a number of unusual electronic properties such
as zero-bias conductance anomalies [17,18], non-Abelian
statistics [19], electron teleportation [20], and so on. It is
also interesting that the appearance of such quasiparticles
in the surface of strong TI can also provide us with a
smoking gun experimental setup to diagnose them by the
fractional Josephson effect [21,22]. The Josephson effect
describes a phenomenon of supercurrent through a device
known as a Josephson junction [23]. It is a two-particle
process in which a Cooper pair in one superconductor
can across a weak link into the other superconductor
without any voltage applied. Recently, Josephson effect on
the surface of strong TI has attracted a lot of attention
about the peculiar Majorana fermion [12-14,21,22,24-31].
In most of the conditions, it is assumed that the Fermi
level is close to the Dirac point. However, the chemical
potential of TI does not always certainly reside at the Di-
rac point from an experimental point of view. Also, in
those studies, a linear junction is generally analyzed by the
discretized bound states in the superconductor gap (with-
out the consideration of the continuous spectrum above
the gap). But for a finite length scale junction, the continu-
ous spectrum begins to play a partial role to the supercur-
rent. In addition, in those calculations, it is assumed that a
an Open Access article distributed under the terms of the Creative Commons
g/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction
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ferromagnet lead is sandwiched between the two super-
conductor leads to exploit Majorana fermion. Besides
charming of Majorana fermion, Josephson junction has an
important application in quantum-mechanical circuits,
such as superconducting quantum interference device,
superconducting qubits, and rapid single flux quantum
digital electronics, and so on [32]. Thus, it is also an im-
portant thing to understand the fundamental properties of
the Josephson effect on the surface of TI.
Hence, in this work, we study the Josephson effect

through a Josephson junction on the surface of a strong
TI where a gate voltage is exerted on the central normal
lead with a finite width. Here, we adopt the Furusaki-
Tsukada method [33,34], which is applicable to any length
of the junction and any potential strength of the weak link.
Based on the method, it will allow us to reveal a number
of characteristics, such as the dependence of the supercur-
rents on relevant variables, such as the length between the
two superconductor leads, the temperature, the phase
bias, and the gate voltage of the central weak-link region.
Methods
We consider a ballistic Josephson junction on the surface
of TI (see Figure 1) consisting of a normal metal (NM)
lead sandwiched by two superconductors. The growth
direction is taken along the x-axis. The superconductor
regions occupy x < 0 and x > l, while the NM region oc-
cupies 0 < x < l. Indeed, the surface state of TI is metallic
naturally. However, by means of the proximity effect, a
superconductor pair correlation on the surface can be in-
duced in the presence of a superconductor lead [19,30].
Here, the left and right superconductor leads are shown in
Figure 1 which denote the two bulk s-wave superconduc-
tor leads. As a result, s-wave superconductor pair correl-
ation is induced in topological surface states underneath
the superconductor leads. Therefore, the induced sing-
let superconducting pairing strength can be described
by Δ xð Þ¼Δ eiϕLΘ xð Þ þ eiϕRΘ x−lð Þ� �

where Θ(x) is the
Heaviside step function, Δ and φ are the superconducting
Superconductor NM

l

gV

3D Topological Insula
S

Figure 1 Schematic diagram of a S/N/S Josephson junction. The two y
central cyan block denotes a normal metal lead which is deposited on the
s-wave superconducting pair potential is induced in the surface state of th
central normal metal lead to tune the Fermi energy.
gap and the phase of superconducting order parameter,
respectively. The temperature dependence of the bulk pair

potential Δ is given by the usual formula Δ Tð Þ ¼ Δ 0ð Þ
tanh 1:74

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TC=T−1

p� �
[35]. On the other hand, the po-

tential in NM can be adjusted by a top-gate lead sketched
in Figure 1. Since the zero of potential is arbitrary, we set
the potential as U(x) = −UΘ(x)Θ(x − l). Notice that the
mean-field requirement of superconductivity is satisfied as
long as Δ < < EF (EF is the Fermi energy). Moreover, we
also assume that the width of the nanostructure W is very
big; hence, the details of the microscopic description of
the strip edges become irrelevant.
Due to the translational invariance in y-direction, the

y-component of the momentum is conserved and the
Hamiltonian (wave function) is reduced to an effective 1D
one (only x-component). Thus, the low-energy excitation
quasiparticle propagation in the ballistic Josephson junc-
tion can be described by the following Dirac-Bogoliubov-
de Gennes equation [30]:

H −EF Δ xð Þ
Δ� xð Þ EF − σyH�σy

� �
Ψ ¼ EΨ ð1Þ

where H ¼ ℏvF p
→ � σ

→ þU xð Þ and vF is the Fermi vel-
ocity, σ

→
is the Pauli matrices, the four-dimensional

spinor Ψ contains u ¼ ψ↑; ψ↓

	 

for the electron-like

quasiparticle and v ¼ ψ�
↑; ψ�

↓

	 

for the hole-like quasi-

particle, and E is the quasiparticle energy measured from
EF. In the following, we set ℏ = vF = 1.
By solving (1), the wave functions in the supercon-

ductor and NM regions can be expressed in a specific
form. In the NM, the wave functions are given by

Ψe�
N ¼ 1; iq � keN

	 

= ε−U þ EFð Þ; 0; 0

	 

ei �keN xþqyð Þ

Ψh�
N ¼ 0; 0; 1; − iq � khN

	 

= εþ U−EFð Þ	 


ei �khN xþqyð Þ
ð2Þ

where Ψe�
N and Ψh�

N are the wave functions traveling along
the ± x directions with a transverse momentum q and an
xtor
uperconductor y

ellow blocks denote the two s-wave superconductor leads, and the
surface of the 3D topological insulator. By the proximity effect, the
e 3D topological insulator. While a gate voltage is applied on the
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energy ε for electron and hole, respectively, and keN ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−q2 þ ε−U þ EFð Þ2

q
and khN ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−q2 þ εþ U−EFð Þ2

q
are the momentums along the x-axis. Note that the evan-
escent solutions can be included easily in the present case
to ensure the current conservation in the calculations.
Similarly, in the superconductor leads, the wave functions
are

Ψe�
S ¼ u; uηe�; ve−iϕζ ; vηe�e

−iϕζ
	 


ei �keSxþqyð Þ
Ψh�

S ¼ v; vηh�; ue−iϕζ ; uηh�e
−iϕζ

	 

ei �khSxþqyð Þ

ηe� ¼ iq � keS
	 


= EF þ
ffiffiffiffiffiffiffiffiffiffiffiffi
ε2−Δ2

p� �
ηh� ¼ iq � khS

	 

= EF−

ffiffiffiffiffiffiffiffiffiffiffiffi
ε2−Δ2

p� �
ð3Þ

where ke hð Þ
S ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−q2−Δ2 þ ε2 þ E2

F þ −ð Þ2EF

ffiffiffiffiffiffiffiffiffiffiffiffi
ε2−Δ2

pq
, the

coherence factors are given by u ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε2−Δ2=ε

p� �
=2

r
;

v ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε2−Δ2=ε

p� �
=2

r
; and ζ = L or R.

For an electron-like quasiparticle of energy E > Δ and
transverse momentum q (the incident angle θ) incident
from the left superconductor lead, the corresponding
wave functions in the three regions can be written as

ΨL ¼ Ψeþ
S þ r1Ψe−

S þ r1AΨ
h−
S

ΨM ¼ f ψeþ
N þ gΨhþ

N þmψe−
N þ nΨh−

N
ΨR ¼ t1Ψeþ

S þ t1AΨ
hþ
S

ð4Þ

where r1 and r1A are the amplitudes of normal and
Andreev reflections, respectively, f, g, m, and n are the
corresponding transmission and reflection amplitudes in
NM, and t1 and t1A are the amplitudes of electron-like
and hole-like quasiparticles in the right superconductor
lead.
For a hole-like quasiparticle incident from the left

superconductor lead with energy E > Δ and transverse
momentum q (the incident angle θ), the corresponding
wave functions in the three regions have the following
forms:

ΨL ¼ Ψhþ
S þ r2Ψh−

S þ r2AΨ
e−
S

ΨM ¼ f ′ψeþ
N þ g ′Ψhþ

N þm′ψe−
N þ n′Ψh−

N
ΨR ¼ t2Ψeþ

S þ t2AΨ
hþ
S

ð5Þ

Appling the continuity boundary conditions of the wave
functions at the boundary ΨL(0) =ΨM(0) and ΨM(l) =
ΨR(l), the amplitudes r1A and r2A can be obtained dir-
ectly. As the analytical results for these coefficients are
tedious, we only give the numerical results in the fol-
lowing section.
After that, it is straightforward to calculate the dc

Josephson current in terms of the Andreev reflection
amplitudes by using the temperature Green's function
formalism [33,34],

I ¼ eΔ
2ℏ

X
σq

kBT
X
ωn

1
2Ωn

ken þ khn
	 
 r1n

ken
−
r2n
khn

 !
ð6Þ

where ken, k
h
n, r

1
n, and r2n are obtained from keS , k

h
S , r

1
A, and

r2A by the analytic continuation ε→ iωn, the Matsubara
frequencies are ωn = πkBT(2n + 1) with n = 0, ±1, ±2, …,

and Ωn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
n þ Δ2

q
. In effect, most of the existing liter-

atures about Josephson junction on the surface of TI
have just focused on the short-junction cases l≪ ξ with
ξ = 1/Δ the superconducting coherence length. In par-
ticular, the Josephson junctions with a normal metal
weak link in [22] are only considered the discretized
bound states even in the calculation for large length scales.
However, in the long-junction cases l≫ ξ, the Andreev
level proliferation and the phase dependence of continu-
ous spectrum must be taken into account. By employing
the Furusaki and Tsukada formula [33,34], we will provide
a theoretical investigation for a finite temperature and an
arbitrary length scale. Moreover, going beyond the weak-
link junction restriction, in this paper, we will also investi-
gate the tunnel junction case through the Furusaki and
Tsukada formula [33,34]. In the Andreev approximation,
we can obtain the following form of the dc Josephson
current by integrating over q,

I ¼ 2πkBTΔ
eR

Z π=2

0
cosθdθ

X
ωn

1
Ωn

r1n−r
2
n

	 
 ð7Þ

Note that R ¼ 2π2ℏ2vF
We2EF

where W is the width of the

junction. Certainly, using (7) the dc Josephson current
for the present junction can be obtained easily by the
numerical calculations.

Results and discussion
From an experimental point of view, due to the lattice
mismatch between the bulk superconductor and the TI,
the induced superconducting gap on the surface state of
the TI can be expected to be substantially reduced in
magnitude. In general, for a conventional s-wave super-
conductor such as Al or Nb, the gap and critical tem-
perature can be assumed to Δ ∼ 0.1 meV and TC = 23 K,
respectively. Here, we estimate the Fermi velocity as vF ≈
1 × 105 m/s. The superconducting coherence length is
then ξ ∼ 600 nm. In practice, the bulk band gap of TI
opening can be observed on the order of 20 to 300 meV
that depends on the material [36]. Moreover, the Fermi
energy EF can be tuned arbitrarily by either using the elec-
tric field effect or local chemical doping [37]. Therefore,
such a junction with EF = 10 ∼ 103Δ can be experimentally
achieved within the present-day technique. Meanwhile,
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the requirement of the transport inside the bulk gap can
be fulfilled. Therefore, the parameters and the results in
this study are authentic.
Let us now first consider the critical supercurrent. A

plot of the critical supercurrent as a function of the po-
tential U/EF for different Fermi energy EF/Δ(0) has been
shown in Figure 2a. The parameters used are shown in
the figure. From Figure 2a, we can find five noteworthy
features. First, it exhibits oscillatory behavior due to the
coherent interface effect of the quasiparticles in the cen-
tral weak-link region. Physically, the Feynman paths of
the transmission coefficients must contain the terms
such as exp �ikeN l

	 

and exp �ikhN l

	 

, which are the pha-

ses acquired by the electron and hole traveling a distance
l, respectively. Thus, the oscillation period is determined
by the resonant condition keN−k

h
N

	 

l cos θð Þ ¼ 2nπ with

ke hð Þ
N the wave vector in the NM region and n an integer.

As a consequence, the Andreev bound states are sen-
sitive to the potential U/EF of the middle region, which
results in a series of resonance peaks as a function of
U/EF. Second, the maximum of critical supercurrent rea-
ches an excess value independent of the barrier strength
U. This can be intuitively elucidated by the fact that a
Fermi surface mismatch acts as an effective barrier for
the electrons knocking on the interface [38]. However,
the effective barrier reaches a saturation value for a large
Fermi surface mismatch between the superconductor
and the NM regions. As a consequence, the advent of ef-
fective excess barrier leads to the excess character for
the maximum of critical supercurrent. Third, critical su-
percurrent reaches its minimum nonzero value when the
chemical potential of the NM is precisely at the Dirac
Figure 2 Plot of critical supercurrent as a function of the potential str
the potential strengths of NM region for different Fermi energies of the sys
energy with EF/Δ(0) = 10, 102, and 103, respectively. In (b) and (c), critical su
temperatures is plotted. The other parameters are shown in the figure.
point. In effect U/EF = 1, there are no propagating modes
available in NM. Naively, one would expect the critical
supercurrent decays to a negligible value. However, in
contrast to a conventional material, the semimetal NM
behaves as a disordered metal which makes the critical
supercurrent survival even with a considerable value [29].
Fourth, the excess critical supercurrent for a negative
U − EF is larger than that for a positive U − EF. Such fea-
ture is a result of the quasiparticle types involved in those
two cases. As shown in graphene, the transmission asym-
metry has been revealed in the two cases of Klein tunnel-
ing and classical motion for a bipolar junction [39]. For a
negative U − EF, the quasiparticles (both electron-like and
hole-like) in NM all transmit in the conduct band. Mean-
while, the quasiparticles in superconductor origin from
the same conduct band. As a result, the quasiparticle con-
version between NM (Andreev bound states) and super-
conductor (Cooper pairs) can be served as a classical
motion, at least from a point of view of the transmission.
For a positive U − EF, in contrast, those supercurrent car-
rying quasiparticles in NM come form the valence band.
Thus, the quasiparticles conversion between NM (in the
valence band) and superconductor (in the conduct band)
origins form the different bands amounting to a Klein tun-
neling (a superconduting Klein tunneling). Mathematic-
ally, the wave functions Ψ e�

N and Ψ h�
N in NM are given by

(2). From them, we can clearly see that they have a close
relationship with U − EF. More specifically, the sign of the
second component of Ψ e�

N and the fourth component of

Ψ h�
N is a direct result of the value of U − EF. Therefore,

the different quasiparticle types in NM will result in a dis-
tinct strength of the excess critical supercurrent. Besides,
engths of NM region. (a) Plot of critical supercurrent as a function of
tem. Solid line, dashed line, and dotted line correspond to the Fermi
percurrent as a function of the potential strengths for different
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in Figure 2a, the critical supercurrents for EF/Δ(0) = 10,
102, and 103 are calculated. As shown in Figure 2a, the
Fermi energy of the system plays an important role in the
coherent tunneling. Besides the similar oscillatory charac-
ters, the important feature revealed is that the critical su-
percurrent strength increases with the ratio of EF/Δ(0).
In Figure 2b,c, we show the dependence of critical su-

percurrent on potential U/EF for different temperatures
with EF/Δ(0) = 103. The other parameters are shown in
the figure. Figure 2b,c shows the calculated results of
critical supercurrent for cases of l/ξ = 0.005 and l/ξ = 0.2,
respectively. It can be seen clearly that both of them ex-
hibit the monotonic decay feature with increasing tem-
perature T. This is due to the thermal effect on Andreev
bound states, which tends to reduce Andreev levels in
the superconductor gap with increasing temperature T.
The less number of Andreev levels contributing to the
supercurrent thus leads to the suppressed feature. Be-
sides the similar features, it is worthwhile to note that it
also exhibits some different characters between the cases
of l/ξ = 0.005 and l/ξ = 0.2. First, the minimum of critical
supercurrent is shown as a decay function of T, while it
Figure 3 Plot of the length dependence and temperature dependenc
dependence of the critical supercurrent. (c) and (d) Plot of the temperatur
in the figure.
remains nearly constant when the chemical potential of
NM is at the Dirac point. Second, it is found that oscilla-
tion amplitude of critical supercurrent will disappear
with increasing l. The physical origin for those phenom-
ena can be given as follows. In central NM well which is
formed by the two superconductor leads, the electron-
like and hole-like quasiparticles inside the two interfaces
will coherently interfere with each other which results in
the formation of Andreev bound states. Through those
Andreev levels, critical supercurrent will exhibit an oscil-
lation feature for a short junction (l/ξ = 0.005). On the
other hand, for a long junction (l/ξ = 0.2), as the interfer-
ence effect decays in NM well, the present structure de-
generates into a single junction case and then leads to
the disappearance of the oscillation feature. In particular,
the decay effect of interference exhibits much remark-
able for the case of the evanescent mode (chemical po-
tential of NM at the Dirac point). Thus, the minimum of
critical supercurrent remains nearly constant.
Consider now the critical supercurrent as a function of

l/ξ for EF = 103Δ(0) and T/TC = 0.3, at four different po-
tentials U/EF = 0, 0.5, 1, and 1.5, as shown in Figure 3a.
e of the critical supercurrent. (a) and (b) Plot of the length
e dependence of the critical supercurrent. The parameters are shown
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The other parameters are similar to the Figure 2. For the
case of no Fermi wave vector mismatch between the
superconductor and NM (U = 0), it is intriguing to note
that as the length of the NM increases, the critical su-
percurrent does not decrease smoothly but shows a
plateau-like behavior (see the solid line in Figure 3a).
This is a qualitatively new feature as compared to the re-
sults of [29] and also contrast to the case of graphene
[40]. In order to understand the plateau-like behavior,
we repay a close attention to the coherent interface ef-
fect in NM. It is important to note that the resonant
condition requires a large interval of l which reflects a
decay effect of the wave feature. Whenever the length of
the NM reaches the period condition, the critical super-
current thus jumps from one step to another adjacent
step. Physically, the distinct phenomenon between the
present structure and graphene can be ascribed to the
different definitions of chirality in the two materials. That
is to say, in contrast to graphene where the chirality cou-
ples the momentum and the pseudospin degree of free-
dom, the chirality in the present structure relates the
physical spin to the momentum. A nonzero U leads
Figure 4 Plot of the current-phase relationship for different temperat
relationship for potential strength U/EF = 1. The parameters are shown in th
to a Fermi wave vector mismatch which amounts to an ef-
fective barrier. With the increase of the absolute value of
U, the coherent interface effect and the decay effect are
strengthened. The competition of them makes the critical
supercurrent becomes small, but the oscillatory amplitude
becomes large as shown in Figure 3a. The reason is that
the increase of the Fermi wave vector mismatch with the
potential strength results in the increase of quasiparticle
interferences in NM. In contrast, the decrease of the amp-
litude of Andreev reflection reduces the critical supercur-
rent. In effect, the oscillatory behavior can be seen more
clearly from Figure 3b only for the case of U/EF = 1.5.
We now proceed to investigate the temperature de-

pendence of the critical supercurrent in Figure 3c,d. The
parameters are shown in the figure. It is shown that the
critical supercurrent can be modulated largely by the
temperature T and a plateau-like structure can be yielded.
In particular, the plateau-like behavior may be achieved
even when the chemical potential of the NM is precisely
at the Dirac point. However, the plateau-like structure
washes out for a long junction. The plateau-like structure
disappearance behavior can be explained by considering
ures. T (a), length l (b), and potential strength U (c), (d) current-phase
e figure.
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the decay of the quasiparticles interference effect in the
NM. Although the plateau-like structure tuned by the
temperature T is very similar to the case of the length of
NM l, they have different physical origins. The novel be-
haviors now can be elucidated as follows. Remember that

the temperature dependence of Δ is given by Δ Tð Þ ¼ Δ

0ð Þ tanh 1:74
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TC=T−1

p� �
. As a result, the critical super-

current decreases with increasing temperature because
the number of Andreev levels (within the superconductor
gap) which contributes to the critical supercurrent de-
creases with increasing temperature. Especially, the inter-
play between the restriction in the number of the Andreev
levels and thermal average of all Andreev levels results in
the plateau-like structure.
In the following, we want to show how the fate of the

equilibrium current-phase relation depends on the tem-
perature T, the length l, and the potential strength U, as
shown in Figure 4a,b,c. The parameters are shown in the
figure. In general, a normal incident mode results in an
anomalous 4π periodic Josephson effect [29,30]. How-
ever, the other channels always lead to the 2π periodic
equilibrium supercurrent. Hence, the 2π periodic char-
acter dominates the angle-averaged supercurrent and
therefore, this supercurrent exhibits a 2π period in
measurement, as shown in Figure 4. In Figure 4a, we see
that for larger temperature current-phase relation has a
more sinusoidal shape. For small temperature, there is a
sharp peak at ϕ = (2n + 1)π/2 with n = 0, ±1, …. Upon in-
creasing l, the peaks of equilibrium supercurrents at
fixed T and U are shown by a large suppress. While it is
clearly seen that a nonsinusoidal shape current-phase re-
lation can be kept at ϕ = (2n + 1)π/2. Also, for a larger l,
the sharpness of the peaks becomes less steep which can
be ascribed to decay effect of quasiparticles. Finally, we
intend to investigate how the current-phase relation de-
pends on U at T/TC = 0.01 and l/ξ = 0.1. The result is
shown in Figure 4c,d. The striking feature is that the
current-phase relation for different U exhibits a similar
behavior even at U/EF = 1. To see this phenomenon
more clearly, we have only plotted the current-phase re-
lation for U/EF = 1 in Figure 4d. Quantitatively, the mag-
nitude of the supercurrent decreases with decreasing
chemical potential in NM since there are few propagat-
ing modes available.
Conclusions
To conclude, we have shown that the Josephson super-
current not only can be tuned largely by the temperature
but also is related to the potential and the length of the
weak-link region. Compared to the results that have been
obtained, there are some pronounced deviations revealed.
Based on the Furusaki and Tsukada formula adopted here
where both discretized bound states and the continuum
spectrum are included, we can expect that our findings
will shed more light on the details of the Josephson super-
current. With the rapid experimental advance in TI, we
can suppose a very efficient Josephson device should be
realized in the near future.
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