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Cellulose-lanthanum hydroxide nanocomposite as
a selective marker for detection of toxic copper
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Abstract

In this current report, a simple, reliable, and rapid method based on modifying the cellulose surface by doping it
with different percentages of lanthanum hydroxide (i.e., 1% La(OH)3-cellulose (LC), 5% La(OH)3-cellulose (LC2), and
10% La(OH)3-cellulose (LC3)) was proposed as a selective marker for detection of copper (Cu(II)) in aqueous
medium. Surface properties of the newly modified cellulose phases were confirmed by Fourier transform infrared
spectroscopy, field emission scanning electron microscope, energy dispersive X-ray spectroscopy, X-ray diffraction,
and X-ray photoelectron spectroscopic analysis. The effect of pH on the adsorption of modified cellulose phases
for Cu(II) was evaluated, and LC3 was found to be the most selective for Cu(II) at pH 6.0. Other parameters,
influencing the maximum uptake of Cu(II) on LC3, were also investigated for a deeper mechanistic understanding
of the adsorption phenomena. Results showed that the adsorption capacity for Cu(II) was improved by 211% on
the LC3 phase as compared to diethylaminoethyl cellulose phase after only 2 h contact time. Adsorption isotherm
data established that the adsorption process nature was monolayer with a homogeneous adsorbent surface.
Results displayed that the adsorption of Cu(II) onto the LC3 phase obeyed a pseudo-second-order kinetic model.
Selectivity studies toward eight metal ions, i.e., Cd(II), Co(II), Cr(III), Cr(VI), Cu(II), Fe(III), Ni(II), and Zn(II), were further
performed at the optimized pH value. Based on the selectivity study, it was found that Cu(II) is highly selective
toward the LC3 phase. Moreover, the efficiency of the proposed method was supported by implementing it to
real environmental water samples with adequate results.
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Background
Over the years, copper (Cu(II)) has gain the attention of
chemists due to its prohibitive toxicity and nonbiode-
gradable nature. The elevated concentration of Cu(II)
produces severe ecological and public health issues [1,2].
Several methodologies have been evaluated for the sep-
aration of Cu(II) in aqueous medium. However, the
adsorption technique has proved to be one of the promis-
ing solutions due to its simple implementation and eco-
nomical and effective behavior [3,4]. Currently, some of
the available adsorbents have limitations, such as low up-
take capacity, long equilibrium, and low selectivity [5]. In
order to overcome these weaknesses, some new organic-
inorganic hybrid adsorbents, capable of separating heavy
metals from the solution, have been established. Several
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studies have been concentrated on the extraction of Cu(II)
by applying amine group functionalized matrices [6-9]. It
is well understood that organic functional group modified
adsorbents usually exhibit relatively high adsorption cap-
acity and selectivity as compared to unmodified adsor-
bents [6,10-12].
Different separation techniques, however, are being

successfully utilized, for example, liquid-liquid extraction
[13], ion exchange [14], coprecipitation [15], cloud point
extraction [16], and solid phase extraction (SPE) [17,18].
The conventional methods, such as liquid-liquid extrac-
tion and coprecipitation, require excess amount of or-
ganic solvents with high purity that could be harmful to
living organisms and cause environmental pollution. On
the other hand, the SPE method proved to be a more ef-
ficient technique when it comes to the exposure and
usage of solvents, extraction time, and disposal cost.
Presently, this recognition of SPE leads to the appear-
ance of several adsorbents with the goal of succeeding a
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selective separation of the analytes, for instance, alumina
[19], C18 [20], molecular imprinted polymers [21], cellu-
lose [22], silica gel [23], and activated carbon [24,25].
Cellulose is considered to be one of the highly abun-

dant naturally existing polymers in the world. This com-
prises repeating units of β-D-glucopyranose, covalently
linked with OH group of C4 and C1 carbon atoms
[26-28]. Naturally occurring cellulose shows less adsorp-
tion capacity and physical stability due to the steric hin-
drance offered by three hydroxyl groups with the same
ring. Moreover, these hydroxyl moieties are chemically
unreactive as the polymer matrix contains crystalline re-
gions [27,29]. In order to develop adsorption capacity
and structural stability of natural cellulose, modifications
were employed in the matrix by means of chemical reac-
tions, such as halogenation, etherification, esterification,
and oxidation. Such modified matrices were found to be
capable of separating heavy metal ions from aqueous so-
lutions [27]. The cellulose beads when treated mainly
with 2-(diethylamino) ethyl chloride hydrochloride along
with some other treatments produced diethylaminoethyl
cellulose [30]. Recently, we have also developed some
surface modified cellulose adsorbents for the selective
separation of Ni(II) and Cr(VI) ions [31,32].
In order to monitor metal ionic species in the environ-

ment, the development of rapid, simple, and proficient
approach has gain an interest. Different approaches were
employed for the determination of metal ions in aqueous
medium, namely atomic absorption spectrometry (AAS)
[33], inductively coupled plasma-mass spectrometry (ICP-
MS) and inductively coupled plasma-optical emission
spectrometry (ICP-OES) [34-36], anodic stripping volt-
ammetry [37], and ion chromatography [38]. Despite
immense enhancement in selectivity and sensitivity of
state-of-the-art instruments, there is still a vital need for
improvement in selective separation of chemical species
of interest prior to their determination; in particular, the
concentration of such analytes is frequently low in com-
plex matrices. Moreover, a cleanup step is frequently
needed because of high level of other constituents ac-
companying the analyte.
Current study emphasizes the development of new

cellulose-based adsorbents by surface modification. Lan-
thanum hydroxide was doped with cellulose with a pro-
portion of 1%, 5%, and 10% [i.e., 1% La(OH)3-cellulose
(LC), 5% La(OH)3-cellulose (LC2), and 10% La(OH)3-
cellulose (LC3)]. Additionally, the effectiveness of nano-
composites was investigated as a potential adsorbent for
a selective extraction of Cu(II) ion prior to its determin-
ation by ICP-OES. Several parameters were evaluated in
order to acquire the optimum condition for Cu(II) ex-
traction. The pH effect on Cu(II) adsorption was investi-
gated and optimized for the best modified cellulose
phase (LC3). In order to understand the mechanism of
Cu(II) adsorption, other parameters controlling the max-
imum uptake of Cu(II) on LC3 was studied at the
optimum pH 6.0. Furthermore, adsorption data was mod-
eled by Freundlich and Langmuir adsorption isotherms.
The kinetics of adsorption was evaluated by employing
pseudo-first- and second-order kinetic models. At opti-
mized pH, selectivity was also scrutinized for other metal
ion, including Cd(II), Co(II), Cr(III), Cr(VI), Fe(III), Ni(II),
and Zn(II). This study revealed that LC3 was the most se-
lective toward Cu(II) in comparison to other metal ions.
Ultimately, the proposed method was further validated by
analysis of real environmental water samples.

Methods
Chemicals and reagents
Diethylaminoethyl (DEAE) cellulose, lanthanum chloride,
and ethanol were purchased from Sigma-Aldrich (Milwau-
kee, WI, USA). Stock standard solutions of 1,000 mgL−1

Cd(II), Co(II), Cu(II),Cr(III), Cr(VI), Fe(III), Ni(II), and
Zn(II) were obtained from Sigma-Aldrich (Milwaukee,
WI, USA). All utilized reagents were of high purity and
of analytical reagent grade, whereas double-distilled
deionized water was used throughout the experiments.

Preparation of the new solid phase extractor based on
DEAE cellulose
Different amounts of DEAE cellulose (99%, 95%, and
90%) were first mixed with distilled deionized water.
Various portions of lanthanum chloride (1%, 5%, and
10%) were then dissolved in distilled deionized water
and mixed with DEAE cellulose water suspensions. All
solutions were adjusted to pH 10.0 by a dropwise
addition of 0.1-M NaOH. Mixtures were then allowed to
stir at 60°C for 24 h. Mixtures were filtered, washed with
ethanol twice and 18.2 MΩ cm distilled deionized water,
and dried in oven at 80°C for 5 h to obtain LC, LC2, and
LC3 nanocomposites.

Samples preparation and procedure
Stock standard solutions of Cd(II), Co(II), Cu(II),Cr(III),
Cr(VI), Fe(III), Ni(II), Pb(II), and Zn(II) ions were pre-
pared in 18.2 MΩ cm distilled deionized water and stored
in the refrigerator at 4°C. The environmental samples
were collected from seawater, wastewater, tap water, and
ground water from Jeddah region at Saudi Arabia.

Effect of pH
The effect of pH on the adsorption of Cu(II) ion onto n%
La(OH)3 DEAE cellulose was investigated. Standard solu-
tions of 5.0 mgL−1 Cu(II) were adjusted to pH values ran-
ging from 1.0 to 8.0 with appropriate buffer solutions, i.e.,
HCl/KCl buffer for pH 1.0 and 2.0, acetate buffer for
pH 3.0 to 5.0, and KH2PO4/NaOH buffer for pH 6.0 to
8.0. Each solution was individually mixed with 25.0 mg of
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modified cellulose phases (LC, LC2, or LC3) and unmodi-
fied DEAE cellulose phase and mechanically shaken for 2 h
by a mechanical shaker at 150 rpm and 25°C temperature.

Effect of concentration
To estimate the uptake capacity of Cu(II) under batch
conditions, standard solutions of 0, 1, 5, 10, 20, 30, 40, 50,
80, 100, 150, 200, 300, 400, and 500 mgL−1 were prepared
and adjusted to the optimum pH 6.0 with the buffer solu-
tion of KH2PO4/NaOH. Each solution was individually
added to 25.0 mg LC3 (or unmodified DEAE cellulose).
All mixtures were then allowed to be mechanically shaken
for 2 h at 25°C.

Effect of temperature
For the effect of temperature, standard solutions of
5.0 mgL−1 Cu(II) were prepared, adjusted to the pH 6.0 as
above, and individually mixed with 25.0 mg LC3. Thermo-
dynamic study of the adsorption of LC3 toward Cu(II)
was also performed under the same batch conditions at
different temperatures (298, 308, 323, and 338 K).

Effect of shaking time
The effect of shaking time on LC3 adsorption for Cu(II)
was performed under the same batch conditions as
above by given various equilibrium periods (5, 10, 20,
30, 50, 80, 100, and 120 min) and at a concentration of
400 mgL−1 of Cu(II).

Selectivity studies
In order to investigate the selectivity of modified cellu-
lose adsorbents toward different metal ions, including
Cd(II), Co(II), Cu(II), Cr(III), Cr(VI), Fe(III), Ni(II), Pb
(II), and Zn(II), 5 mgL−1 of each metal ion solution was
LC

LC3 before adsorption

Figure 1 FE-SEM images of modified cellulose phases (LC, LC2, LC3) b
individually added to 25.0 mg of modified phases ( LC,
LC2, or LC3) and unmodified DEAE cellulose separately
as well. Mixtures were then allowed to be stirred for 2 h
at 25°C under the same batch conditions as above.

Apparatus
The surface morphology of the nanocomposites was in-
vestigated by operating a field emission scanning elec-
tron microscope (FE-SEM) instrument (JSM-7600 F,
JEOL Ltd., Akishima-shi, Japan). Elemental analysis was
performed using energy dispersive X-ray spectroscopy
(EDS) from JEOL, Japan. X-ray diffraction (XRD) pat-
terns were acquired with X-ray diffractometer (Rigaku
X-ray diffractometer, MiniFlex 2, Rigaku, Shibuya-ku,
Japan) equipped with Cu-Kα1 radiation (λ = 1.5406 nm)
using a generator voltage (40.0 kV) and a generator current
(35.0 mA). Data of X-ray photoelectron spectroscopy
(XPS) were acquired from Thermo Scientific K-α KA1066
spectrometer (Bonn, Germany). The Al Kα X-ray radiation
monochromatic sources were utilized as excitation sources,
whereas the size of beam spot was set at 300.0 μm. The
fixed analyzer transmission mode was used to record the
spectra adjusting pass energy at 200 eV. The scan of spec-
tra was performed at a pressure less than 10−8 Torr. Fou-
rier transform infrared (FT-IR) spectroscopic analyses were
carried out by using Shimadzu IR 470 spectrophotometer
(Shimadzu, Kyoto, Japan) to confirm the formation of
newly prepared nanocomposites. The pH measurements
were performed on pH meter (inoLab® pH 7200, WTW,
Lincolnwood, IL, USA) with absolute accuracy limits at the
pH measurement being defined by NIST buffers. A Perki-
nElmer ICP-OES Optima 4100 DV model (PerkinElmer,
Waltham, MA, USA) was applied for the determination of
LC2

LC3 after adsorption

efore adsorption and LC3 after adsorption.
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metal ions concentration. The optimization of ICP-OES in-
strument was performed daily before analysis and operated
as recommended by the manufacturers.
The ICP-OES spectrometer was operated with the fol-

lowing parameters: FR power, 1,300 kW; frequency,
27.12 MHz; demountable quartz torch, Ar/Ar/Ar; plasma
gas (Ar) flow, 15.0 L min−1; auxiliary gas (Ar) flow,
0.2 L min−1; nebulizer gas (Ar) flow, 0.8 L min−1; nebulizer
LC

LC3 before adsorption

Figure 2 EDS spectra of modified cellulose phases (LC, LC2, LC3) befo
pressure, 2.4 bar; glass spray chamber according to Scott
(Ryton), sample pump flow rate, 1.5 mL min−1; integration
time, 3 s; replicates, 3; wavelength range of monochrom-
ator, 165 to 460 nm. The concentrations of the metal ions
were determined at wavelengths of 226.50 nm for Cd(II),
230.80 nm for Co(II), 267.72 nm for Cr(III and VI),
327.40 nm for Cu(II), 259.94 nm for Fe(III), 231.60 nm for
Ni(II), and 202.55 nm for Zn(II).
LC2

LC3 after adsorption

re adsorption and LC3 after adsorption.
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Figure 3 XRD spectra of modified cellulose phases (LC, LC2,
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Results and discussion
Characterization
The morphological behavior of synthesized nanocom-
posites was studied by FE-SEM, as can be depicted in
Figure 1. FE-SEM images of nanocomposites are com-
prised of aggregated nanoparticles with an average par-
ticle size of 50 nm. These aggregated nanoparticles are
well distributed on the cellulose matrix, proposing that
La(OH)3 nanoparticles are dispersed on the cellulose
surface. Furthermore, it can be clearly observed from
Figure 1 that the size of nanoparticles increases as the
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Figure 4 FT-IR spectra of modified cellulose adsorbents (LC, LC2, and
percentage of La(OH)3 doping increases due to aggrega-
tion of La(OH)3 on cellulose surface. Conversely, the
surface of LC3 matrix was observed with finely adsorbed
Cu(II) onto the cellulose surface after the adsorption
process. The composition of these nanocomposites was
evaluated by EDS spectrum, as shown in Figure 2. In
EDS spectra of all modified phases, the peaks, related to
carbon, oxygen, and lanthanum at 0.2, 0.5, and 1.0 keV,
respectively, are observed without any other impurity
peak. This indicates that the synthesized nanocomposites
are composed of cellulose and La(OH)3. Adsorption of
Cu(II) was also evaluated by EDS by attaining the
spectrum of LC3 phase after adsorption. It is of interest
to note that a peak at 0.9 keV for Cu(II) is observed in
the LC3 spectrum after adsorption.
The purity and crystallinity of synthesized nanocom-

posites were evaluated using XRD analysis, as displayed
in Figure 3. In the XRD pattern of nanocomposites, a
hallow peak at 22.0 Å is observed in all the modified cel-
lulose phases (LC, LC2, and LC3), corresponding to
amorphous nature of the adsorbents [39]. Moreover,
XRD spectra also show several well crystalline peaks at
16.0, 28.0, 30.0, 34.0, 38.37, 42.31, 46.24, and 48.72 Å,
describing the growth of La(OH)3 onto the surface of
cellulose as reported in the literature [40]. Consequently,
the diffraction peaks of all modified cellulose phases
confirmed that synthesized products were nanocompos-
ites of cellulose and La(OH)3 nanoparticles. Further, no
peaks other than those for cellulose and La(OH)3 were
observed in obtained diffraction patterns of modified
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Figure 5 XPS spectra of LC3 phase before and after adsorption of Cu(II).
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phases, verifying that the synthesized nanocomposites
are composed of cellulose and La(OH)3 [40].
Chemical structures and functional groups presented in

synthesized nanocomposites were evaluated by FT-IR spec-
tra, as illustrated in Figure 4. FT-IR spectrum of unmodi-
fied DEAE cellulose exhibits a strong absorption band for
OH stretching vibration at 3,450 cm−1 due to the presence
of hydroxyl group. However, the same stretching band for
hydroxyl group was shifted to 3,335 cm−1 in the spectra of
modified cellulose phases (LC, LC2, and LC3). This might
be due to an interaction between hydroxyl moiety and
doped La(OH)3 onto the surface of cellulose. For unmodi-
fied DEAE cellulose, a prominent peak in the FT-IR
spectrum at 1,058 cm−1, for C-O stretching band, appeared
to shift to a lesser wave number (1,051 cm−1) in modified
cellulose phases. FT-IR spectra show peaks at 2,897 and
1,152 cm−1, corresponding to C-H stretching and bending
in all the phases of cellulose. Absorption bands at 557 cm−1

observed in only modified cellulose phases were due to
La-O stretching vibration as depicted in Figure 4. All these
characteristic peaks of DEAE cellulose and La(OH)3 de-
tected in the spectrum of nanocomposites confirmed the
formation of nanocomposites [40,41].
XPS was performed in order to quantitatively achieve

the composition, electronic state, chemical state, and em-
pirical formula of the elements present within a matrix.
The XPS spectrum of the material was taken by irradiating
it with X-ray beam and obtaining the kinetic energy and
number of electrons that escape within 1- to 10-nm re-
gion from the material being analyzed. In order to investi-
gate the doping and adsorption phenomena, XPS spectra
were taken for best doped cellulose matrix as adsorbent
of Cu(II), i.e., LC3, before and after adsorption (Figure 5).
For both spectra of LC3 before and after adsorption, the
material exhibits peaks at 281.75, 530.96, 834.69, and
851.82 eV, corresponding to C1s, O1s, La3d5/2, and La3d3/2,
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respectively. However, new peaks were observed in the
LC3 spectrum after adsorption at 936.75 and 951.94 eV,
corresponding to Cu2p3/2 and Cu2p1/2, respectively, as
can be depicted in Figure 5. Notably, such peaks of Cu(II)
are absent in the spectrum of LC3 before adsorption took
place. These characteristic peaks were in agreement with
the previous literature [40,42] and further confirmed the
formation of doped cellulose matrix with La(OH)3 and ad-
sorption of Cu(II).

Batch method
Effect of pH
The effect of pH was investigated for the selective adsorp-
tion of Cu(II) ion onto the modified cellulose phases within
the range of 1.0 to 8.0 by applying buffer solutions. The
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Figure 8 Effect of contact time on Cu(II) adsorption on 25.0 mg
LC3 at pH 6.0 and 25°C.
percentage extraction of Cu(II) on unmodified DEAE cel-
lulose was 7.47% at optimum pH 6.0 (Figure 6). However,
the percentage extractions for LC, LC2, and LC3 were
83.36%, 88.48%, and 99.78%, respectively. Hence, phase
LC3 displayed maximum efficiency for the extraction of Cu
(II) among all other modified phases. Although the differ-
ence of extraction between the unmodified and modified
cellulose matrix was enormous, all phases displayed their
maximum extraction at pH 6.0 (Figure 6). At lower pH
value, new proton acceptor centers are created and may be
competed with metal ions adsorption on binding sites of all
phases, resulting in the low adsorption of Cu(II) [43]. How-
ever, the highest percentage of Cu(II) extraction (99.78%) at
pH 6.0 with LC3 phase can be attributed to highest content
of negatively charged sites presented on LC3 phase at this
specific pH value and as a result of doping the highest con-
tent (10%) of La(OH)3 on DEAE cellulose surface. These
negatively charged sites/centers are able to easily bind with
the positively charged Cu(II) ions through electrostatic at-
traction at pH 6.0. It was noticed that adsorption was fur-
ther decreased at pH greater than 6.0. This may be ascribed
to the precipitation of heavy metal ions above pH 6.0 lea-
ding to the reduction of the metal ions in the solution [44].

Adsorption capacity
Adsorption capacity of Cu(II) on LC3 was estimated by
varying amounts (0 to 500 mgL−1) of Cu(II) and indi-
vidually mixing them with 25.0 mg LC3 at pH 6.0 under
Table 1 Thermodynamic parameters associated with the
adsorption of Cu(II) on LC3 phase

ΔH°
(kJmol−1)

ΔS°
(Jmol−1 K−1)

ΔG° (kJmol−1)

T = 298 K T = 303 K T = 323 K T = 338 K

−57.82 −86.68 −32.27 −31.17 −29.98 −28.48
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Table 2 Langmuir and Freundlich adsorption isotherm
parameters for the adsorption of Cu(II) on LC3 phase

Langmuir model Freundlich model

Q0 (mgg−1) b (Lmg−1) R2 Kf (mgg−1) 1/n R2

207.46 0.04 0.977 359.66 0.42 0.9203
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batch procedure. Uptake capacities of unmodified DEAE
cellulose and LC3 for Cu(II) were determined by plotting
a breakthrough curve between concentration (mgL−1) of
Cu(II) versus the milligram of Cu(II) adsorbed per gram
of phase (Figure 7). From the adsorption isotherm study,
the adsorption capacity of LC3 for Cu(II) was deter-
mined to be 207.17 mgg−1 which is higher than those
previously reported for Cu(II) in other studies (5.2 [45],
12.0 [46], 66.7 [47], 73.5 [48], 110.5 [49], and 160.1 mgg−1

[50]). For comparison with the adsorption capacity of LC3
toward Cu(II), the Cu(II) adsorption capacity on the un-
modified DEAE cellulose was evaluated and estimated to
be 66.67 mgg−1 under the same batch conditions as well
as LC3, as displayed in Figure 7. This provides that the ad-
sorption capacity of Cu(II) was improved by 211% with
the LC3 nanocomposites as compared to that with the un-
modified DEAE cellulose.

Effect of shaking time
The shaking time effect is considered to be a principal
factor when the static technique is exercised for the de-
termination of adsorption capacity values of the metal
ion. In this report, the shaking times within 5 to
120 min were investigated to attain the effect of contact
time on Cu(II) adsorption. Results indicated fast equilib-
rium kinetics of Cu(II) adsorption on the surface of LC3
(Figure 8). It was found that over 200 mgg−1 Cu(II) was
adsorbed onto the surface of LC3 within 20 min. However,
after 20 min, minor change in the adsorption of Cu(II)
was observed, and the value rose up to the maximum
value of 207.17 mgg−1 after 120 min. The uptake capacity
of Cu(II) was also raised up to more than 204 mgg−1 after
50 min until the maximum adsorption of LC3 toward
Cu(II) was reached after 120 min.
Effect of temperature
The effect of temperature on the adsorption of LC3 for
Cu(II) was studied in order to determine thermodynamic
parameters. In this study, the effect of temperature on
the adsorption of 25.0 mg LC3 along with 25.0 mL of
5.0 mgL−1 Cu(II) solution was investigated at different
temperatures, ranging from 298 to 338 K. The results
showed that adsorption capacity increases with decrease
in solution temperature. This elaborates exothermic na-
ture of adsorption process. Thermodynamic parameters
linked with adsorption process, such as change in free
energy (ΔG°, kJmol−1), entropy (ΔS°, Jmol−1 K−1), and
enthalpy (ΔH°, kJmol−1), were calculated by employing
the following equations:

Kd ¼ Co–Ce=Ceð Þ � V=mð Þ ð1Þ

lnKd ¼ ΔS�=R– ΔH�=RTð Þ ð2Þ

ΔG� ¼ −RT lnKd ð3Þ

where Kd is distribution adsorption coefficient, Co and
Ce denote initial and final concentrations of the metal
before and after adsorption, respectively, V corresponds
to the volume (mL), m represents the weight of the phase
(g), R is the universal gas constant (8.314 Jmol−1 K−1), and
T corresponds to the temperature in Kelvin.
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Figure 11 Pseudo- (a) first- and (b) second-order kinetic models of Cu(II) uptake on 25.0 mg LC3 phase at pH 6.0 and 25°C.
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Thermodynamic parameters of ΔH° and ΔS° were cal-
culated using Equation 2 from the slope and intercept of
the linear variation of ln Kd with the reciprocal of the
temperature (1/T), as displayed in Figure 9 and Table 1.
The standard Gibbs free energy change, ΔG, was ob-
tained from Equation 3 (Table 1). As can be depicted
from Table 1, calculated thermodynamic parameters
were all negative. The observed negative ΔH° value
(−57.82 kJmol−1) supports that the adsorption process of
LC3 toward Cu(II) is exothermic in nature. The negative
ΔS° value (−86.68 Jmol−1 K−1) provides that the system
randomness decreases during the adsorption process on
the adsorbent surface, a general observation in most of
the processes of metal ion uptake [49,50]. Finally, negative
values of ΔG° suggest that the adsorption mechanism of
LC3 toward Cu(II) is a generally spontaneous process and
thermodynamically favorable.

Adsorption isotherm models
The adsorption isotherm analysis is very crucial to obtain
an equation that accurately corresponds to the results.
The obtained adsorption isotherm data for Cu(II) is there-
fore assessed by two well-known adsorption isotherm
models, Langmuir and Freundlich. These two models
were utilized to match the equilibrium data and acquire
the correlation coefficient (R2) values to assess fitting
parameters. The Langmuir model describes a monolayer
Table 3 Pseudo-first- and second-order kinetic model parame

C0 (mg/L) qe, exp (mg/g) Pseudo-first-order kinetic m

k1 (min−1) qe, cal (mgg−1)

400 207.17 2.42E-02 11.03
adsorption phenomenon onto a completely homogeneous
surface with equally available identical adsorption sites
along with negligible interaction of adsorbed species. It
can be defined by the following equation [51]:

Ce=qe ¼ Ce=Qoð Þ þ 1=Qob ð4Þ

where Ce is the concentration of un-retained metal ion
remaining in the filtrate at equilibrium (mg mL−1) and qe
corresponds to the amount of adsorbed metal ion on ad-
sorbent (mgg−1). The symbols Qo and b refer to Langmuir
constants related to the maximum adsorption capacity
(mgg−1) and affinity parameter (Lmg−1), respectively. Lang-
muir constants can be calculated from a linear plot of
Ce/qe against Ce with a slope and intercept equal to 1/Qo

and 1/Qob, respectively. Moreover, a dimensionless con-
stant separation factor or equilibrium parameter RL is an
additional characteristic of the Langmuir model, which is
defined by the given equation below:

RL ¼ 1= 1 þ bCoð Þ ð5Þ

where b is the Langmuir constant, indicating the nature
of adsorption and the shape of the isotherm and Co is
the initial concentration of the analyte of interest. The
RL values specify the type of isotherm, and RL values
within 0 to 1 suggest a favorable adsorption [52].
ters for extraction of Cu(II) by LC3 phase

odel Pseudo-second-order kinetic model

R2 k2 (gmg−1 min−1) qe, cal (mgg−1) R2

0.9633 0.01 207.58 0.999



Table 4 Uptake capacities and distribution coefficient values of different metal ions against unmodified DEAE cellulose
and modified cellulose phases at pH 6.0 and 25°C

Metal
ions

Unmodified DEAE cellulose LC LC2 LC3

qe (mgg−1) Kd (mLg−1) qe (mgg−1) Kd (mLg−1) qe (mgg−1) Kd (mLg−1) qe (mgg−1) Kd (mLg−1)

Cd(II) 0.62 1.42 × 102 0.75 1.76 × 102 0.00 0.00 0.92 2.24 × 102

Co(II) 0.73 1.71 × 102 0.73 1.70 × 102 1.90 6.15 × 102 1.86 5.93 × 102

Cr(III) 2.33 8.70 × 102 2.15 7.53 × 102 4.01 4.07 × 103 4.27 5.88 × 103

Cr(VI) 2.46 9.67 × 102 4.71 1.61 × 104 4.14 4.83 × 103 4.69 1.51 × 104

Cu(II) 0.18 3.78 × 101 4.17 5.01 × 103 4.42 7.68 × 103 4.99 4.54 × 105

Fe(III) 2.37 8.98 × 102 2.03 6.85 × 102 3.76 3.02 × 103 4.29 6.02 × 103

Ni(II) 0.26 5.46 × 101 0.27 5.69 × 101 0.00 0.00 0.48 1.05 × 102

Zn(II) 0.81 1.92 × 102 0.84 2.03 × 102 2.19 7.79 × 102 1.09 2.79 × 102
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On the other hand, Freundlich isotherm model is based
on the assumption of a reversible adsorption process at
multilayers on heterogeneous surface of the phase. It can
be expressed by the following equation:

logqe ¼ logK f þ 1=n logCe ð6Þ

where Kf and n are the Freundlich isotherm constants
related to adsorption capacity and intensity of adsorption,
respectively. Freundlich constants (Kf and n) can be calcu-
lated from the intercept and slope, respectively, of the lin-
ear plot of logqe versus logCe.
By employing least square fit method, linear plots of

Langmuir and Freundlich isotherm models were obtained
Cd(II)Co(II)Cr(II
I)Cr(V

I)Cu(II)Fe(III)Ni(II)Zn(II)

Metal ions

Figure 12 Selectivity study of 25 mg LC3 phase of different metal ion
pH 6.0 and 25°C.
(Figure 10). Table 2 represents values acquired from these
models. From Table 2, it can be seen clearly that Langmuir
model is better fitted as compare to Freundlich model.
Langmuir model has higher correlation factor (R2 =
0.9737) and close Q0 value (207.46 mgg−1) to that
(207.17 mgg−1) experimentally obtained from adsorp-
tion isotherm study. However, the correlation factor
obtained from Freundlich model is less (0.9203) than
that obtained from Langmuir model. In addition, the
Kf value 359.66 mgg−1 represents large deviation from
that obtained from the adsorption isotherm study.
Considering these results, it can be concluded that a
monolayer adsorption took place on the surface of adsorb-
ent with homogenous adsorption sites. The RL value of
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Table 5 Determination of Cu(II) at different
concentrations in real water samples utilizing LC3 phase

Environmental
samples

Added
(mgL−1)

Un-adsorbed
(mgL−1)

Percentage
extraction

Tap water 2.0 0.05 97.29

10.0 0.47 95.26

50.0 4.35 91.31

Ground water 2.0 0.04 98.23

10.0 0.40 95.99

50.0 3.86 92.27

Seawater 2.0 0.06 97.05

10.0 0.67 93.26

50.0 4.45 91.11

Wastewater 2.0 0.09 95.73

10.0 0.67 93.26

50.0 5.06 89.87
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Cu(II) adsorption on the LC3 is 0.06, validating a favorable
adsorption process based on the Langmuir model.

Kinetic models
Different kinetic models were studied in order to explore
inherent kinetic adsorption parameters. These models
are applied in order to check fitness of the experimental
data, where correlation coefficient (R2) value is taken as
the measure of agreement between the experimental
data. In this study, two kinetic adsorption models were
Figure 13 Schematic view of adsorption phenomena on the modified
evaluated. The equation for pseudo-first-order adsorp-
tion kinetic can be expressed as follows:

log qe–qtð Þ ¼ logqe– k1=2:303ð Þt ð7Þ
where qe (mgg−1) and qt (mgg−1) are the amounts of ad-
sorption at equilibrium and at time t (min), respectively,
and k1 denotes the adsorption rate constant of pseudo-
first-order adsorption (min−1). The adsorption rate con-
stant k1 and the adsorption capacity qe were calculated
from the slope and intercept of the plot of log(qe – qt)
against t and found to be 2.42 × 10−2 min−1 and 11.03 mgg−1,
respectively, as illustrated in Figure 11a. In addition, the
kinetic equation for pseudo-second-order adsorption can
be written as follows:

t=qt ¼ 1=υo þ 1=qeð Þt ð8Þ

where υo = k2 is the initial adsorption rate (mgg−1 min−1)
where k2 (gmg−1 min−1) corresponds to the rate constant
of the pseudo-second-order adsorption, qe (mgg−1) is the
amount of metal ion adsorbed at equilibrium, and qt (mgg−1)
refers to the amount of metal ion on the adsorbent surface
at any time t (min). The plot of t/qt versus t was developed
in order to deduce kinetic parameters of υo and qe from
the intercept and slope, respectively.
The correlation coefficient factor (R2) obtained from

pseudo-second-order plot was found to be 0.9999
(Figure 11b). Kinetic parameters υo and qe were found
DEAE cellulose adsorbent.
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to be 350.51 mgg−1 min−1 and 207.58 mgg−1, respect-
ively, and k2 was estimated to be 0.01 gmg−1 min−1 for
LC3 adsorption for Cu(II) (Table 3). It can be noticeably
observed that the value of qe obtained from the pseudo-
second-order kinetic model is consistent with the out-
come of adsorption isotherms, strongly supporting the
validity of pseudo-second-order kinetic model.
Performance of proposed method
Selectivity studies
Selectivity studies of modified and unmodified DEAE cel-
lulose adsorbents toward different metal ions, including
Cd(II), Co(II), Cu(II),Cr(III), Cr(VI), Fe(III), Ni(II), and
Zn(II), were investigated by determining the distribution
coefficient of all the phases at optimum pH value (pH 6.0).
Distribution coefficient (Kd) values were determined from
Equation 1.
The values of distribution coefficient along with uptake

capacities for all metal ions against different phases of
cellulose at optimum pH 6.0 are summarized in Table 4. It
can be clearly observed from Table 4 and Figure 12 that
the Cu(II) adsorption on LC3 phase has the highest
distribution coefficient value (4.54 × 105 mLg−1). These
results suggested that Cu(II) had the highest selectivity
among all the metal ions and specifically toward the LC3
phase. However, the minimum overall value of Kd is
observed in case of Cu(II) adsorption on the unmodified
DEAE cellulose. Consequently, the modified phase LC3
provided the best selectivity for the separation of Cu(II) in
this study.

Application in real environmental samples
The proposed method was applied to real environmental
water samples for the extraction of Cu(II) using LC3
phase as an adsorbent. Four different water samples,
including tap water, ground water, seawater, and waste-
water, were collected from Jeddah, Saudi Arabia. These
samples were spiked with Cu(II) and utilized for adsorp-
tion experiments with LC3 phase. These samples were
studied under the same batch conditions at optimum
pH 6.0. The percentage extraction of Cu(II) from these
real samples was calculated and reported in Table 5.
The results showed that the extraction of spiked Cu(II)
water samples using LC3 phase in the range of 89.87%
to 98.23%. Thus, these results were satisfactory, and
the proposed method is reliable, feasible, and applic-
able to real sample analysis.

Conclusions
Nanocomposites of surface modified cellulose matrix were
prepared successfully by growing different percentages of
La(OH)3 on DEAE cellulose surface. The morphology of
these nanocomposites was confirmed by FE-SEM, EDS,
XRD, FT-IR, and XPS. The analytical potential of newly
synthesized nanocomposites for selective adsorption and
determination of Cu(II) was evaluated. The outcome of
the research revealed that among the different percentages
of doped La(OH)3 phases, the 10% doped La(OH)3 phase
(LC3) showed significant uptake capacity of Cu(II) in
aqueous medium (Figure 13). LC3 phase also presented
an excellent sensitivity toward Cu(II) adsorption and
achieved good static uptake capacity. About 211% increase
in adsorption capacity was achieved by LC3 phase as com-
pared to unmodified DEAE cellulose. Adsorption data
were found to be well fitted with the Langmuir isotherm
model and followed second-order kinetic. Furthermore,
the proposed method was applied to real environmental
water samples and achieved adequate results for the ex-
traction of Cu(II). Consequently, the method may display
substantial promise for applying it as an applicable ap-
proach for a selective separation and detection of Cu(II) in
complex matrices.
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