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Abstract

Nanostructured zinc oxide (ZnO) nanorods (NRs) with hexagonal wurtzite structures were synthesized using an easy
and low-cost bottom-up hydrothermal growth technique. ZnO thin films were prepared with the use of four
different solvents, namely, methanol, ethanol, isopropanol, and 2-methoxyethanol, and then used as seed layer
templates for the subsequent growth of the ZnO NRs. The influences of the different solvents on the structural and
optical properties were investigated through scanning electron microscopy, X-ray diffraction, Fourier transform
infrared spectroscopy, ultraviolet–visible spectroscopy, and photoluminescence. The obtained X-ray diffraction
patterns showed that the synthesized ZnO NRs were single crystals and exhibited a preferred orientation along the
(002) plane. In addition, the calculated results from the specific models of the refractive index are consistent with
the experimental data. The ZnO NRs that grew from the 2-methoxyethanol seeded layer exhibited the smallest
grain size (39.18 nm), largest diffracted intensities on the (002) plane, and highest bandgap (3.21 eV).
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Background
Top-down and bottom-up methods are two types of
approaches used in nanotechnology and nanofabrica-
tion [1]. The bottom-up approach is more advanta-
geous than the top-down approach because the former
has a better chance of producing nanostructures with
less defects, more homogenous chemical composition,
and better short- and long-range ordering [2]. Semicon-
ductor nanorods (NRs) and nanowires possess convenient
and useful physical, electrical, and optoelectronic prop-
erties, and thus, they are highly suitable for diverse
applications [3,4].
ZnO, one of the II-VI semiconductor materials, has

attracted considerable interest because of its wide bandgap
(approximately 3.37 eV), high exciton binding energy
(approximately 60 meV), and long-term stability [5,6].
ZnO has been applied in various applications, such as in
light-emitting diode [7], gas and chemical sensors [8-10],
ultraviolet (UV) detector [11,12], solar cell [13,14], and
biomolecular sensors [15,16]. To create high-quality
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ZnO NRs, various techniques have been proposed, such
as the aqueous hydrothermal growth [10], metal-organic
chemical vapor deposition [17], vapor phase epitaxy
[18], vapor phase transport [19], and vapor–liquid-solid
method [20].
Among these methods, the aqueous hydrothermal tech-

nique is an easy and convenient method for the cultivation
of ZnO NRs. In addition, this technique had some promis-
ing advantages, like its capability for large-scale produc-
tion at low temperature and the production of epitaxial,
anisotropic ZnO NRs [21,22]. By using this method and
varying the chemical use, reaction temperature, molar-
ity, and pH of the solution, a variety of ZnO nanostruc-
tures can be formed, such as nanowires (NWs) [16,23],
nanoflakes [24], nanorods [25], nanobelts [26], and
nanotubes [27].
In this study, we demonstrated a low-cost hydrothermal

growth method to synthesize ZnO NRs on a Si substrate,
with the use of different types of solvents. Moreover, the
effects of the solvents on the structural and optical proper-
ties were investigated. Studying the solvents is important
because this factor remarkably affects the structural and
optical properties of the ZnO NRs. To the best of our
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Figure 1 ZnO thin film preparation process flow.
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Figure 2 ZnO NR growth process.
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knowledge, no published literature is available that ana-
lyzed the effects of different seeded layers on the structural
and optical properties of ZnO NRs. Moreover, a compari-
son of such NRs with the specific models of the refractive
index has not been published.

Methods
ZnO seed solution preparation
Homogenous and uniform ZnO nanoparticles were de-
posited using the sol–gel spin coating method [28]. Before
seed layer deposition, the ZnO solution was prepared
using zinc acetate dihydrate [Zn (CH3COO)2 · 2H2O] as a
precursor and monoethanolamine (MEA) as a stabilizer.
In this study, methanol (MeOH), ethanol (EtOH), isopro-
panol (IPA), and 2-methoxyethanol (2-ME) were used as
solvents. All of the chemicals were used without further
purification. ZnO sol (0.2 M) was obtained by mixing
4.4 g of zinc acetate dihydrate with 100 ml of solvent. To
ensure that the zinc powder was completely dissolved in
the solvent, the mixed solution was stirred on a hot plate
at 60°C for 20 min. Then, 1.2216 g of MEA was gradually
added to the ZnO solution, while stirring constantly at
60°C for 2 h. The milky solution was then changed into
a homogenous and transparent ZnO solution. The so-
lution was stored for 24 h to age at room temperature
(RT) before deposition.

ZnO seed layer preparation
In this experiment, a p-type Si (100) wafer was used as
the substrate. Prior to the ZnO seed layer deposition
process, the substrate underwent standard cleaning pro-
cesses, in which it was ultrasonically cleaned with hydro-
chloric acid, acetone, and isopropanol. The native oxide
on the substrate was removed using a buffered oxide
etch solution, and then, the substrate was rinsed with
deionized water (DIW). Subsequently, a conventional
photoresist spin coater was used to deposit the aged
ZnO solution on the cleaned substrates at 3,000 rpm for
20 s. A drying process was then performed on a hot
plate at 150°C for 10 min. The same coating process was
repeated thrice to obtain thicker and more homogenous
ZnO films. The coated films were annealed at 500°C for
2 h to remove the organic component and solvent from
the films. The annealing process was conducted in the
conventional furnace. The preparation of the ZnO thin
films is shown in Figure 1.

ZnO NRs formation
After the uniform coating of the ZnO nanoparticles on
the substrate, the ZnO NRs were obtained through
hydrothermal growth. The growth solution consisted
of an aqueous solution of zinc nitrate hexahydrate,
which acted as the Zn2+ source, and hexamethylenetet-
ramine (HMT). The concentration of the Zn (NO3)2
was maintained at 35 mM, and the molar ratio of the
Zn (NO3)2 to HMT was 1:1. For the complete dissol-
ution of the Zn (NO3)2 and HMT powder in DIW, the
resultant solution was stirred using a magnetic stirrer
for 20 min at RT. The ZnO NRs were grown by im-
mersing the substrate with the seeded layer that was
placed upside down in the prepared aqueous solution.
During the growth process, the aqueous solution was
heated at 93°C for 6 h in a regular laboratory oven.
After the growth process, the samples were thoroughly
rinsed with DIW to eliminate the residual salts from
the surface of the samples and then dried with a
blower. Finally, the ZnO NRs on the Si substrate were
heat-treated at 500°C for 2 h. The growth process of
the ZnO NRs is presented in Figure 2.
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Material characterization
The surface morphology of the ZnO NRs was analyzed
using scanning electron microscopy (SEM, Hitachi
SU-70, Hitachi, Ltd, Minato-ku, Japan). X-ray diffraction
(XRD, Bruker D8, Bruker AXS, Inc., Madison, WI, USA)
with a Cu Kα radiation (λ = 1.54 Ǻ) was used to study the
crystallization and structural properties of the NRs. The
absorbed chemical compounds that exited on the surface
of the ZnO NRs and SiO2/Si substrate were identified
using the Fourier transform infrared spectroscopy (FTIR,
PerkinElmer Spectrum 400 spectrometer, PerkinElmer,
Waltham, MA, USA). A UV-visible-near-infrared spec-
trophotometer from PerkinElmer was used to study the
optical properties of the ZnO NRs at RT. In addition,
the optical and luminescence properties of the ZnO
NRs were studied through photoluminescence (PL, Horiba
Fluorolog-3 for PL spectroscopy, HORIBA Jobin Yvon
Inc., USA).

Results and discussion
SEM characterization
The top-view SEM images of the ZnO NRs that were
synthesized with the use of different solvents are shown
in Figure 3. All of the synthesized ZnO NRs showed a
hexagonal-faceted morphology. The diameter of the
obtained ZnO NRs was approximately 20 to 50 nm.
The NRs covered the entire surface of the substrate,
and most of these NRs grew into an unchain-like and
Figure 3 SEM images of ZnO NRs prepared with different solvents: (a
branched structure. On the basis of the SEM images,
the utilization of different solvents evidently resulted
in different diameters of the synthesized ZnO NRs.
The ZnO NRs that were synthesized using 2-ME pro-
vided the smallest diameter, whereas those synthesized
with EtOH displayed the largest diameters. The size of
the ZnO NRs in diameter is strongly dependent on the
grain size of the ZnO seed layer [29]. As the grain size
of the seed layer increases, larger sizes of ZnO NRs in
diameter are produced.
XRD characterization
The crystal structure and microstructure of the as-
synthesized ZnO NRs were studied through XRD.
Figure 4 shows the XRD patterns of the ZnO NRs that
were synthesized on the silicon substrate with the aqueous
solutions and different seeded layers. All of the diffraction
peaks are consistent with the standard card Joint Commit-
tee on Powder Diffraction Standards (JCPDS) 36–1451.
The peak intensities were measured in the range of 30° to
70° at 2θ. The result showed that the ZnO NRs that were
prepared through the hydrothermal growth method pre-
sented a remarkably strong diffraction peak at the (002)
plane, which is located between 34.5° and 34.6° [30,31].
This finding indicated that all of the ZnO samples pos-
sessed pure hexagonal wurtzite structures with high c-axis
orientations.
) MeOH, (b) EtOH, (c) IPA, and (d) 2-ME.



Figure 4 X-ray diffraction patterns of ZnO NRs with hydrothermal growth process: (a) MeOH, (b) EtOH, (c) IPA, and (d) 2-ME.
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Among the peaks, the ZnO NRs that were prepared
with EtOH resulted in the narrowest peak of full width
at half maximum (FWHM). By contrast, the ZnO NRs
that were prepared with 2-ME showed the largest peak
of FWHM. Simultaneously, the 2-ME solvent also
showed the highest peak intensities on the (002) plane.
Compared with the standard diffraction peaks of ZnO,
the clear and sharp peaks indicated that the ZnO NRs
possessed an excellent crystal quality, with no other
diffraction peaks and characteristic peaks of impurities
in the ZnO NRs. Therefore, all of the diffraction peaks
were similar to those of the bulk ZnO. Table 1 shows
the ZnO XRD data from the JCPDS card compared with
the measured ZnO XRD results.
Table 1 XRD parameters of ZnO NRs

hkl

2θ (°)

JCPDSObserved

MeOH EtOH IPA 2-ME

100 32.02 31.98 31.98 32.10 31.76

002 34.52 34.62 34.64 34.68 34.42

101 36.46 36.52 36.5 36.58 36.25

102 47.76 47.8 47.74 47.8 47.53

110 56.94 56.78 56.96 56.86 56.60

103 63.08 63.06 63.08 63.06 62.86
The average grain size of the ZnO NRs was estimated
using Scherrer’s formula [32]:

D ¼ κλ

FWHM cosθ
ð1Þ

where κ is the Scherrer constant, which is dependent
on the crystallite shape and can be considered as 0.9
[33,34]; λ is the X-ray wavelength of the incident Cu Kα

radiation, which is 0.154056 nm [35]; FWHM is the full
width at half maximum of the respective peak; and θ
represents the diffraction peak angle. Given that all of the
ZnO NRs that were grown through the hydrothermal
method exhibited the largest diffraction peaks at the (002)
plane, the grain size of the ZnO was calculated along this
plane. The calculated crystallite size is presented in Table 2.
The result showed that the ZnO NRs that were synthe-
sized on the 2-ME seeded layer produced the smallest
crystallite size of 39.18 nm. This result is consistent with
the SEM images. However, the largest crystallite size of
58.75 nm was observed when the ZnO NRs were synthe-
sized on the seeded EtOH layer. This finding may be due
to the higher viscosity of the EtOH solvent than those of
the other solvents.
The lattice constants a and c of the ZnO wurtzite

structure can be calculated using Bragg's law [36]:

a ¼
ffiffiffi
1
3

r
λ

sinθ
ð2Þ



Table 2 Measured structural properties of ZnO NRs using XRD for different solvents

Solvent XRD (100) peak position XRD (002) peak position a (Ǻ) (100) c (Ǻ) (002) Grain size (nm)

MeOH 32.02 34.52 3.225 5.192 54.84

EtOH 31.98 34.62 3.229 5.178 58.75

IPA 31.98 34.64 3.229 5.175 45.70

2-ME 32.10 34.68 3.217 5.169 39.18
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c ¼ λ

sinθ
ð3Þ

where λ is the X-ray wavelength of the incident Cu
Kα radiation (0.154056 nm). For the bulk ZnO from
the JCPDS data with card number 36–1451, the pure
lattice constants a and c are 3.2498 and 5.2066 Å, re-
spectively. Based on the results shown in Table 2, all of
the ZnO NRs had lower lattice constant values com-
pared with the bulk ZnO. The ZnO NRs prepared with
MeOH (a = 3.23877 Ǻ and c = 5.20987 Ǻ) were closest
to the bulk ZnO. This phenomenon can be attributed
to the high-temperature annealing condition. Similar
results were observed by Lupan et al. [37], in which the
increase in temperature decreases the lattice constant
of ZnO.

FTIR characterization
Figure 5 illustrates the FTIR spectra of the as-deposited
four representative ZnO NRs prepared using four differ-
ent solvents. Given that the wavelength of the finger-
print of the material ranged from 400 to 2,000 cm−1

[38], the absorption region was fixed in this region.
Overall, the spectrum showed two significant peaks and
all of the ZnO NRs that were prepared using different
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Figure 5 FTIR absorption spectrum of ZnO NRs using various solvent
solvents exhibited the same peaks. The ZnO NR morph-
ologies that are grown via wet chemical synthesis prefer
the c-axis growth [39]. Thus, the ZnO NRs usually had
a reference spectrum at around 406 cm−1 [40]. However,
this absorption spectra is found at 410, 412, 409, and
410 cm−1 for the ZnO NRs prepared with the use of
MeOH, EtOH, IPA, and 2-ME solvents, respectively, be-
cause these solvents caused a blueshift in the spectra of
as-prepared ZnO NRs. The band from 540 to 560 cm−1

is also a stretching mode that is correlated with the
ZnO [41,42].

UV–vis characterization
The transmittance spectra and optical properties of the
ZnO NRs in the wavelength range of 300 to 800 nm
were investigated through UV-visible spectroscopy at
RT. The UV-visible transmittance spectra of the ZnO
NRs are shown in Figure 6. The inset of Figure 6 shows
the magnified view of transmittance spectrum in the
wavelength range of 350 to 450 nm. The results showed
that all of the ZnO NRs that were prepared using differ-
ent solvents exhibited strong excitonic absorption peaks
at 378 nm. These peaks indicated that the grown ZnO
NRs possessed good optical quality and large exciton
binding energy.
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Figure 6 Optical transmittance spectra of hydrothermal derived ZnO NRs.
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The absorption coefficient (α) for the direct transition
of the ZnO NRs was studied using Equation 4 [43]:

α ¼ ln 1=Tð Þ
d

ð4Þ

where T is the transmittance of the ZnO films, and d
is the film thickness. The optical bandgap (αhv) de-
pendence on the absorption coefficient (α) over the
energy range of 3 to 3.5 eV at RT was calculated using
the following relation [44]:

αhv ¼ B hv − Eg
� �n ð5Þ

where hv is the photon energy, B is the constant, Eg is
the bandgap energy, and n is the allowed direct band
with the value of ½. The direct bandgap energies for the
different solvents used were determined by plotting the
corresponding Tauc graphs, that is, (αhv)2 versus hv
curves. This method was used to measure the energy
difference between the valence and conduction bands.
The direct bandgap of the ZnO films was the intercep-
tion between the tangent to the linear portion of the
curve and the hv-axis (Figure 7). The optical bandgaps
determined from the curves are summarized in Table 3.
The results indicated that the ZnO NRs that were
grown with 2-ME for the seed layer preparation showed
the highest bandgap (3.21 eV), whereas those grown
with the IPA exhibited the lowest bandgap (3.18 eV),
which is believed to possess a better conductivity. Ac-
cording to the corresponding bandgap energy (Eg) and
absorption band edge (λ) of the bulk ZnO, that is,
367 nm and 3.36 eV, respectively [45], the as-grown
ZnO NRs possessed a significantly lower bandgap or ex-
hibited a redshift of Eg from 0.15 to 0.18 eV. This shift
can be attributed to the optical confinement effect of
the formation of ZnO NRs [46] and the size of the ZnO
NRs [47].
Many attempts have been made to relate the refractive

index (n) and Eg through simple relationships [48-51].
However, these relationships of n are independent of the
temperature and incident photon energy. Herein, the
various relationships between n and Eg were reviewed.
Ravindra et al. [51] presented a linear form of n as a
function of Eg:

n ¼ α þ βEg ð6Þ

where α = 4.048 eV−1 and β = −0.62 eV−1. Moreover,
light refraction and dispersion were inspired. Herve



Figure 7 Plot of (αhv) 2 versus the photon energy for different solvent derived ZnO thin films.
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and Vandamme [52] proposed an empirical relation as
follows:

n ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ A

Eg þ B

� �2
s

ð7Þ

where A = 13.6 eV and B = 3.4 eV. For group IV semicon-
ductors, Ghosh et al. [53] published an empirical relation-
ship based on the band structure and quantum dielectric
considerations of Penn [54] and Van Vechten [55]:

n2 − 1 ¼ A

Eg þ B
� �2 ð8Þ

where A = 25 Eg + 212, B = 0.21 Eg +4.25, and (Eg + B)
refer to an appropriate average Eg of the material. The
Table 3 Direct bandgap, calculated refractive indices of ZnO N

Solvent Bandgap (eV) Refra

MeOH 3.20 3.28a 3.25b 2.064i

EtOH 3.19 3.31c 3.10d 2.070i

IPA 3.18 3.29e 3.27f 2.076i

2-ME 3.21 3.28g 3.39h 2.058i

aYi et al. [64].
bCao et al. [58].
cKarami et al. [59].
dGowthaman et al. [60].
eShakti et al. [61].
fMejía-García et al. [62].
gKashif et al. [23].
hAbdullah et al. [63].
iRavindra et al. [51].
jHerve and Vandamme [52].
kGhosh et al. [53].
calculated refractive indices of the end-point com-
pounds and Eg are listed in Table 3. In addition, the re-
lation Ɛ∞ = n2 [56] was used to calculate the optical
dielectric constant Ɛ∞. Our calculated refractive index
values are consistent with the experimental values
[23,57-63], as shown in Table 3. Therefore, Herve and
Vandamme model is an appropriate model for solar
cell applications.

PL characterization
The effects of solvents on the luminescence properties
of ZnO NRs were studied via PL spectroscopy, with
excitation of a xenon lamp at 325 nm. Figure 8 shows
the typical spectra for the photoluminescence of ZnO
NRs that were grown on different seeded substrates.
All the samples demonstrated two dominant peaks,
Rs corresponding to optical dielectric constant

ctive index (n) Optical constant (Ɛ∞)

2.290j 2.329k 4.260i 5.246j 5.426k

2.293j 2.331k 4.286i 5.259j 5.436k

2.296j 2.334k 4.311i 5.272j 5.445k

2.288j 2.327k 4.235i 5.233j 5.417k



Figure 8 PL spectrum of ZnO NRs grown on different seeded substrate.
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which had UV emissions of 300 to 400 nm and visible
emissions at 400 to 800 nm. The first emission band that
was located in that UV range was caused by the recombin-
ation of free excitons through an exciton-exciton collision
process [24,64,65]. In addition, the second emission band,
which was a broad intense of green emission, originated
from the deep-level emission. This band revealed the
radiative recombination of the photogenerated hole
with the electrons that belonged to the singly ionized
oxygen vacancies [66-68].
UV luminescence can be used to evaluate the crystal

quality of a material, whereas visible luminescence can
be used to determine structural defects [69]. A study by
Abdulgafour [70]. indicates that a higher ratio of UV/
visible is an indicative index of a better crystal quality.
In the current study, the UV/visible ratios for the ZnO
NRs prepared with the use of IPA, MeOH, 2-ME, and
EtOH were 13.34, 12.15, 8.32, and 5.14, respectively.
Therefore, the UV/visible ratio trend confirms the im-
provements in crystal quality of the ZnO NRs that were
prepared using different solvents.

Conclusions
In this study, ZnO NRs with a highly crystalline struc-
ture were synthesized via a low-cost and convenient
hydrothermal technique. The SEM images of the samples
demonstrated that the diameters of the hydrothermally
synthesized ZnO NRs range from 20 to 50 nm. The XRD
patterns exhibited that all of the ZnO NRs had remarkably
excellent crystal qualities and high c-axis orientations.
The calculated bandgap values of the synthesized ZnO
NRs were lower than that of the bulk ZnO. The crystal
qualities, grain size, diameter, and optical bandgap of
the ZnO NRs were affected by the type of solvent used
in the ZnO seed layer preparation. The ZnO NRs that
were synthesized with the use of 2-ME, a solvent, exhib-
ited the most improved results, in terms of structural
and optical properties; these ZnO NRs showed the
smallest grain size, smallest crystallite size, and highest
bandgap values. The method developed in this study
provides a simple and low-cost approach to fabricate
ZnO NRs with the desired properties.
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