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Abstract

La1 − xAlxFeO3 (x = 0.0, 0.05, 0.1, 0.2, 0.3, 0.4, and 0.5) nanopowders were prepared by polymerization complex
method. All prepared samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM),
transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR), and UV-vis spectrophotometry
(UV-vis). The magnetic properties were investigated using a vibrating sample magnetometer (VSM). The X-ray results of
all samples show the formation of an orthorhombic phase with the second phase of α-Fe2O3 in doped samples.
The crystallite sizes of nanoparticles decreased with increasing Al content, and they are found to be in the range
of 58.45 ± 5.90 to 15.58 ± 4.64 nm. SEM and TEM images show the agglomeration of nanoparticles with average
particle size in the range of 60 to 75 nm. The FT-IR spectra confirm the presence of metal oxygen bonds of O-Fe-O
and Fe-O in the FeO6 octahedra. The UV-vis spectra show strong absorption peaks at approximately 285 nm, and the
calculated optical band gaps are found to be in the range of 2.05 to 2.09 eV with increasing Al content. The M-H loop
of the pure sample is antiferromagnetic, whereas those of the doped samples tend to be ferromagnetic with increasing
Al content. The magnetization, remanent magnetization, and coercive field of the Al-doped sample with x = 0.5
are enhanced to 1.665 emu/g, 0.623 emu/g, and 4,087.0 Oe, respectively.
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Background
LaFeO3 with an orthorhombic phase of the ABO3-type
perovskite structure has become a currently attractive
research topic because it is proposed for various applica-
tions in several advanced technologies such as catalysts
[1-3], various kinds of chemical and gas sensors [4-9],
and electrode materials in solid oxide fuel cells [10]. In
general, LaFeO3 consists of FeO6 octahedral units with
La3+ ions at the corners [11,12]. The advantage of this
structure is the replaceability of metallic ions at both A
and B sites by various transition metals. Pure and doped
LaFeO3 (Pd, Al, Zn, Ag, Sr, Ir, Ca, Co, etc.) were studied
for various purposes and aspects with reports of optical,
electrical, and magnetic properties [13-25].
Research on pure and doped LaFeO3 nanostructures re-

veal that the property and quality of the materials are
strongly influenced by the synthesis method. The synthesis
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method is usually related to the specific preparation
conditions which can result in various properties of
the end products. Various techniques were employed
for the synthesis of pure and doped LaFeO3 such as
sol-gel/combustion method [26-40], microwave-assisted
method [41-43], solid-state reaction method [14,44-46],
thermal decomposition [47,48], microemulsion method
[49], hydrothermal method [50-52], hot soap method [53],
spray drying [54], electrospinning [55], drip pyrolysis [19],
and polymerization complex method [56-59]. However,
polymerization complex method based on polyesterifica-
tion between citric acid (CA) and ethylene glycol (EG) is
the most attractive because it is simple, cost effective, time
saving, and environmentally benign.
Thus, we propose in this research the synthesis of

La1 − xAlxFeO3 (x = 0, 0.05, 0.1, 0.2, 0.3, 0.4, and 0.5)
nanopowders using a simple polymerization complex
method. The magnetic and optical properties of the prod-
ucts were studied. The magnetization, coercive field, and
remanent magnetization are measured, and they are ex-
pected to be enhanced due to the substitution of small-
radius ions of Al on the La site.
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Figure 1 XRD patterns of La1 − xAlxFeO3 (x = 0.0, 0.05, 0.1, 0.2,
0.3, 0.4, and 0.5) nanopowders.

Table 1 Lattice parameter and crystallite size of
La1 − xAlxFeO3 nanopowders

La1 − xAlxFeO3 Lattice parameter (Å) Average
crystallite
size (Å)

a b c

x = 0.0 5.559 7.862 5.560 58.45 ± 5.90

x = 0.05 5.544 7.848 5.549 39.00 ± 1.03

x = 0.1 5.536 7.834 5.539 29.83 ± 7.84

x = 0.2 5.503 7.812 5.522 24.30 ± 3.76

x = 0.3 5.503 7.790 5.506 23.23 ± 5.22

x = 0.4 5.506 7.785 5.509 22.35 ± 4.77

x = 0.5 5.443 7.762 5.502 15.58 ± 4.64
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Methods
La1 − xAlxFeO3 (x = 0, 0.05, 0.1, 0.2, 0.3, 0.4, and 0.5)
were synthesized by polymerization complex method.
Stoichiometric amounts of iron nitrate (Fe(NO3)3.9H2O,
Kanto Chemical Co., Chuo-ku, Japan, 99.9%), lanthanum
nitrate (LaN3O9.6H2O, Fluka, Seelze, Germany, 99.0%), and
aluminum nitrate (Al(NO3)3.9H2O, Carlo Erba Reagenti,
Milan, Italy, 99.0%) in the ratio of 1 – x:x:1 (La:Al:Fe) with
1 g of citric acid (C6H8O7.H2O, VWR International Ltd.,
Radnor, PA, USA, 99.7%) were dissolved in 40 mL ethylene
glycol and 20 mL deionized (DI) water. The mixture was
magnetically stirred for 1 h in order to obtain stable metal-
citric acid complexes. The obtained solution was continu-
ously stirred at 70°C for 1 h. This solution was dried at
120°C on a hot plate. The obtained powders were pre-
calcined at 400°C for 3 h to burn out the polymer. The
pre-calcined powders were ground and further cal-
cined at 900°C for 3 h in air.
The calcined powders were characterized using an X-ray

diffractometer (XRD; XRD-6100, Shimadzu, Kyoto, Japan)
with CuKα1 radiation (λ = 1.5405 Å). The morphologies of
the synthesized products were observed using a scanning
electron microscope (SEM; 1450VP, LEO, Hurley, UK) and
a transmission electron microscope (TEM; Tecnai G2 20,
FEI, Hillsboro, OR, USA). The components of the powders
were analyzed by energy-dispersive X-ray spectroscopy
(EDX; Tecnai G2 20, FEI). Fourier transform infrared
spectroscopy (FT-IR; Spectrum One FT-IR, Perkin Elmer
Instrument, Waltham, MA, USA) was employed to inves-
tigate functional groups in all samples. The optical
properties were studied by ultraviolet-visible spectroscopy
(UV-vis; UV-3101PC, Shimadzu). The magnetizations of
all samples were measured using a vibrating sample
magnetometer (VSM; VersaLab™ Cryogen-free, Quantum
Design, San Diego, CA, USA).

Results and discussion
XRD analysis
The XRD patterns of La1 − xAlxFeO3 (x = 0, 0.05, 0.1,
0.2, 0.3, 0.4, and 0.5) nanopowders are shown in Figure 1.
The results indicate that the products are a perovskite
oxide of an orthorhombic structure with the second
phase of α-Fe2O3 in the doped samples of x = 0.2 to 0.5.
The XRD results are in good agreement with the
standard data of LaFeO3 (JCPDS card no: 37-1493)
and α-Fe2O3 (JCPDS card no: 89-0595). The average
crystallite size is determined from the X-ray line broaden-
ing of the (101), (121), (220), (202), (240), (242), and (204)
diffraction peaks using the Scherrer equation, and it is
found to be decreased with increasing Al content, as sum-
marized in Table 1. The lattice parameters a, b, and c of the
doped samples decreased with the increase of Al content
due to the replacement of the larger La3+ ion (radius
approximately 1.36 Å) by a smaller Al3+ ion (radius
approximately 0.535 Å) [22], as summarized in Table 1.
The significant change in the decrease of lattice pa-
rameters with increasing Al content is confirmed by
the shift of the diffraction peaks to a higher diffraction
angle. On the other hand, Al3+ ions can be substituted
on B sites of Fe3+ ions because the ionic radius of Al3+

is close to that of the Fe3+ ion (radius approximately
0.78 Å), resulting in the formation of the impurity
phase of α-Fe2O3.
SEM analysis
The SEM micrographs of La1 − xAlxFeO3 (x = 0.0, 0.1,
0.3, and 0.5) nanopowders are shown in Figure 2. In
Figure 2a, the powders are almost irregularly nanoag-
glomerated with a mean size of approximately 60 to
75 nm. In Figure 2b,c,d, agglomeration of nanoparti-
cles with a size larger than 100 nm and grain growth
can be observed in doped samples. Moreover, the SEM
images reveal a uniform grain size distribution and
homogeneous nanostructure.
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Figure 3 Bright-field TEM images (a1-d1) with the corresponding SA
nanopowders. (a) x = 0.0. (b) x = 0.1. (c) x = 0.3. (d) x = 0.5.
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Figure 2 SEM micrographs of La1 − xAlxFeO3 nanopowders.
(a) x = 0.0. (b) x = 0.1. (c) x = 0.3. (d) x = 0.5.
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TEM analysis
Figure 3a,b,c,d shows bright-field TEM images with the
corresponding selected area electron diffraction (SAED)
patterns and EDX spectra of La1 − xAlxFeO3 (x = 0.0, 0.1,
0.3, and 0.5) nanopowders. It is obvious in Figure 3a1,
b1,c1,d1 that the particulates consist of the agglomer-
ation of numerous nanocrystallite particles of irregular
shape, corresponding to the SEM observation in Figure 2.
The average particle size is estimated and found to be
approximately 60 to 75 nm. The SAED patterns in
Figure 3a2,b2,c2,d2 show ring patterns, indicating
that all doped samples are polycrystalline. Each SAED
pattern can be indexed to a certain crystalline plane
which is found to be consistent with that of the XRD
results in Figure 1. The EDX spectra of these samples
are shown in Figure 3a3,b3,c3,d3. The EDX results
clearly show that all samples contain La, Fe, Al, and
O with higher intensity peaks of Al in samples of high
Al content. The Cu peaks that appeared come from
the copper grid.
b3

a3

c3

d3

ED patterns (a2-d2) and EDX spectra (a3-d3) of La1 − xAlxFeO3



Figure 5 UV-vis spectra of La1 − xAlxFeO3 (x = 0.0, 0.05, 0.1, 0.2,
0.3, 0.4, and 0.5) nanopowders.
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FT-IR analysis
Figure 4 shows the FT-IR spectra of La1 − xAlxFeO3

(x = 0, 0.05, 0.1, 0.2, 0.3, 0.4, and 0.5) nanopowders.
All spectra show broad absorption peaks at approxi-
mately 3,449.13 cm−1, corresponding to the symmetric
and asymmetric stretching modes of water molecules. The
observed broad band at approximately 1,600 cm−1 corre-
sponds to the bending mode of O-H bond. The strong ab-
sorption peaks in the range of 500 to 600 cm−1 reveal the
presence of metal oxygen bonds which can be assigned to
the vibrations of Fe-O and O-Fe-O bonding in the octahe-
dral structure of La1 − xAlxFeO3. These results are in good
agreement with the FT-IR spectra of pure and doped
LaFeO3 reported in the literature [14,41,43,47,50].

UV-vis analysis
The UV-vis spectra of La1 − xAlxFeO3 (x = 0, 0.05, 0.1,
0.2, 0.3, 0.4, and 0.5) nanopowders are shown in Figure 5.
In Figure 5, broad absorption peaks are observed in all
samples at approximately 285 nm with the infinitesimal
redshifted to approximately 290 nm. From the plot of
(αhν)2 vs. hν in Figure 6a,b,c,d, the optical band gaps
(Eg) of the samples can be determined by extrapolating
the slope to the zero value of (αhν)2, and the obtained
values are summarized in Table 2. It is found that the
optical band gaps do not significantly vary with increas-
ing Al content.

VSM analysis
Figure 7a,b,c,d,e,f,g shows the magnetization curves of
La1 − xAlxFeO3 (x = 0, 0.05, 0.1, 0.2, 0.3, 0.4, and 0.5)
nanopowders measured at room temperature by VSM.
As can be seen in Figure 7a, the magnetization curve of
the pure sample is very narrow, indicating the antiferro-
magnetic behavior of the sample, while those of the
Figure 4 FT-IR spectra of La1 − xAlxFeO3 (x = 0.0, 0.05, 0.1, 0.2,
0.3, 0.4, and 0.5) nanopowders.
doped samples show larger loops of ferromagnetic be-
havior with higher magnetization according to higher Al
content (Figure 7b,c,d,e,f,g). In addition, the values of
coercive field (Hc), magnetization (M), and remanent
magnetization (Mr) are enhanced with increasing Al
content, as summarized in Table 2. In general, it is well
known that pure LaFeO3 exhibits antiferromagnetic
behavior. This behavior is due to the anti-alignment of
the magnetic moments of the Fe3+ ions. However, LaFeO3

can behave ferromagnetically due to the small crystallite
size. The decrease of crystallite size can increase the un-
compensated spins at the surface [60,61]. In our work, it
is evident in Table 1 that the crystallite size of La1 − xAlx-
FeO3 decreases for higher Al content, resulting in the en-
hancement of ferromagnetism with higher M value. In
addition, the second phase of α-Fe2O3 detected in the
Figure 6 Plots of (αhν)2 as a function of photon energy of
La1 − xAlxFeO3 nanopowders. (a) x = 0.0. (b) x = 0.1. (c) x = 0.3.
(d) x = 0.5.



Table 2 Coercive field (Hc), magnetization (M), remanent
magnetization (Mr), and optical band gap (Eg) of
La1 − xAlxFeO3 nanopowders

La1 − xAlxFeO3 Hc (Oe) M (emu/g) Mr (emu/g) Eg (eV)

x = 0.0 366.8 0.202 0.007 2.05

x = 0.05 591.2 0.291 0.008 2.07

x = 0.1 1,597.2 0.196 0.012 2.07

x = 0.2 3,390.6 0.300 0.038 2.07

x = 0.3 5,308.4 0.509 0.158 2.09

x = 0.4 4,399.3 0.899 0.301 2.09

x = 0.5 4,087.0 1.665 0.623 2.07
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Figure 8 Magnetization of La0.5Al0.5FeO3 nanopowder as a
function of temperature measured by field cooling process.
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XRD measurements may also be attributed to the ferro-
magnetism in La1 − xAlxFeO3. Figure 8 shows the
temperature-dependent magnetization of La0.5Al0.5FeO3

nanopowder investigated by field-cooled (FC) meas-
urement in the temperature range of 50 to 390 K. The
M decreases as the temperature increases because of
Figure 7 Magnetization measurements at room temperature
of La1 − xAlxFeO3 nanopowders. (a) x = 0.0. (b) x = 0.05. (c) x = 0.1.
(d) x = 0.2. (e) x = 0.3. (f) x = 0.4. (g) x = 0.5. (h) M as a function of
Al content.
the thermal fluctuations causing the randomization of
polarization direction. It is clearly seen in Figure 8 that
the zero value of magnetization cannot be observed in
the temperature range of measurement, implying that
the Curie temperature (Tc) is above 400 K.

Conclusions
In summary, La1 − xAlxFeO3 (x = 0, 0.05, 0.1, 0.2, 0.3, 0.4,
and 0.5) nanopowders were successfully synthesized by
polymerization complex method at a temperature of
900°C for 3 h in air. XRD analysis reveals an orthorhom-
bic phase of the nanopowders with average crystallite
size in the range of 15.58 ± 4.64 to 58.54 ± 5.90 nm. The
impurity phase of α-Fe2O3 is found in doped samples
of x ≥ 0.2. SEM and TEM images show agglomerated
nanoparticles of irregular shape with estimated particle
sizes in the range of 60 to 75 nm. The lattice parame-
ters are found to decrease with increasing Al content.
The EDX results clearly show only the main peaks of
La, Fe, Al, and O in all samples. The UV-vis spectra
show the infinitesimal shift from 285 to 290 nm as the
Al content is increased. The increase of Al content does
not significantly affect the optical band gaps which are
found to be in the range of 2.05 to 2.09 eV. Al3+ substitu-
tion in LaFeO3 crystals can enhance the magnetization
(M), coercive field (Hc), and remanent magnetization (Mr)
of Al-doped samples by a factor of 8, 11, and 89, respect-
ively. The ferromagnetism in La1 − xAlxFeO3 is due to the
size effect and impurity.
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