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Abstract

2D β-Ga2O3 flakes on a continuous 2D graphene film were prepared by a one-step chemical vapor deposition on
liquid gallium surface. The composite was characterized by optical microscopy, scanning electron microscopy,
Raman spectroscopy, energy dispersive spectroscopy, and X-ray photoelectron spectroscopy (XPS). The experimental
results indicate that Ga2O3 flakes grew on the surface of graphene film during the cooling process. In particular,
tenfold enhancement of graphene Raman scattering signal was detected on Ga2O3 flakes, and XPS indicates the
C-O bonding between graphene and Ga2O3. The mechanism of Raman enhancement was discussed. The 2D
Ga2O3-2D graphene structure may possess potential applications.
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Background
The assembly of graphene with other nanostructures can
broaden the graphene applications. Considerable investi-
gation has been carried out on the assembly of graphene
powder with functional materials, such as reduced gra-
phene oxide-TiO2 composites to enhance photocatalytic
degradation activity [1-3], graphene-MoS2 for high ef-
fective hydrogen evolution reaction [4,5], and graphene-
Co3O4/Fe3O4 as anode material for lithium ion battery
[6-9]. Two typical approaches for the assembly are ex-
tensively used. One is the hydrothermal approach wherein
graphene oxide powder and other precursors are mixed
with water or organic solvents and then undergo a hydro-
thermal process [1-5,7]. The other approach is the mix-
ing of reduced graphene oxide with the other materials
followed by post-thermal reduction [6,8,9]. In addition,
the assembly of functional materials on continuous gra-
phene films synthesized by chemical vapor deposition
(CVD) has been attracting attention gradually, owing to
the high quality of graphene films. For example, a thin
amorphous aluminum oxide layer was deposited on a gra-
phene film through atomic layer deposition to selectively
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decorate and passivate the edges of graphene nanoribbons
[10]. ZnO was also deposited on CVD graphene, and the
composite could be applied to a solar cell to replace ITO
[11]. A graphene/single-wall carbon nanotube hybrid was
synthesized by a facile catalytic CVD growth on layered
double hydroxide at high temperature, and the hybrid
structure exhibited excellent performance in Li-S batteries
with a high capacity [12].
Ga2O3 is a deep ultraviolet transparent semiconductor

[13,14], which has several different crystalline phases, in-
cluding α-, β-, γ-, δ-, and ε-Ga2O3 [15]. Among these
phases, monoclinic structured β-Ga2O3 is the most
stable form with a wide bandgap of 4.9 eV [14]. Because
of its good luminescence properties, β-Ga2O3 has a use-
ful application in phosphors. The hybrid structure of
graphene and Ga2O3 is promising for flexible display de-
vices by exploiting high conductivity and flexibility of
graphene and the good luminescence of Ga2O3. Herein,
we report a simple and one-step CVD process to assem-
ble β-Ga2O3 flakes on a continuous graphene film. The
morphology of the composite was characterized by op-
tical microscopy (OM), field emission scanning electron
microscopy (FESEM), Raman spectroscopy, and energy
dispersive spectroscopy (EDS) mapping. The assembly
mechanism was discussed. Importantly, it was found that
the as-grown β-Ga2O3 flakes enhanced the intensity of the
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graphene Raman signal ten times. The possible Raman en-
hancement mechanism is proposed.

Methods
A 0.2 g Ga with 7 N purity from UMC was laid on a de-
signed quartz bowl, loaded into the quartz tube, and
heated to 1,000°C under the protection of 200 sccm Ar
and 2 sccm H2. The sample was annealed at 1,000°C for
1 h to remove the surface oxide. The graphene film was
synthesized through CVD for only 3 min under 200
sccm Ar flow with 1.5 sccm CH4. After the growth of
the graphene, the carbon source was turned off and the
temperature was kept at 1,000°C for 30 min. Then, the
furnace cover was opened for fast cooling down to room
temperature either immediately at 1,000°C or after con-
trollably cooling (approximately 10°C/min) down first to
800°C, 600°C, and 400°C, respectively. The samples were
placed in a refrigerator for several hours for solidification
before characterization since the melting temperature
of gallium is about 29.8°C and has strong supercooling
effects, causing its liquid state at room temperature.
OM (Leica Microscopy DM6000M, Germany) was used

for the preliminary exploration. Raman microprobe spec-
troscopy (Thermo Fisher DXR, Waltham, MA, USA) with
an Ar+ laser (excitation wavelength 532 nm, 1 to 5 mW,
and beam spot approximately 1 μm), FESEM (FEI NOVA
NanoSEM with an operating voltage of 5 kV, Hillsboro,
OR, USA), and energy dispersive spectroscopy (EDS) ana-
lysis (Oxford X-max 80, Oxfordshire, UK) were employed
to characterize the samples. X-ray photoelectron spec-
troscopy (XPS, Thermo Scientific ESCALAB 250) with a
monochromatized Al Kα X-ray source (1,486.6 eV pho-
tons) was used to study the bonding between graphene
and Ga2O3. A Shirley background was removed from the
atomic spectra prior to deconvolution. We tried to con-
duct an atomic force microscopy and transmission elec-
trical microscopy in order to directly characterize the
Figure 1 OM (a) and FESEM (b) images of Ga2O3 sheets on the graph
thickness and the interface between the layers, but the gra-
phene film decorated by Ga2O3 flakes curled up after re-
moving the Ga substrate, rendering high-quality sample
impossible.
Results and discussion
The CVD graphene growth on liquids, including Ga, Sn,
and In, has been reported in our previous work [16]. Li-
quid Ga is very effective for graphene formation, and it
can remain liquid under room temperature. The solid ul-
trathin graphene film on liquid Ga surface under room
temperature is very unique. However, during the CVD
process, Ga can react with oxygen to form oxide due to its
high reactivity. It is found that Ga2O3 flakes could grow
on graphene films by controlling the cooling step after
graphene-film growth. When the tube furnace cover was
opened immediately at 1,000°C for fast cooling after cut-
ting off CH4 gas and keeping Ar flow, no Ga2O3 flakes
were observed on the sample. In contrast, the Ga2O3

flakes could be observed by OM on the samples, which
were cooled down to 800°C with a rate of approximately
10°C/min in Ar and then fastly cooled down to room
temperature by opening the furnace cover, as shown in
Figure 1a. The oxygen may be released by quartz or the
residual oxygen in the CVD quartz tube. The Ga surface is
covered by a continuous graphene film with several dark
polygons under OM and FESEM. The as-prepared sample
was a millimeter-sized liquid drop, and after freezing,
wrinkles appeared on the convex surface, causing defocus
somewhere under OM [16]. To further confirm the exist-
ence and distribution of irregular polygons, FESEM was
conducted, as shown in Figure 1b. According to both OM
and FESEM measurements, the lateral size of the polygons
is around 1 to 10 μm. It is hard to determine the thickness
of these polygon flakes. However, these flakes should be
very thin and flexible since the flakes adhere well to
ene surface.
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graphene and conformally cover the graphene wrinkles, as
the arrow indicates in Figure 1b.
Raman measurements confirmed the formation of con-

tinuous graphene film and Ga2O3 flakes. Figure 2a shows
the Raman spectra on the locations marked by a blue tri-
angle and a red circle in Figure 1a. The blue spectrum
from the continuous film shows the typical Raman fea-
tures of graphene with 2D and G peaks. The defect-related
D peak is very weak. The red spectrum, measured on the
polygon flakes, also shows the typical Raman features of
graphene. However, in the Raman shift range of 60 to
800 cm−1, more than ten additional peaks appear. These
characteristic peaks correspond to β-Ga2O3 [14,17]. The
enlarged Raman spectra of graphene and Ga2O3, as well as
the comparison of their peak positions with bulk Ga2O3

powders, are presented in Additional file 1: Figures S1 and
S2 and Table S1. These Raman results confirm that the
continuous film is graphene and that the dark polygon is
β-Ga2O3 flakes. A Raman mapping on the area marked as
a white square in Figure 1a is shown in Figure 2b. The
homogenous color distribution indicates that β-Ga2O3

flakes do not change the ratio of I2D/IG of graphene, i.e.,
the formation of the β-Ga2O3 sheets seems to have no ef-
fect on the continuity and thickness of graphene.
During the FESEM characterization, EDS mapping was

employed to further confirm the components and element
distribution. Figure 3a shows the surface morphology of a
sample with an area of approximately 205 × 240 μm2. The
flat and clear area at the left is the bare Ga surface, which
is exposed due to volume expansion during the solidifica-
tion of liquid Ga and/or due to the different thermal ex-
pansion coefficients between Ga and graphene [16]. The
EDS mapping of carbon on the same area in Figure 3b
shows good match with the morphology of the graphene
film, as shown in Figure 3c. The EDS mapping of carbon,
together with following Raman and XPS measurements,
Figure 2 Raman spectra and Raman mapping. (a) Typical Raman spectr
Ga2O3 flakes. (b) The Raman mapping of I2D/IG on the area marked as a wh
confirms a graphene film on the Ga surface. At the loca-
tions of the β-Ga2O3 flakes, the carbon signal does not de-
crease. This result indicates that the β-Ga2O3 flakes do
not hinder the formation of the continuous graphene film
and is consistent with the above Raman analysis. The red
dots in Figure 3b correspond well to the dark dots in
Figure 3a, and these carbon dots may be caused by
amorphous carbon accumulation during the CVD process.
The element mapping of Ga and O in Figure 3d,e directly
confirms the formation of the Ga2O3 flakes, since the
shape and position of Ga and O distribution is consistent
with the polygons in Figure 3a. The statistical element
analysis in Figure 3f also supports the element mapping
results.
The above results from OM, FESEM, Raman, and EDS

mapping confirm the formation of a special β-Ga2O3-
graphene composite on Ga. This structure may have po-
tential applications due to the 2D-2D assembly. More
importantly, we found the interesting property of the
graphene Raman enhancement by the β-Ga2O3 flakes, as
shown in Figure 2a and Additional file 1: Figure S1. The
intensity of G and 2D peaks increases to more than ten
times, although the IG/I2D ratio does not change. Figure 4a
shows the G peak mapping image of a graphene area
marked by the white box in Figure 1a, and the 2D peak
mapping has the similar image. The positions of the gra-
phene Raman enhancement correspond with the distri-
bution of Ga2O3. Through comparing two images of
Figure 4a,b, it was found that not all the Ga2O3 flakes have
same efficiency to enhance the graphene Raman signal.
This phenomenon indicates that the graphene Raman en-
hancement may be related to the thickness of Ga2O3.
The surface-enhanced Raman scattering (SERS) has been

extensively investigated [18-20]. The charge transfer be-
tween the two contacted materials is the chemical mech-
anism of Raman enhancement [21,22]. For the graphene
a for the as-grown graphene film at the locations with and without
ite square in Figure 1a.



Figure 3 FESEM images and EDS mapping and analysis. (a) FESEM image of 2D Ga2O3-2D graphene composite, (b) the EDS mapping of
element C, (c) combination of morphology and element C distribution, (d) and (e) EDS mappings of elements Ga and O, respectively, and
(f) EDS element analysis. The scale bar is 50 μm.
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Raman enhancement by β-Ga2O3 flakes, the charge trans-
fer is confirmed by the Raman and XPS data. In the Raman
spectra of Figure 2a and Additional file 1: Figure S1, the
G-band has a downshift of approximately 2 cm−1 (1,584 to
1,582 cm−1) at the locations of the β-Ga2O3 sheets, which
indicates the charge transfer between the graphene and β-
Ga2O3, and β-Ga2O3 as an electron donor to the graphene
[23]. In addition, the work function of graphene (4.2 eV)
[24] and Ga2O3 (4.11 ± 0.05 eV) [25] is proximity; this is
consistent with the slight downshift of the graphene G-
band. In addition to the Raman data, the XPS data also
support the CM mechanism. Additional file 1: Figure S3
shows the XPS spectrum, showing a general scan in the
energy range from 0 to 1,200 eV. The peaks of the core
levels of Ga2p, Ga3s, Ga3p, Ga3d, and Ga LMM peaks, as
well as the O1s, OKLL, and C1s, were detected. Additional
file 1: Figure S4 shows the O1s peak with a binding energy
around 532 eV, which is corresponds to the Ga-O bonding
of Ga2O3. The two peaks of Ga2p for the Ga-O bondings
are also clearly observed in Figure 4c [26,27]. A high-
resolution XPS C1s spectrum is given in Figure 4d. Using
a suitable application of Gaussian and Lorentzian func-
tions, the C1s peak can be decomposed into three appar-
ent spectral components at 284.7, 285.7, and 286.2 eV.
The main peak at 284.7 eV corresponds to the graphite-
like sp2 C, and the 285.7 and 286.2 eV peaks are attributed
to sp3 carbon and C-O bonds [24,28]. The XPS data is
consistent with the aforementioned Raman and EDS re-
sults to confirm the Ga2O3-graphene structure, and XPS
also presents the evidence of the C-O bands, which con-
firms the negative-charge doping effect from the Ga2O3

sheets on the graphene film. Due to chemical doping, po-
larizability of graphene is increased, leading to an increase
in the Raman scattering cross-section [29].
It is necessary to discuss the formation mechanism of

Ga2O3-graphene. Ga itself is very reactive and can react
with most materials under high temperature. In the peri-
odic table of elements, Ga and Al are in the same main
group and have similar characteristics. Analogously, Ga
can form a continuous and compact oxidized layer in
air, which impedes further oxidation of Ga. Therefore,
we need to remove the very thin surface oxide before
graphene growth through pre-annealing in Ar/H2 at-
mosphere. During the CVD graphene growth, hydrogen
is hazardous for the graphene formation [16], and H2

was not applied during the growth stage. We proposed
that the graphene grows on the surface of the liquid Ga
at first and then the Ga2O3 sheets come into being on
the graphene during the cooling process, as shown in
the schematic illustration of Additional file 1: Figure S4.



Figure 4 Raman mapping and XPS spectra. Raman mapping of (a) 1,583-cm−1 peak and (b) 202-cm−1 peak. (c) XPS spectra of Ga2p and
(d) XPS spectra of C1s. The black curve is the original data, and the red is the fitting curve. The pink, dark blue, and sky blue curves are the fitting
peaks on 284.7, 285.7, and 286.2 eV, respectively.
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The O element comes from the oxygen residue in the
tube, and the C-O bonds which have been evidenced by
XPS are the defects on the 2D graphene film. These de-
fects play an important role for the growth of Ga2O3 on
graphene because they will act as nucleation points of
Ga2O3 since Ga atoms in the vapor will obviously prefer
O as a bonding target, not the carbon atoms.
This mechanism is supported by two evidences. The

first one is that after immersing the samples of 2D Ga2O3-
2D graphene into dilute hydrochloric acid for 1 h at room
temperature, the Ga2O3 sheets will disappear. If the gra-
phene covers and protects the Ga2O3 sheets, it is hard to
remove Ga2O3 in hydrochloric acid. Another evidence is
related to the cooling process. We chose different rapid
cooling starting points of 800°C, 600°C, and 400°C. More
polygon sheets or granules deposited on the graphene sur-
face when the sample underwent longer cooling durations.
According to the illustration depicted in Additional file 1:
Figure S4, it is possible to control the deposition of Ga2O3
sheets on the graphene surface to form the special 2D
Ga2O3 nanosheet-2D graphene sheet structure through a
one-step CVD process. Compared to the general Raman
enhancement by metals, such as silver and gold, the
Ga2O3 nanosheets have remarkable thermal stability.
Conversely, silver will oxidize excessively and becomes
quenched within 36 h in the air [30]. The 2D graphene-
Ga2O3 film can be transferred onto other targets and
may be used as bio-substrate through SERS. The stabil-
ity of the Ga2O3 nanosheets and the structure stability
need to be further investigated.

Conclusions
In summary, separated 2D thin Ga2O3 nanosheets, with a
lateral size of 1 to 10 μm, on continuous 2D graphene film
were synthesized by a one-step CVD process on liquid gal-
lium substrate. The Raman and EDS mapping confirm the
formation of the β-Ga2O3 sheets on the graphene surface.
The formation mechanism was proposed as a β-Ga2O3
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sheet formation after graphene synthesis during the cool-
ing process. The graphene Raman enhancement over ten
times was detected on the β-Ga2O3 sheets due to the
charge transfer. The 2D-2D structure may have potential
application in optical and electronic devices.

Additional file

Additional file 1: Raman data, XPS analysis, and proposed growth
mode.
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