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Abstract

Ag/PMMA nanocomposites were successfully synthesized by in-situ technique. Transmission electron microscopy
(TEM) images show that the particles are spherical in shape and their sizes are dependent on temperature. The
smallest particle achieved high stability as indicated from Zeta sizer analysis. The red shift of surface plasmon resonance
(SPR) indicated the increases of particle sizes. X-ray diffraction (XRD) patterns exhibit a two-phase (crystalline and
amorphous) structure of Ag/PMMA nanocomposites. The complexation of Ag/PMMA nanocomposites was confirmed
using Raman spectroscopy. Fourier transform infrared spectroscopy spectra confirmed that the bonding was
dominantly influenced by the PMMA and DMF solution. Finally, thermogravimetric analysis (TGA) results indicate that
the total weight loss increases as the temperature increases.
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Background
Metal nanocomposites have attracted much attention due
to their distinctive chemical and physical properties [1,2].
The properties of metal nanocomposites depend on the
type of incorporated nanoparticles, their size and shape,
their concentration, temperature, and interaction with
polymer matrix. Silver (Ag) has been widely studied since
it is more reactive than gold. However, appropriately stabi-
lized Ag undergoes fast oxidation and easily aggregate in a
solution. Among polymeric materials, poly(methyl meth-
acrylate) (PMMA) was recognized as a polymeric glass
with a wide range of applications. PMMA offers twofold
advantages such as availability to carboxylate functional
group for a chemical bonding with the metal ions and high
solubility of PMMA in solvent-like dimethylformamide
(DMEF) for silver nitrate reduction. Therefore, Ag/PMMA
nanocomposites are expected to be a hot spot area for its
superior properties.

Earlier work on the synthesis of Ag/PMMA nanocom-
posites utilized sodium salt of acrylic acid via radiolysis
method [3,4]. Deng et al. [5] has prepared Ag/PMMA
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nanocomposites by using PMMA and DMF via in-situ
technique. They observed that the behavior of linear
and nonlinear optical properties were different com-
pared to the pure PMMA film. The main problem in
polymer nanocomposites is to avoid the particles from
aggregation. However, this problem can be solved by
surface modification of the particles. This will improve
the interfacial interaction between the metal particles
and the polymer matrix.

In this paper, we used a simple procedure for the prep-
aration of Ag/PMMA nanocomposites. In the first step,
Ag nanoparticles were synthesized in water using the
chemical reduction method [6-8]. This technique offers
a systematic, efficient, and simple procedure for synthesis
of Ag nanoparticles without decreasing the production
rate. In the second step, Ag nanoparticles were mechan-
ically mixed with PMMA dissolved in DMF to form
nanocomposites at different temperatures. The temperature-
dependent properties of nanocomposites were investigated
by various techniques and their preparations of nanocom-
posites were discussed.

Methods
Silver nitrate, AgNO3 (Thermo Fisher Scientific, Waltham,
MA, USA) was selected as source of silver. Polyethylene
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glycol (PEG, MW 8000 in monomer units; Acros organics,
Morris Plains, NJ, USA) was used as reducing agent. Daxad
19 (sodium salt of polynaphthalene sulfonate formaldehyde
condensate, MW 8000; Canamara United Supply Com-
pany, Edmonton, AB, Canada) was used as stabilizer. N’
N-dimethylformamide (DMF) (R & M Marketing, Essex,
UK) used as solvent while PMMA (Acros Organics) as
matrix. Four grams of AgNO; was dissolved and stirred
for 1 h in a mixture comprising of 100 mL distilled water,
4.5 g of PEG, and 5 g of Daxad 19 at 80°C. It was observed
that the light brown solution transformed into a grey-
black color, which indicates the formation of silver
nanoparticles. The solution was then centrifuged at a max-
imum speed of 15,000 rpm, and washed with distilled water
for several times [9]. Then, 10 g of PMMA was dissolved in
50 mL of DMF and mixed with 5 mL of silver nanoparticle
solution at 80°C. The mixture was stirred for 1 h. This
procedure was then repeated at 100°C and 120°C [10].
The physical shape and size of Ag/PMMA nanocompos-
ites were observed by transmission electron microscopy
(TEM; Leo Libra). The absorption spectrum was recorded
by UV-VIS spectrophotometry (Cary Win UV 50, Agilent
Technologies, Melbourne, Australia). The surface struc-
ture was characterized using Raman spectroscopy (Raman
XploRA, Horiba, Kyoto, Japan) and Philips X'Pert
MPD PW3040 X-ray diffraction (XRD; Amsterdam,
The Netherlands) with CuKa radiation at 1.5406 A. The
zeta potential of Ag/PMMA nanocomposites was measured
by Zetasizer (Zetasizer 3000HS, Malvern, Inc., Malvern,
UK) while for thermogravimetry, TGA/SDTA 851 Mettler
Toledo was used to measure the thermal properties. The
Fourier transform infrared spectroscopy (FTIR) spectra
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were recorded on a spectroscopy (PerkinElmer, Spectrum
400, Waltham, MA, USA) within the range of 400 to
4,000 cm™".

Results and discussion

Figure 1 shows the proposed mechanism of Ag/PMMA
nanocomposites. In Step 1, AgNO3 was dissolved in
water to become Ag® and NOj. The color of the reac-
tion solution changed slowly from colorless to light
brown due to reduction of Ag® to silver nanoparticles.
In Step 2, PMMA was dissolved in DMF. As a result, the
O-CH; bond of MMA was dissociated, rendering very
stable oxygen radical [11]. In step 3, silver nanoparticles
were then dispersed in the MMA solution and coordin-
ate to the oxygen atoms. This is a reasonable suggestion
for the acrylate in PMMA because it is well suited for
chemical bonding with the metal ions [12,13]. PMMA
matrix prevents the aggregation of Ag nanoparticles and
protects them through its carboxylate functional groups
(Step 3).

Figure 2 shows the TEM images of Ag/PMMA nano-
composites at different temperature. The particles are
mostly in spherical shape. The smallest average particles
size is 24 nm at 80°C. As the temperature increases, particle
sizes increases up to 53 nm at 120°C. Ag/PMMA nanocom-
posites have narrow particle size distribution (inset) and
highly dispersed at higher temperatures.

Table 1 shows the zeta potential and hydrodynamic di-
ameters of the samples. It shows that the particles with
smallest diameter have a more negative potential and
much stable. The mutual repulsion among the particles
sufficiently kept them separate and stabilizes the colloid at
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Figure 1 Mechanism of Ag/PMMA nanocomposites.
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Figure 2 TEM images of Ag/PMMA nanocomposites synthesized at (a) 80°C, (b) 100°C, and (c) 120°C.

high negative potential. On the other hand, the low nega-
tive values of potential clearly indicate the instability of
the aggregates.

Figure 3 shows the absorption spectra of all samples.
The SPR bands are detected around 419 to 444 nm
which indicated that the Ag/PMMA nanocomposites are
in spherical shape. However, the red shift of SPR peaks
as the temperature increases indicated the increase in
particle size. These results are in good agreement with
the TEM results (Figure 3).

Figure 4 shows the XRD patterns for all samples at dif-
ferent reactant temperature. Figure 4a shows the XRD
pattern of Ag nanoparticles. All the prominent peaks ap-
peared at angle of 20 = 38°, 44.44°, 64.54°, and 77.38° are
corresponding to the (111), (200), (220), and (311) miller
indices of face center cubic (fcc) of Ag. Figure 4b shows
the XRD pattern for pure PMMA containing a broad
peak at 19.62°. Meanwhile, Figure 4c,d,e shows the XRD
pattern of Ag/PMMA nanocomposites at different react-
ant temperatures 80°C, 100°C, and 120°C which exhibits
a two-phase (crystalline and amorphous) structure. The
peak for (111) plane increases as the temperature in-
creases up to 120°C. The Ag nanoparticles’ preferred
alignment in PMMA is at the (111) plane. This can be
explained from a viewpoint of thermodynamics since the

preferred orientations of solid particles are known to be
the perpendicular directions to the planes of lowest sur-
face energy, which corresponds to the most densely
packed planes for metallic materials [14,15].

Figure 5 shows the Raman spectra of all samples. The
band at approximately 240 cm™ is due to the stretching
vibration of Ag-N bond. Meanwhile, peaks at approxi-
mately 1,409 and 1,665 cm™" can be attributed to sym-
metric and asymmetric C=0O stretching vibrations,
respectively [16]. Selective enhancement of these bands
clearly indicates that C=0O bonds of the carboxylate
ions and Ag-N bond of the free amine groups are lying
perpendicular to the surface of Ag nanoparticles. Not-
ably, PMMA is a Raman-active compound with major
bands at 600 cm™! for (C-C-O) and (C-COO) stretch,
811 cm ™ for (C-O-C) stretch, 1,450 cm™* for (C-H) in
plane bending, and 1,728 cm! for (C=0) stretch [17].
The most prominent band appeared at 2,957 cm™' is
due to the C-H stretching vibration. The decreases of
peak intensity at lower temperatures are due to the re-
duction of lattice vibration. The shape and size of the
particles are strongly affected by the vibration; particles
with the biggest size will allow the excitation of multi-
poles. As only the dipole transition leads to Raman scat-
tering, the higher-order transitions will cause a decrease

Table 1 The zeta potential, thermal, and mass properties of Ag/PMMA nanocomposites synthesized at different

temperatures

Samples Hydrodynamic Potential Initial weight  First decomposition  Total weight Decomposition Stability
diameter (nm) (mV) loss (%) weight loss (%) loss (%) temperature (°C) temperature (°C)

Pure PMMA - - - - 97.6 298 430

80°C 72 -61.0 37 759 796 253 409

100°C 96 —540 1.7 86.2 879 217 396

120°C 139 —35.1 204 714 91.8 207 370
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Figure 3 Absorption spectra for Ag/PMMA nanocomposites synthesized at (a) 80°C, (b) 100°C, and (c) 120°C.
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Figure 6 FTIR spectra for Ag/PMMA nanocomposites at (a) 80°C, (b) 100°C, and (c) 120°C.
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Ag nanoparticles [19]. The main bands of DMF in Ag/
PMMA nanocomposites spectra are clearly seen. The
similarities between DMF and Ag/PMMA nanocomposite
spectra verify the vital element of DMF in Ag/PMMA
nanocomposites. It is found that the C = O (approximately
1,651 cm™') and O = C-N-C (approximately 659 cm™ vi-
bration modes of DMF in Ag/PMMA nanocomposites
was similar to those in DMF solvent. The bands corres-
pond to C-O-C of the methoxy group, and skeletal C-C in
Ag/PMMA nanocomposites appeared at 1,151 and
1,257 cm™, respectively. These bands strongly affect their
shape and size. A broad band of the carboxylic acid group
due to the O-H (approximately 3,499 cm™") in Ag/PMMA
nanocomposites becomes broader as the temperature in-
creases. The increase in water content may be originated
from the environment or product of the chemical reac-
tions. Both bands at approximately 1,065 and 1,088 cm™
in Ag/PMMA nanocomposites are assigned to the sensi-
tive metal complexes of methyl rocking vibrations coupled
with a C-N vibration mode. The Ag/PMMA nanocompos-
ite band at approximately 1,387 cm™ is coupled in vibra-
tion, with the major contributions from CHj; deformation
and C-N stretching mode. The interaction of the PMMA
segments with Ag nanoparticles is demonstrated to be
dependent on the regimes of the adsorption of polymer
chain onto the surface.

Figure 7 shows the TGA curves of all samples. The
first-stage decomposition started at about 253°C, 228°C,
and 217°C for 80°C, 100°C, and 120°C, respectively.
Table 1 summarizes the results. It is found that the max-
imum weight loss occurred for sample synthesized at 120°
C with lower decomposition and stability temperature.

This thermal stability can be ascribed to the fact that the
presence of small amount of Ag in the polymer matrix
confined the motion of polymer chains and served as a
nucleation site for enhanced crystallization of nanocom-
posites [20,21]. It is evident that the Ag nanoparticles
could efficiently improve the thermal stability of the com-
posite in high temperature regions. The total weight loss
percentage increases as the temperature increases. The in-
corporation of Ag nanoparticles shifted the decomposition
toward higher temperatures. The observed behavior is
most likely a consequence of the inhibiting effects of silver
nanoparticles on some degradation stages of the thermo-
oxidative degradation of PMMA.

Conclusions
Ag/PMMA nanocomposites were successfully synthe-
sized via in-situ technique. The size and distribution of
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Figure 7 TGA curves of PMMA and Ag/PMMA nanocomposites
synthesized at 80°C, 100°C, and 120°C.
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Ag/PMMA nanocomposites were strongly dependent
on the reactant temperatures. From the zeta potential
analysis, the smallest particle has more negative poten-
tial and become much more stable. The red shifted and
broader SPR bands were observed as the temperatures
increases due to larger particle sizes. The peak for (111)
plane in XRD results increases as the temperature in-
creases up to 120°C with Ag nanoparticles preferred
alignment in PMMA is at the (111) plane. From the Ra-
man spectroscopy, we can conclude that the peak intensity
decreases at the lower temperature due to the reduction of
lattice vibration while from the FTIR spectra, the bonding
was dominantly influenced by the PMMA and DMF solu-
tion due to the electrostatic attraction between acrylate
ions of PMMA and Ag nanoparticles. TGA results showed
that the total weight loss percentage increases as the
temperature increases.
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