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Abstract

In this work, a commercial peroxidase was immobilized onto porous silicon (PS) support functionalized with
3-aminopropyldiethoxysilane (APDES) and the performance of the obtained catalytic microreactor was studied. The
immobilization steps were monitored and the activity of the immobilized enzyme in the PS pores was spectrophotometrically
determined. The enzyme immobilization in porous silicon has demonstrated its potential as highly efficient
enzymatic reactor. The effect of a polar organic solvent (acetonitrile) and the temperature (up to 50°C) on the
activity and stability of the biocatalytic microreactor were studied. After 2-h incubation in organic solvent, the microreactor
retained 80% of its initial activity in contrast to the system with free soluble peroxidase that lost 95% of its activity in the
same period of time. Peroxidase immobilized into the spaces of the porous silicon support would be perspective
for applications in treatments for environmental security such as removal of leached dye in textile industry or in treatment
of different industrial effluents. The system can be also applied in the field of biomedicine.
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Background
Among microelectronic materials, silicon (Si) has the most
mature and low-cost technology; hence, several research
groups are approaching Si-compatible technology as an
innovative platform for biosensors. Porous silicon has
been intensively investigated for a variety of applications
such as chemical and biological sensors, medical diagnos-
tics, optical band pass filters, microchemical reactors, and
microfuel cells [1]. Moreover, Si-based matrixes have been
proved to be a very useful support for the immobilization
of enzymes thanks to their capability of retaining biological
activity [2]. Silicon (Si) received a lot of attention due to its
specific semiconductor properties and furthermore because
it allows the development of a broad range of micropattern-
ing processes in order to achieve functional features for
future integration in complex systems.
Furthermore, the Si-H and Si-OH groups on porous

silicon surface can be easily modified by many reactive
reagents and derivatives with receptors, thus enabling
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the identification of ligands [3]. Microreactors are minia-
turized reaction systems fabricated by microtechnology
and precision engineering. The microreactors work with
micro and nanoliter volumes of reaction media and ensure
high efficiency and reproducibility of biocatalytic processes.
Enzymatic microreactors have been already proposed as in-
tegrated components termed lab-on-a-chip for analytical
applications in micrototal analysis systems (MTAS) [4].
There, the immobilization strategies to graft different
chemical substances on the surface of a microreactor, a
support, are used for a design of necessary conditions
within the microreactor spaces. Surface modification by
silanization is a very common method for particle functio-
nalization. High density of free amino groups (-NH2) lying
outwards the particle surface provides an excellent media
for further chemical surface modification such as enzyme
cross-linking with glutaraldehyde [5]. The immobilization
of enzymes in microreactors is mostly carried out in a
covalent way. The main advantage of covalent immo-
bilization is the retention of the enzyme during the whole
biocatalytic process [6]. Actually, immobilization is a well-
established approach in a wide range of industrial applica-
tions. Both synthetic and natural inorganic materials such
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as clay, glass beads, silice-based materials, and celite have
been used to immobilize enzymes, the natural catalysts
for many biological processes. Among them, mesopo-
rous silicates are the most interesting due to their at-
tractive properties, availability, and simple preparation
[7]. Peroxidase immobilization on inorganic mesopo-
rous silicates has proven to be an interesting alternative
to improve enzyme functionality [8]. The large regular
repeating structures of photonic porous silicon struc-
ture offer the possibility of adsorbing or entrapping
large biomolecules within their pores, providing a suit-
able microenvironment to stabilize the enzyme.
Peroxidases (EC 1.11.1.7, etc.) belong to a large family

of enzymes that participate in a large number of natural
processes developed in living organisms. They are ubi-
quitous in fungi, plants, and vertebrates [9]. Their principal
active sites contain a heme prosthetic group or, alternately,
residues of redox-active cysteine or seleno-cysteine groups
that are able to oxidize a large number of organic com-
pounds initiated by one electron oxidation step [10]. For all
peroxidases, the natural substrate is hydrogen peroxide, but
the oxidative process can be performed with many other
organic hydro-peroxides such as lipid peroxides. In the oxi-
dation of phenols or aromatic amines, peroxidases produce
free radicals that may dimerise or polymerize and thus, in
general, form products that are much less soluble in water.
This property might be used in removing carcinogenic
aromatic amines and phenols from industrial aqueous
effluents. Enzymes are also involved in degradation of
aromatic compounds and other xenobiotics, including
pesticides, polycyclic aromatic hydrocarbons, and dioxins
[11], and thus can be used for removal of aromatic pollut-
ants [12,13] as antioxidant [14], as indicators for food
processing [15], in bioelectrodes [16] and in the synthesis
of conducting materials [17]. Peroxidases could also be
used in the synthesis of fine chemicals and optically and
biologically active oxide. Despite the obviously practical
value of peroxidases, at present, their commercial uses are
limited, primarily due to its low stability in the presence of
hydrogen peroxide, their natural substrate. All heme-
proteins, including peroxidases, are inactivated in the
presence of some concentrations of hydrogen peroxide.
This process, described as a suicide inactivation, is espe-
cially important in the absence of reducing substrates, but
its mechanism has not been yet fully elucidated [18].
Although the interest to peroxidase started several de-
cades ago, their application as biocatalysts in industrial
processes is still negligible due to its inherent instability
under operational conditions, mainly caused by the in-
activation in the presence of hydrogen peroxide. The
development of techniques for enzyme stabilizing can
improve a number of biocatalytic industrial processes.
In this work, peroxidase enzyme has been immobilized
onto porous silicon (PS) supports for the possible
prevention from its self-inactivation and its stability under
different operational conditions has been analyzed.

Methods
A commercial peroxidase, Baylase® RP, was kindly donated
by Bayer Mexico (Mexico, Federal District, Mexico). Crystal-
line silicon was a product from Cemat Silicon (Warsaw,
Poland). Glutaraldehyde, 3-aminopropyldiethoxysilane, guai-
acol, and bovine serum albumin were from Sigma-Aldrich
(St. Louis, MO, USA). Bradford reagent was from Bio-Rad
(Hercules, CA, USA). All other chemical reagents used in
our experiment were of analytical grade without further
purification.

Microreactor fabrication
Fabrication of porous silicon(PS) <100 > oriented, heavily
doped p-type Si wafers with resistivity 0.002 to 0.005
ohm-cm were electrochemically etched with an electro-
lyte composed of HF/ethanol/glycerol (3:7:1 (v/v)) at a
constant current density of 50 mA cm−2 for 170 s to ob-
tain a porous layer of 3,000 ± 60 nm.

Functionalization of porous support
The porous silicon samples were subjected to thermal
oxidation in air at 600°C for 60 min. Silanization process
with 3-aminopropyldiethoxysilane (APDES) was per-
formed by immersing the sample in a 5% APDES in
toluene for a period of 1 h and annealed at 110°C for
15 min. Glutaraldehyde (GTA, 2.5%) in phosphate buffer
pH 6.0 was subsequently coupled to the support for 1 h
and finally incubated with peroxidase for 24 h at 4°C.
After each step of functionalization, the percent reflect-
ance was measured and the chemical modification of the
surface was verified by FTIR.

RIFTS, SEM, FTIR, and gravimetric measurement of
enzymatic microreactor
Reflective interferometric Fourier transform method
provides a fast and convenient method of extracting
the basic optical parameters modified during the bio-
functionalization steps onto of the PS surface. This
method presents high sensitivity to small changes in
the average refractive index of the porous thin film,
allowing for direct and real-time monitoring of the
binding of different species to the pore walls [19-22].
Reflective interferometric Fourier transform spectroscopy
RIFTS analysis was performed on the specular reflectivity
spectra of the PS measured with UV-VIS-NIR spectropho-
tometer (PerkinElmer Lambda 950, Waltham, MA, USA).
As gravimetric measurement is the most direct method of
determining the porosity of porous silicon [23-25], the
measured porosity of the sample is found to be approxi-
mately 80%.
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The surface and cross section image of mesoporous
silicon was obtained by scanning electron microscope
(SEM). Fourier transform infrared (FTIR) spectroscopy
was used to identify and characterize the functional
groups on the porous silicon surface. The FTIR spectra
were collected at a resolution of 2 cm−1 on a Cary 640/660
FTIR Spectrometer - with an ATR accessory (Agilent
Technologies, Mexico, Federal District, Mexico).

Enzyme assays
Steady-state measurements for peroxidase activity were car-
ried out spectrophotometrically using guaiacol as electron
donor substrate. Peroxidase activity was measured in 1 mL
reaction solution containing 60 mM sodium phosphate
buffer pH 6.0 at 25 to 28°C using 3 mM guaiacol, 1 mM
hydrogen peroxide as the substrates and by monitoring the
absorbance changes at λ = 470 nm using molar extinction
coefficient value of 26.6 mM−1 cm−1 for the product tetra-
guaiacol formed by the enzymatic reaction [26]. One unit
of peroxidase activity was defined as the amount of enzyme
that caused the formation of micromoles of tetraguaiacol
per min. The protein content was determined by Bradford
method with the BioRad protein reagent.

Specific and non-specific immobilization
In an effort to compare the specific and non-specific
immobilization of the enzyme load onto the microreac-
tors, three different microreactors has been designed,
(1) oxidized support immobilized with enzyme, (2) oxidized
and ADPES treated then enzyme immobilization, and (3)
Figure 1 Schematic diagram illustrating the general process from poro
of oxidized porous support with ADPES. (b) Attachment of aldehyde group
support through the formation of peptide bond between the aldehyde gro
oxidized, ADPES, and glutaraldehyde-activated surface
incubated with the enzyme. The peroxidase activity of
the anchored enzymes onto the pores of microreactors
was detected by absorption spectroscopy using guaiacol
as substrate at 470 nm.

Stability assays
Three different stabilities were tested for soluble and
immobilized peroxidase preparations: Thermostability by
incubating at 50°C, stability to organic solvent by incu-
bating in 50% acetronitrile, and against inactivation in
the presence of hydrogen peroxide (1 mM). In all cases,
aliquots of each sample were withdrawn at different
times and assayed for enzymatic activity under the
standard condition. The data were adjusted to first-order
rate model in order to calculate inactivation rate constants
under each condition.

Results and discussion
Preparation of porous silicon substrates
As shown in Figure 1, the oxidized samples were epoxy-
silanized with ADPES to obtain an amine-terminated
group. 3-Aminopropyl (diethoxy) methyl silane have been
used for surface modification [27], as their bi-functional
nature is expected to offer the possibility to covalently
attach a bio-molecule, either directly or through a linker.
Supports activated with glutaraldehyde or the treatment
of the adsorbed enzymes with glutaraldehyde produces a
covalent attachment of the enzyme onto the support with
glutaraldehyde as a spacer arm, conferring stability to
us silicon functionalization to enzyme coupling. (a) Functionalization
using glutaraldehyde. (c) Covalent attachment of peroxidase to the
up and amino acids of the enzyme.
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covalently bound enzymes [28]. A detailed view of the sur-
face morphology and thickness has been obtained using
the scanning electron microscope (SEM). The porous
layer is 3,000 ± 60 nm thick shown in Figure 2a, with
interconnecting cylindrical pores ranging in diameter
from 30 to 50 nm can be seen in Figure 2b. The pore size
distribution is relatively uniform and the columnar walls
are thin.

Reflective interferometric Fourier transform spectroscopy
Fourier transform are widely involved in spectroscopy in
all research areas that require high accuracy, sensitivity,
and resolution [29-31]. It should be noted that the nano-
structure is designed to allow proper infiltration of the
peroxidase enzyme (approximate size of 40 KDa), charac-
terized by an average diameter of 60 to 80 Å, considering
a globular conformation The functionalization of each
compound was monitored through shift in reflectance
peak. It is expected that the chemical modification of the
Figure 2 SEM observation of porous silicon structure fabricated, (a) c
porous nanostructure (as outlined in Figure 3) will result
in an increase of the optical thickness (i.e., red shift of
second) due to the increase in the average refractive index
upon attachment of different species to the pore walls.

FTIR studies
Figure 4 shows a FTIR spectrum measured after oxidation
step and after immobilization. The reference spectrum of
oxidized porous silicon support shows two bands corre-
sponding to the characteristic asymmetric stretching mode
of Si-O at 1,050 to 1,100 cm−1 and the Si-OH bond at
825 cm−1 [32]. The spectra of immobilized support show a
sharp band of silanol at about 3,730 cm−1 and a band at
3,350 cm−1 correspond to the asymmetric stretching
modes of -NH2 groups. [33]. Functionalization with
ADPES resulted in a band related to Si-O-Si at 1,034 cm−1,
which confirms that the siloxane bonding between ADPES
and oxidized support has taken place [34]. The asymmetric
and symmetric deformation modes of the CH3 group
ross section, (b) sample surface.



Figure 3 Shift in optical thickness (2nd) of the porous silicon
structure after functionalization. The increase of the refractive
index after the incubation in APDES and GTA results in a red shift in
the reflectance peak, and hence, the corresponding change in optical
thickness is observed.

Figure 4 Attenuated total reflectance (ATR) spectrum of PS structure
steps. FTIR analysis reveals some characteristic peaks of different functio
porous support.

Table 1 Effect of immobilization chemistry on the
enzyme loading onto PS support

Microreactors Enzyme activity (U) Protein (mg)

Oxidized + enzyme 0.193/50 ml 1.8/50 ml

Oxidized + ADPES + enzyme 0.276/100 ml 2.4/100 ml

Oxidized + ADPES + GTA + enzyme 0.712/100 ml 3.9/100 ml
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from ethoxy moieties of APTES are observed around
1,440 cm−1 [35]. The peak at 1,691 cm−1 corresponds
to Amide I, the most intense absorption band in proteins.
It is primarily governed by the stretching vibrations of the
C =O (70 to 85%) and C-N groups (10 to 20%) [36]. The
setup of spectroscopic analysis presented above confirms
the effective immobilization of a biocatalyst onto the
surface of PS support.
Specific and non-specific immobilization
Table 1 shows the enzyme activity and protein load of
three different microreactors. The microreactor in which
enzyme was loaded after glutaraldehyde shows maximum
activity in comparison to the other two microreactors.
Type of activation, its presence, distribution, and density
of functional groups determines the activity yields of an
immobilization reaction and operational stability of the
carrier-fixed enzyme. Compared to non-specific adsorp-
tion, specific adsorption often orients the enzyme
molecule in a direction allowed by the nature of bind-
ing and the spatial complementary effect which may
contribute for the higher activity in glutaraldehyde-
activated microreactors.
with immobilized peroxidase taken after all the functionalization
nal group and peroxidase that has been infiltrated into the



Table 2 Effect of PS layer thickness (Si wafer) on the
enzymatic activity

Thickness of
the porous
layer

Enzyme activity Protein

(U cm−2) (mg cm−2)

Crystalline silicon No detectable activity 0.32

500 nm 0.576 2.15

4,000 nm 0.456 3.52
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Effect of PS layer thickness on the enzymatic activity
Peroxidase immobilization onto the microreactor with
different thickness of the layer indicates that large
amount of enzyme has been immobilized onto the
thicker layer but are not available for the substrate con-
version (data shown in Table 2). In most cases, a large
surface area and high porosity are desirable, so that
enzyme and substrate (guaiacol) can easily penetrate.
A pore size of >30 nm seems to make the internal sur-
face accessible for immobilization of most enzymes.
All reactions of immobilized enzymes must obey the
physicochemical laws of mass transfer and their inter-
play with enzyme catalysis [37].

Thermal stability of immobilized peroxidase enzyme
Thermo-stability is the ability of an enzyme to resist against
thermal unfolding in the absence of substrates. The relative
thermal stability of the free versus immobilized enzymes
was compared at 50°C (Figure 5). The results suggested that
the immobilized enzyme is inactivated more rapidly com-
pared to the soluble enzyme as indicated by the inactivation
constant rate. The decrease in the thermal stability of the
immobilized support is attributed to the thermal
Figure 5 First-order rate constant calculations from semi-logarithmic
during incubation (50°C).
conductance of silicon resulting in the major heat transfer
from Si support to the enzyme (thermal conductivity of sil-
ica 8 W m−1 k), as has been observed in other reports [38].

Stability of peroxidase in aqueous-organic solvent
mixture
As the stabilization of enzymes is one of the most complex
challenges in protein chemistry, the stability of soluble and
immobilized peroxidase has also been investigated in aque-
ous solution containing 50% acetonitrile. As shown in
Figure 6, the immobilized peroxidase showed a greater
tolerance to acetonitrile by retaining 80% of the cata-
lytic efficiency in comparison to the soluble enzyme
which lost 95% of its activity after 2 h. Organic solvents
can inactivate enzymes in several ways: the organic
solvent molecules can interact with the biocatalyst,
disrupting the secondary bonds in the native structure;
they can strip the essential water molecules from the
hydration shell altering the structure of the enzyme; or
they can interact with the active site of the biocatalyst,
causing inactivation.

Stability of peroxidase in the presence of hydrogen
peroxide
The stability of peroxidase in the presence of hydrogen
peroxide is a key issue because peroxidase becomes in-
active in the presence of excess hydrogen peroxide; there-
fore, the effects of hydrogen peroxide on the stability of
the enzyme were investigated. As expected, the activities
of the free peroxidase decreased rapidly in the presence of
hydrogen peroxide, with a decrease to less than 50% of the
initial activities occurring within 40 min. On the other
hand, immobilized peroxidase showed a slightly lower
plot of residual activity of soluble and immobilized peroxidase



Figure 6 First-order rate constant calculations from semi-logarithmic plot of residual activity of soluble and immobilized peroxidase
during incubation (50% acetonitrile). The insert shows an amplification of immobilized enzyme profile.
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inactivation rate, suggesting no significant protection of
the enzyme against hydrogen peroxide, due to the binding
of the enzyme to PS matrix as shown in Figure 7.

Conclusions
This work is focused on porous silicon surface functionali-
zation through the covalent attachment of the peroxidase
enzyme with the PS support. The immobilization of the
enzyme onto the porous silicon support has been con-
firmed from the RIFTS and FTIR studies. The study of
Figure 7 First-order rate constant calculations from semi-logarithmic
with H2O2 incubation.
thickness of the porous layer onto the availability of en-
zyme showed that higher thickness hinders the passage
of substrate into the pores, which results in lower activity.
The immobilized support showed lower thermo-stability
with respect to soluble/free enzyme due to the major heat
transfer through silicon support. The inactivation profile
of peroxidase in the presence of acetonitrile indicates that
the immobilized peroxidase is protected from acetonitrile
deactivation; thus, acetonitrile has been revealed to be a
very promising solvent to perform biocatalysis with
plot of residual activity of soluble and immobilized peroxidase
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peroxidase in organic media. While the deactivation of the
enzyme in the presence of H2O2 in immobilized support
is almost similar as compared to the soluble enzyme, these
results conclude that a commercial peroxidase enzyme
immobilized onto the porous silicon nanostructure con-
fers more stability against organic solvents for potential
industrial applications.
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