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Abstract

The longwave phenomenological model is used to make simple and precise calculations of various physical
quantities such as the vibrational energy density, the vibrational energy, the relative mechanical displacement, and
the one-dimensional stress tensor of a porous silicon distributed Bragg reflector. From general principles such as
invariance under time reversal, invariance under space reflection, and conservation of energy density flux, the
equivalence of the tunneling times for both transmission and reflection is demonstrated. Here, we study the
tunneling times of acoustic phonon packets through a distributed Bragg reflector in porous silicon multilayer
structures, and we report the possibility that a phenomenon called Hartman effect appears in these structures.
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Background
Phonons, the quanta of lattice vibrations, manifest them-
selves practically in all electrical, thermal, and optical
phenomena in semiconductors and other material sys-
tems. The reduction of the size of electronic devices
below the acoustic phonon mean free path creates a new
situation for phonon propagation and interaction, open-
ing up an exciting opportunity for engineering phonon
spectrum in nanostructured materials [1]. Since the early
work of Narayanamurti et al. [2], important progress has
lately emerged in the development of nanowave phononic
devices including, e.g., mirrors, cavities, and monochro-
matic sources.
How long does it take for a particle to tunnel through

a potential barrier? This is a question that has occupied
physicists for decades and one for which there is still no
definitive answer [3]. The Hartman effect (HE) states that
the tunneling time becomes independent of the barrier
length [4]. The independence of tunneling time on barrier
length would imply arbitrarily large and indeed superlu-
minal velocities for tunneling wave packets, if tunneling
was in fact a propagation phenomenon.
Phonon tunneling studies have also revealed phenom-

ena related to the HE. Recent experiments on tunneling
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acoustic waves have reported the breaking sound bar-
rier [5,6]. Yang et al. found that inside a phononic band,
the group velocity increases linearly with the sample
thickness, a rather remarkable effect that is a signature
of tunneling in quantum mechanics [6,7]. Villegas et
al. have discussed the physical conditions under which
the tunneling time for long-wavelength phonons through
semiconductor heterostructures is independent on the
system’s size, i.e., the effect equivalent to the HE for elec-
trons [8]. Experimental studies of HE in the context of
the nanophononics have been carried out [9,10]. In these
works, very short transit times in the stop bands have
been measured, one acoustic equivalent of HE of electron
tunneling through potential barriers.
During the last decade, interest in achieving all-silicon-

based opto- and microelectronics was highly stimulated
by the discovery of the unique optical properties of porous
silicon [11]. Porous silicon is known as a versatile material
with applications in light emission, sensing, and photonic
crystal devices. It is well known that the introduction of
artificial spatial periodicity in the elastic properties of a
system results in Brillouin zone folding. Such folding is
often accompanied by the appearance of bandgaps in the
phonon frequency spectrum [12,13]. In the last few years,
this interest has been translated to porous silicon-based
phononic systems [14-17]. Here, we study the tunneling
times of acoustic phonon packets through a distributed
Bragg reflector in porous silicon multilayer structures.
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The paper is organized as follows: The ‘Methods’
section provides some fundamentals in both the long-
wavelength model and the transfer matrix method. The
main theoretical findings are presented in the ‘Results
and discussion’ section. In particular in this section, from
general principles such as invariance under time rever-
sal, invariance under space reflection, and conservation of
energy density flux, the equivalence of the tunneling times
for both transmission and reflection is demonstrated. At
the end of the paper, the main conclusions are given.

Methods
Long-wavelength model
The one-dimensional energy density [18] is defined as

H = 1
2
ρ

∣∣∣∣∂u∂t
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2
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�|u|2+ 1
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∗
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]
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where the first term in (1) represents the kinetic energy
density, the second one represents the interaction energy
density of the phonon field with itself, and the third one
represents the strain energy density that accounts for
the dispersive character of the oscillations. These terms
depend on the atomic relative displacements u, the lin-
ear mass density ρ, the phonon frequency at the center of
the Brillouin zone ω� , the one-dimensional strain tensor
∂u/∂z, and the stress tensor σ , which is equal to

σ = −ρβ2∂u/∂z, (2)

being β a parameter that accounts on the behavior of the
bulk phonon dispersion relation. From Equations 1 and 2,
we can obtain the one-dimensional equations of motion,

∂2u
∂t2

= −ω2
�u − β2 ∂2u

∂z2
, (3)

and

∂2σ
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= −ω2

�σ − β2 ∂2σ

∂z2
. (4)

The continuity equation for the energy density is
defined as

∂H/∂t + ∂ j/∂z = 0, (5)

where the energy density flux, j, is given by

j = −1/2
(
σ∂u∗/∂t + σ ∗∂u/∂t

)
. (6)

By substituting Equation 2 into Equation 6, we obtain the
following expression for the energy density flux:

j = ρβ2
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A very convenient method for calculating the propagation
of harmonic waves through a system consisting of a finite

number of uniform layers is the transfer matrix method
[19,20]. The transfer matrix, which propagates the wave
amplitudes across a j-th homogeneous layer is given by

Mj =
(

cos
(
kjdj

) − 1
ωZj

sin
(
kjdj

)
ωZj sin

(
kjdj

)
cos

(
kjdj

) )
, (8)

where Zj = ρjvj is the acoustic impedance, ρj the mass
density, vj the velocity of sound, and dj the layer width.

Results and discussion
Equivalence of the transmission and reflection times in the
tunneling of long-wavelength phonons
In this paper, for the reason of complement, we give
a demonstration of the equivalence of the transmission
and reflection times (τt = τr) in the tunneling of long-
wavelength phonons [21]. Consider the general phonon
scattering process as shown schematically in Figure 1. Let
us consider that the phonon propagation is normal to
the layer interfaces and adopt the continuum model valid
for long-wavelength oscillations. In this section, we ana-
lyze the properties of the transfer matrix in the tunneling
process of long-wavelength phonons.

Invariance under time reversal
Let us observe that if we take the complex conjugate of (3)
and if t is replaced by −t, we get

∂2

∂t2
u∗(z,−t) = −ω2

�(z)u∗(z,−t)−β(z)2
∂2

∂z2
u∗(z,−t),

(9)

Figure 1 General stationary scattering configuration. The general
stationary scattering configuration in one dimension. An arbitrary
barrier is confined to the interval (−a, a).
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provided only that β(z) and ω�(z) are real functions.
Observe that this equation has the same form as (3).
Therefore, if u(z, t) is a solution of (3), then u∗(z,−t) is
also a solution. u∗(z,−t) is often referred as the time-
reversed solution. The behavior of the wave equation
exhibited by (9) is called invariance under time reversal.
For the stationary state, invariance under time reversal
implies that if u(z) is a stationary-state wave function,
then u∗(z) is also one.
The general solution of the wave equation for the system

depicted in Figure 1 is given by

u1(z) =
⎧⎨⎩
Aeik1z + Be−ik1z z < −a
	(z, k2) −a < z < a
Ceik3z + De−ik3z z > a

, (10)

where k1 =
√(

ω2
�1

− ω2
)

/β2
1

(
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)
/β2

3

)
is the wave number in the left (right) part of the sys-
tem. Using the transfer matrix, we can relate the wave
amplitudes in the left and right parts according to(

A
B

)
= M

(
C
D

)
, (11)

where

M =
(
M11 M12
M21 M22

)
. (12)

On the other hand, the time-reversed solution of the wave
equation is

u2(z) =
⎧⎨⎩
A∗e−ik1z + B∗eik1z z < −a
	∗(z, k2) −a < z < a
C∗e−ik3z + D∗eik3z z > a

. (13)

Hence, comparing Equations 10, 11, and 13, we get(
A
B

)
= M̃∗

(
C
D

)
, (14)

where

M̃∗ =
(
M∗

22 M∗
21

M∗
12 M∗

11

)
, (15)

The properties of the transfer matrix in the tunnel-
ing of long-wavelength phonons can be obtained from
Equations 11 and 14

M∗
11 = M22 and M∗

12 = M21. (16)

Conservation of energy density flux
To demonstrate the conservation of the energy density
flux, we need to calculate this quantity in the left and right
parts of the system. Using Equations 7 and 10, we obtain

jL = ρ1ωβ2
1 Im

[
u∗
1(z)

du1(z)
dz

]
= −ωZ̃1

[|A|2 − |B|2] ,
(17)
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]
= −ωZ̃3

[|C|2 − |D|2] ,
(18)

where the superscript L (R) refers to the left (right) of
the region (−a, a), Im denote imaginary part and Z̃1 =
ρ1β

2
1k1 and Z̃3 = ρ3β

2
3k3. The conservation of the energy

density flux is expressed as jL = jR, or equivalently

Mt ĨM∗ = Z̃3

Z̃1
Ĩ, (19)

where Mt and M∗ denote the transpose and conjugate
matrix, respectively, and

Ĩ =
(
1 0
0 −1

)
. (20)

Using Equation 19 and the condition (16), one further
condition on matrixM can be added

|M| = M11M22 − M12M21 = Z̃3

Z̃1
. (21)

Invariance under space reflection
Now, let us consider the invariance under space reflection
of Equation 3. Because β2(z), ω2(z), and ω2

�(z) are even
functions of z, another solution of the wave equation is
obtained by replacing z by −z. We can immediately write
the general solution of the wave equation as

u3(z) =
⎧⎨⎩
Ae−ik1z + Beik1z z > a
	(−z, k2) a > z > −a
Ce−ik3z + Deik3z z < −a

, (22)

and obtain the following relation(
C
D

)
= M̃

(
A
B

)
. (23)

Substituting (23) into (14) gives us the condition

MM̃ = I, (24)

where I is the identity matrix. From this last equation, we
obtain

|M11|2 + |M12|2 = 1 and M11(M12 + M∗
12) = 0.

(25)

The transmission (reflection) amplitude AR
t

(
AR
r
)
for a

phonon incident perpendicular to the barrier from right
to left (the inverse process is described by D = 1,C =
AR
r ,A = 0,B = AR

t ) and the transmission (reflection)
amplitude AL

t
(
AL
r
)
for a phonon incident from left to
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right (the direct process is described by A = 1,B = AL
r ,

C = AL
t ,D = 0) are given by the following equations:
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in terms of themodulus and phase. By applying conditions
(16) and (21) to the previous relations, we obtain
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M11
= Z̃3

Z̃1
AL
t (k1, k3) , (28)
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Finally, the transmission and reflection coefficients are
given by
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where t, r, and i denote transmitted, reflected, and inci-
dent, respectively. From Equations 16, 27, 28, and 30, it is
very easy to prove that T R(k3) = T L(k1) and RR(k3) =
RL(k1). From Equation 28, we obtain αR

t (k3, k1) =
αL
t (k1, k3), and from Equations 16, 26, 27, 28, and 29, we

can deduce the relation

βR
r (k3, k1) = ±π − βL

r (k1, k3) + 2αL
t (k1, k3). (31)

If we consider that both materials in the left and right
parts of Figure 1 are identical, i.e., (k1 = k3 ≡ k),
then αR

t (k3, k1) = αL
t (k1, k3) ≡ αt(k) and βR

r (k3, k1) =
βL
r (k1, k3) ≡ βr(k). By using this relations, the phase is

αt(k) = ±π/2 + βr(k). (32)

Finally, using Equation 32 is straightforward to prove that
the transmission and reflection phase times given by

τt = dαt
dω

, (33)

and

τr = dβr
dω

, (34)

are equal,

τt = τr. (35)

Falck et al. have obtained a similar result for symmetric
scattering potentials [22].

Tunneling of acoustic phonons through a distributed
Bragg reflector
In this section, we apply the concepts discussed previ-
ously to study a distributed Bragg reflector (DBR) formed
by a finite number of periods, N , based on porous sili-
con (PSi). The DBR is obtained by stacking periodically
N times two constituent layers A and B with different
porosity. The thicknesses of A and B layers are denoted
by dA and dB, respectively. In PSi, the mass density is
related with the porosity P via ρ = ρ0 (1 − P), being ρ0
the mass density of bulk silicon. The propagating veloc-
ity of the longitudinal waves through PSi is related with
the porosity as v = v0 (1 − P)k , being v0 the longitudinal
velocity of the wave in bulk silicon, and k is a param-
eter. The acoustic impedance of layer A(B) is given by
ZA = ρAvA(ZB = ρBvB). The dependence on porosity of
these two parameters, velocity and mass density, requires
a very accurate control of the etching process. We grow
the layers forming the DBR according to the methodol-
ogy reported in [23]. The thicknesses of the PSi layers
are dA = 2 μm and dB = 1.65 μm, and their respec-
tive porosities equal to PA = 0.47 and PB = 0.67. The
parameters k = 0.56, ρ0 = 2, 330 kg/m3, and v0 =
8, 440 m/s were determined by fitting the experimental
results as is explained in [23]. In Figure 2, the theoret-
ical (black solid line) and experimental (blue solid line)
transmission coefficients (in dB), T = jt/ji, are plotted as
a function of the acoustic phonon frequencies (in GHz).
The theoretical transmission spectrum has been modeled
using the transfer matrix method and includes the effect
of the sample, transducers, and liquid coupling the trans-
ducers to the sample. All these components are included
writing their corresponding transfer matrix like appearing
in (8) but using their respective parameters. The exper-
imental transmission has been measured using a vector
network analyzer (VNA) using two piezoelectric trans-
ducers according to the experimental setup described in
[23]. We can observe that in the range of frequencies
reported here, the DBR shows two acoustic gaps, corre-
sponding to the first and second acoustic gap, and cen-
tered around ∼= 0.71 and ∼= 1.42 GHz, respectively. In the
inset, we show the calculated phonon transmittance for
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Figure 2 Transmission coefficients. Theoretical and experimental transmission coefficients (in dB) plotted as a function of the acoustic phonon
frequencie (in GHz) for the DBR, with N = 18. The inset shows some details of the theoretical transmission coefficient around the first acoustic stop
band.

frequencies around the zone center of the first minigap.
In particular, note that at frequencies fL ∼= 0.54 GHz and
fR ∼= 0.88 GHz, corresponding to the edges of the gap,
T = 0 dB. We can observe a noticeable difference in
the fundamental bandgap between the experimental and
the theoretical spectrum. The experimental bandgap has a
depth of approximately 50 dB which is less than the mod-
eled value of approximately 200 dB. However, this is due
to the experimental limitation on the setup used, and it is
only attributed to the noise of our VNA.
The behavior of the vibrational energy densityH (1) as a

function of the normalized distance, along the axis of the
DBR, is shown in Figure 3a. We observe that the vibra-
tional energy density is a one piecewise constant function.
Let us now investigate the behavior of H at the reso-
nances. At the frequencies fL ∼= 0.54 GHz (blue solid line)
and fR ∼= 0.88 GHz (red solid line), the vibrational energy
density exhibits the maximum value in the center region
of the DBR. However, these modes are characterized by
complete transmission of the vibrational energy through
the system. The one-dimensional stress tensor σ and the
relative displacements u are shown in Figure 3b,c, respec-
tively. In these figures, we have included a schematic rep-
resentation of the structure, representing with dark (light)
regions the layers with low (high) porosity. We observed
from Figure 3c that the relative displacement for the mode
appearing at fL ∼= 0.54 GHz (fR ∼= 0.88 GHz) is localized
in the low (high) porosity regions, which is consistent with
the agreement used to refer at the valence (dielectric) and
conduction (air) band used in semiconductors (photonic

crystals). From these figures, it is clearly observed that the
phonon modes propagate through the structure.
The phonon modes with energies within the first mini-

gap appear marked by the black solid line in Figure 3b,c.
We observe that at the frequency fC ∼= 0.70 GHz, the
amplitude of the wave shows an abrupt decay along the
axis of the DBR. This qualitative behavior is very similar
for the other physical quantities.

Tunneling times
The dwell time, tD, for acoustic phonons inside the DBR is
calculated by the following equation [21]:

tD = H
jt
, (36)

where H is the total energy in the interval (0, L), being L
the total length of the DBR. This energy is obtained by
integrating Equation 1, i.e.,

H =
∫ L

0
Hdz. (37)

The free time, tf, which is the time associated to the transit
of the sound pulse along a distance L with velocity, vf, is
simply defined by

tf = L
vf
, (38)

being vf the phase velocity.
In Figure 4, the tunneling times as a function of the

phonon frequency (in GHz) are depicted for the acous-
tic phonons around the second acoustic gap. In Figure 4a,
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Figure 3 The vibrational energy density, the one-dimensional stress tensor and the relative displacements. (a) The vibrational energy
densityH (in a.u.), (b) the one-dimensional stress tensor σ (in a.u.), (c) and the relative displacements u (in a.u.) in the structure, plotted as a function
of the normalized distance along the axis of the DBR. The distance is normalized by the factor lc = dA + dB .

we can observe that the dwell time (36) increases near
the gap. The behavior at such frequencies is the same as
if the phonon was trapped for a long time in the spatial
region occupied for the structure before being transmit-
ted. In Figure 4b, we observe that, in the stop bands,

the transmission time (33) is shorter than free time (38),
though a large noise is observed due to the coexistence of
the liquid modes. The very short transit times in the stop
bands are the acoustic equivalent of the Hartman effect
[4] of electrons tunneling through potential barriers [8,9].
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Figure 4 Tunneling times. (a) The dwell time tD (in μs) and (b) the transmission time τt and free time tf (in μs) plotted as a function of the acoustic
phonon frequencies (in GHz). (c) Theoretical and experimental transmission coefficients (in dB) plotted as a function of the acoustic phonon
frequencies (in GHz).
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Conclusions
In this paper, we studied tunneling times of acoustic
phonon packets through a distributed Bragg reflector
made of porous silicon layers. Under the assumption that
the long-wavelength approximation is valid, and from
general principles of symmetry and conservation, we
report an explicit demonstration of the equivalence of
the transmission and reflection times in the tunneling of
long-wavelength phonons. Calculations of the vibrational
energy density and the vibrational energy stored within
the structure allows a better visualization of the physi-
cal phenomena occurring in this system. The description
of the stress and strain fields complements the energetic
description. We report the possibility that a phenomenon
called Hartman effect appears in porous silicon multilayer
structures, an acoustic equivalent of Hartman effect of
electrons tunneling through potential barriers. The results
of this study could be useful for the design of acoustic
devices.
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