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Abstract

PACS: 81.05.ue; 78.67.5¢; 88.80.fh

Graphene has attracted much attention since it was firstly stripped from graphite by two physicists in 2004, and the
supercapacitor based on graphene has obtained wide attention and much investment as well. For practical
applications of graphene-based supercapacitors, however, there are still many challenges to solve, for instance, to
simplify the technological process, to lower the fabrication cost, and to improve the electrochemical performance.
In this work, graphene/MnO, composites are prepared by a microwave sintering method, and we report here a
relatively simple method for the supercapacitor packaging, i.e., dipping Ni-foam into a graphene/MnO, composite
solution directly for a period of time to coat the active material on a current collector. It is found that the microwave
reaction time has a significant effect on the microstructure of graphene/MnO, composites, and consequently, the
electrochemical properties of the supercapacitors based on graphene/MnO, composites are strongly microstructure
dependent. An appropriately longer microwave reaction time, namely, 15 min, facilitates a very dense and
homogeneous microstructure of the graphene/MnO, composites, and thus, excellent electrochemical performance
is achieved in the supercapacitor device, including a high specific capacitance of 296 F/g and a high capacitance
retention of 93% after 3,000 times of charging/discharging cycles.
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Background

In recent years, with the deterioration of the environment
and the scarcity of natural resources, more and more re-
searchers have turned their attention to the field of energy.
Supercapacitor, serving as a novel energy storage device, is
one of the mostly focused topics. The materials for super-
capacitors that have been intensively studied so far can be
divided into three groups: transition metal oxides, carbon
materials, and conductive polymers [1]. In the first group,
MnO, and RuO, are two typical materials, and they are
usually used for the fast and reversible redox reactions
since the pseudocapacitance generated from the faradaic
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redox reactions is helpful for a remarkable increase in the
specific capacitance of supercapacitors. However, metal
oxides usually have a high electrical resistance, thereby
leading to a low power density, and the high cost of RuO,
also limits its wide applications. For the second group,
they are usually used in double-layer capacitors because
of their electrochemical stability and high accessible
surface area. For the third group, polyaniline and poly-
pyrrole [2-5] for instance, they show high specific capaci-
tance whether in aqueous or in nonaqueous electrolytes.
However, the conductive polymers become unstable with
extended lifetimes of charging/discharging. This may re-
duce severely the initial performance for supercapacitors
[6]. Due to the unique character in each supercapacitor
material, it is significant for us to develop a composite
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material for supercapacitors, which takes advantage of
both double-layer capacitors and the faradaic pseudocapa-
citors. Graphene/MnQO, composite is such an alternative
material.

Owing to its high specific surface area, remarkable
chemical stability, and superior electron mobility [1,7,8],
graphene can greatly improve the performance of the
supercapacitors when it is used as an electrode material.
Meanwhile, for manganese dioxide, there are many ad-
vantages, such as low cost, high energy density, natural
abundance, and being environmentally friendly [9-11].
Furthermore, as mentioned above, the redox reaction it-
self in MnO, can form a pseudocapacitance, thereby in-
creasing the capacitance of the capacitor. To prepare
graphene more simply and more safely, and finally to
make the mass production come true, various methods
have been developed [12], including mechanical exfoli-
ation [13], chemical vapor deposition [14,15], pressur-
ized oxidization/reduction [16], epitaxial growth [17],
and chemical oxidation/reduction [18-20]. In this work,
graphene was firstly prepared by the chemical oxidation/
reduction method, and then manganese dioxide-modified
graphene composites were prepared by a simple micro-
wave method [21]. The redox reaction under microwave
irradiation between carbon and KMnO, in a pH-neutral
solution is expressed as follows [22]:

AMnO,~ + 3C + H,0 ©4MnOy + CO3%™ + 2HCO;™.
(1)

It is noteworthy that a simple method was used here
for the supercapacitor packaging, i.e., dipping Ni-foam
into a graphene/MnO, composite solution directly for a
period of time to coat the active material on a current
collector. Moreover, the process-structure-property rela-
tionships were systematically investigated for the gra-
phene/MnO, composites. Interestingly, it was found that
the microwave reaction time has a significant effect on
the microstructure of graphene/MnO, composites and
the electrochemical properties of the supercapacitors
based on graphene/MnO, composites are therefore
strongly microstructure dependent.

Methods

Synthesis: graphene and graphene/MnO, composite
Graphite oxide (GO) was synthesized firstly from natural
graphite according to a modified Hummers method [23].
A GO solution that displays a brown dispersion was sub-
sequently prepared. For purification, the mixture was
successively washed with 5% HCl and deionized water
for several times to completely remove residual salts and
acids. Once the filter cake was dried in an electric
thermostatic drying oven at 40°C, the graphene oxide
powders were obtained. After that, the graphene oxide
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powder (640 mg) was dispersed in 600 ml deionized
water and then sonicated until it was well distributed.
Twenty milliliters hydrazine hydrate was added into the
suspension, and the suspension was then kept at 90°C
for 24 h [1,23]. Finally, the suspension was filtered and
washed several times with deionized water and alcohol,
and then dried at 50°C for 12 h in a vacuum oven.

Graphene/MnO, composites were prepared by a redox
reaction between graphene and potassium permanganate
under microwave irradiation [21]. In the first step,
100 ml of graphene water suspension (1.65 mg/ml) was
subjected to ultrasonic vibration for 1 h. Then KMnO,
powder (0.95 g) was added into the graphene suspension
and stirred for about 10 min. Subsequently, the resulted
suspension was heated using a household microwave
oven (Midea, Foshan, China, 2,450 MHz, 700 W) for
several minutes, and then cooled to room temperature
naturally. Finally, the black deposit was filtered and
washed several times with distilled water and alcohol,
and then dried at 80°C for 6 h in a vacuum oven. Differ-
ent microwave reaction times, namely, 5, 10, and
15 min, were selectively used to study its effect on the
microstructure and the electrochemical properties of the
graphene/MnQO, composites. Due to the lab condition
restriction and, more importantly, in order to avoid the
overflowing of the reaction solution, we did not extend
the microwave reaction time further.

Characterization

The crystallographic structures of the graphene/MnO,
composites were measured by X-ray diffraction (XRD;
DX-1000, Dandong Fangyuan Instrument Co., Ltd,
Dandong, China) using Cu Ka radiation (A = 0.154056 nm).
The microstructure was characterized by scanning elec-
tron microscopy (SEM; Hitachi S-4800, Hitachi, Ltd,
Chiyoda-ku, Japan, operated at 30 kV) and transmission
electron microscopy (TEM; JEOL JEM-2100 F, JEOL, Ltd.,
Akishima-shi, Japan, operated at 200 kV). Note that the
samples were dispersed in alcohol and dropped on a holey
copper grid for TEM observations. The electrochemical
measurements (cyclic voltammetry, galvanostatic charge/
discharge, and electrochemical impedance spectroscopy)
were measured by using an electrochemical station (CHI
660E, CH Instruments, Inc., Austin, TX, USA) with a two-
electrode system, which consists of two identical working
electrodes in 6 M KOH alkaline electrolytes.

Electrochemical measurements

The fabrication of working electrodes was carried out in
the following way. Briefly, the materials, including gra-
phene/MnO, composite, carbon black, and polytetra-
fluoroethylene (PTFE), were mixed in a mass ratio of
75:20:5 and dispersed in ethanol [21]. Then the nickel
foam substrate in the form of small rounds was dipped
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directly into the as-prepared suspension for several mi-
nutes and subsequently dried at 80°C for 12 h in a vac-
uum oven. Since the nickel foam is easy to be oxidized
and its surface may contain oil, the nickel foam was
cleaned sequentially by acetone, deionized water, diluted
hydrochloric acid, deionized water, and ethanol before it
was used. Taking out the dried Ni-foam with active ma-
terial coated and exerting 10-MPa pressure by a table
press, we got the electrode slices for use. After dipping
the electrode slices into a 6 M KOH alkaline electrolyte
solution for 24 h, we assembled the button-type superca-
pacitor for tests.

Results and discussion

Figure 1 shows the XRD patterns for graphene, graphite
oxide, and graphene/MnQO, composites with different
microwave reaction times (5, 10, and 15 min). It can be
seen that the as-prepared graphene shows a weak and
broad diffraction peak at 26 = 23°, corresponding to the
diffraction of the (002) plane. For the three graphene/
MnO, composite samples, their XRD patterns are al-
most the same, exhibiting a weak and broad peak of the
(002) plane centered at 26 =23° (indexed for graphene)
and two weak peaks indexed for a-MnO, at 260 =37°
(211) and 26 = 66° (002) [24]. The peak at 26 ~ 43°, corre-
sponding to the (100) crystal plane of graphene, cannot be
observed after the deposition of MnQO,, indicating that the
surfaces of graphene were fully covered by nanoscale
MnO, and thus a lower degree of graphitization was in-
duced, which was similarly reported by Yan et al. [21]. Just
for XRD patterns, as the microwave time increases, there
is no distinct difference between these three samples. But
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Figure 1 XRD patterns of the graphene, graphite oxide, and
graphene/MnO, composites. Note that the three composite
samples are represented as graphene/MnO,—-A (5 min), graphene/
MnO,-B (10 min), and graphene/MnO,—C (15 min). The inset shows
the refined XRD patterns for the three samples with different
microwave reaction times (5, 10, and 15 min).
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it can be speculated from the XRD patterns that the three
graphene/MnO, composite samples have similar chemical
compositions. To know more about the influence of
microwave reaction time on the graphene/MnO, compo-
sites, their microstructure and electrochemical properties
have been systematically investigated, as will be discussed
below.

Figure 2 gives microstructural information for the gra-
phene prepared in this work. Figure 2a is a SEM micro-
graph of the graphene after chemical reduction from
graphene oxide with hydrazine monohydrate. It is inter-
esting to note that the graphene shows a wrinkled
paper-like morphology. Figure 2b,c,d shows the TEM
micrographs with different magnifications for the gra-
phene. As we can see, there exists a single-layer sheet on
the edge of the graphene; however, there are also multi-
layers overlapped in the central part of the sample due
to the strong van der Waals interactions.

Figure 3 shows TEM micrographs of the graphene/
MnO, composites prepared with different microwave re-
action times. Judging from Figure 3, we conclude that,
as the microwave reaction time increases, the graphene
cannot be seen directly in the micrographs due to high-
density coating of MnO, [1]. However, it is shown in the
low-magnification TEM images (Figure 3a,c,e) that the
MnO,; nanoneedles grew almost on the whole graphene
surface. Especially from the high-magnification TEM im-
ages (Figure 3b,d,f), we can see clearly that the MnO,
coating on the graphene sheet looks like needles, and
they integrate closely with each other. On the other
hand, by contrast with Figure 2, the presence of MnO,,
to some extent, lowers the stacking of graphene sheets
due to van der Waals interactions [24], which can mark-
edly enlarge the specific surface area of the composite.
Furthermore, the needlelike MnQO, is conductive to the
diffusion of ions, leading to a reduced diffusion resist-
ance and thus an improved electrochemical response of
the composite electrodes. It should be pointed out that,
as the microwave reaction time increases, the redox re-
action between graphene and potassium permanganate
can proceed more sufficiently, and MnO, can deposit on
graphene sheets much more uniformly as well, thereby
facilitating a denser and more homogeneous microstruc-
ture in the graphene/MnO, composites. Accordingly,
the sample with a 15-min microwave reaction time ex-
hibits the best morphology, for which MnO, was rela-
tively well distributed on the whole graphene sheet.

To characterize the electrochemical behavior of the
button-type supercapacitor based on graphene/MnO,
composites, we have carried out cyclic voltammetry (CV),
galvanostatic charge/discharge (CD), and electrochemical
impedance spectroscopy (EIS) tests using a two-electrode
system. To avoid complex steps, we adopted a simple
method of dipping directly the as-prepared Ni-foam into
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Figure 2 SEM and TEM images of the graphene prepared in this work. (a) SEM micrograph for the graphene, chemically reduced from
graphene oxide with hydrazine monohydrate. (b-d) TEM micrographs for the graphene.
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the suspension of graphene/MnO, composite, carbon
black, and PTFE to prepare electrode slices. This method
is simple to operate, and the active materials are not easy
to fall off once they have been coated on Ni-foam. Fur-
thermore, the active materials are relatively well dis-
tributed. However, there is also a disadvantage, that is,
it is hard to control the mass of the active materials.
Hence, we cannot get the difference in specific capaci-
tance directly just by looking at the CV and CD dia-
grams since the mass of the active materials is different
in those three samples. Nonetheless, the mass of the
active materials can be calculated out by comparatively
weighing the Ni-foam before and after coating the ac-
tive materials, and the specific capacitance can be
therefore obtained for each supercapacitor device.
Figure 4 presents the cyclic voltammetric curves of the
supercapacitors based on graphene/MnO, composites
with various scan rates in the range of 5 to 100 mV/s
within a 0 to 0.8-V voltage window. It is well known that
the more similar the shape of the CV cycles of a super-
capacitor to a rectangle, the lower the contact resistance
of the supercapacitor [25,26]. As the microwave reaction
time increases, especially from 5 to 10 min, the CV
curves of our devices are getting closer to a rectangle at
various scan rates, even at the high scan rate of 100 mV/
s, indicating an excellent capacitive behavior and a low
contact resistance in the supercapacitor [27,28]. The dif-
ference among the three devices can be well explained
in terms of their different microstructural features, as

already shown in Figure 3. With the increase in the
microwave reaction time, the needlelike MnO, gets
firstly a little larger and then smaller again, but always
tends to distribute more uniformly on almost the whole
graphene sheet, and thus the relatively less stacking of
graphene might be achieved as well. This could increase
the specific surface area, thereby enhancing the electrical
conductivity of the device.

Figure 5 shows galvanostatic charge/discharge curves
of the supercapacitors with different microwave reac-
tion times for the synthesis of graphene/MnO, com-
posites. All the CD curves are linear and symmetric in
the voltage range 0 to 1 V, indicating very good elec-
trochemical properties of the graphene/MnO, com-
posite electrodes [29]. Using the experimental data
displayed in the galvanostatic charge/discharge curves,
the specific capacitance has been calculated from the
two-electrode cell-specific capacitance by the formula
given below:

Ixt

Cm = 4m7 (2)
where [ is the change/discharge current, ¢ is the dis-
charging time, m is the mass of the active material of
two electrodes, and V is the voltage window after the
deduction of the IR drop. Accordingly, as the micro-
wave reaction time increases from 5 to 15 min, the spe-
cific capacitance at a charging current of 2 mA reaches
246, 260, and 296 F/g, respectively. As aforementioned,
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Figure 3 TEM micrographs of the graphene/MnO, composites. From top to bottom, the images correspond respectively to 5-, 10-, and
15-min microwave reaction times. The left panels (a, ¢, e) are low-magnification images and the right panels (b, d, f) are high-magnification TEM
images of the composites.
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Figure 4 CV curves of the graphene/MnO, composite electrodes. The curves were measured at different scan rates of 5, 10, 20, 50, and 100
mV/s (from inner to outer). From (a) to (c), the microwave reaction times are 5, 10, and 15 min, respectively. Note that the mass of the active
material is similar for (@) and (c), which is, however, almost twice as that for (b).
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Figure 5 Galvanostatic charge/discharge curves of the supercapacitors based on graphene/MnO, composite electrodes with different
microwave reaction times. (a) 5 min, (b) 10 min, and (c) 15 min. For each sample, the curves were measured at charging current of 2 and 3
mA, respectively.

though the mass of the active material in each device is
different, we can get the specific capacitance values simi-
larly through calculating the data in CV curves. The en-
hancement of specific capacitance with increasing the
microwave reaction time is believed to stem from the im-
proved microstructure, as mentioned above. The results
obtained in this work are comparable to or even higher
than those reported in the literature for similar graphene-
based material systems, where the specific capacitance
was reported to be about 200 to 300 F/g [30-32].
Electrochemical impedance spectroscopy is a very sig-
nificant measure to evaluate the quality of supercapacitors.
Figure 6 shows the impedance curves of the supercapaci-
tors based on graphene/MnO, electrodes with different
microwave reaction times, measured in a 6 M KOH al-
kaline electrolyte solution. The horizontal axis inter-
cepts at high frequency in the Nyquist plots for the
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Figure 6 Impedance spectroscopies of the supercapacitors
based on graphene/MnO, composites with different microwave
reaction times. All the curves displayed here were measured in the
frequency range of 100 kHz to 0.01 Hz. Z' is the real impedance and
Z" is the imaginary impedance. The insets show an enlarged scale
for the impedance spectroscopy images.

devices with microwave times 5, 10, and 15 min are, re-
spectively, 0.70, 0.65, and 1.13 (), indicating that with
the change in microwave reaction time, the electronic
resistance (Ry), including the ionic resistance of the elec-
trolyte, the intrinsic resistance of the substrate, and the
contact resistance at the interface of the active material/
current collector [33], changes inconspicuously. The
radius of the semicircle represents the charge transfer
resistance (R.) at the electrode/electrolyte interface
[34-36]. The shorter 45° portion of the curve demon-
strates the faster ion diffusion in the electrolyte to the
electrode interface for the sample with a microwave re-
action time of 15 min [28,37-39]. At low frequency, the
slope of the curve reveals the quality of a capacitor. The
more vertical the curve is, the better the ion transport is
and the higher performance the supercapacitor has. As
shown in Figure 6, at a low-frequency region, the device
with a microwave reaction time of 15 min demonstrates
a near 90° angle, indicative of a great capacitive charac-
teristic [39].

Another critically important factor to evaluate the
quality of a supercapacitor is the cycling stability. It
is shown in Figure 7 that the capacitance retention
increases remarkably as the microwave reaction time
increases from 5 to 15 min. Compared to 75%
(5 min sample) and 83% (10 min sample), the cap-
acitance retention of the sample with a microwave
reaction time of 15 min still remains as high as 93%
after 3,000 times of charging/discharging cycles,
demonstrating an excellent electrochemical stability
for the graphene/MnO, composite with improved
microstructure.

Conclusions

High-quality graphene/MnO, composites have been
prepared by a relatively simple microwave sintering
method, and a simple method, i.e., dipping Ni-foam
into a graphene/MnO, composite solution directly
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Figure 7 Cycling performance of the supercapacitors based on graphene/MnO, composites. The capacitance retention is roughly 75%,
83%, and 93% after 3,000 cycles of charging and discharging at a current density of 2 mA for the microwave reaction times (a) 5 min, (b) 10 min,
and (c) 15 min, respectively.

for a period of time to coat the active material on a
current collector, has been proposed for the superca-
pacitor packaging. It is demonstrated that the micro-
wave reaction time has a significant effect on the
microstructure of graphene/MnO, composites and
the electrochemical properties of the supercapacitors
based on graphene/MnQO, composites are strongly
microstructure dependent. An appropriately longer
microwave reaction time, namely, 15 min, facilitates
a very dense and homogeneous microstructure of the
graphene/MnO, composites, and thus, excellent
electrochemical performance has been achieved in
the supercapacitor device based on the graphene/
MnO, composite, comprising a high specific capa-
citance of 296 F/g and a high capacitance retention
of 93% after 3,000 times of charging/discharging cy-
cles. The results obtained in this work pave the way
for facile synthesis and optimization of graphene-
based composite materials for practical supercapaci-
tor applications.
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