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Abstract

Current discoveries of different forms of carbon nanostructures have motivated research on their applications in
various fields. They hold promise for applications in medicine, gene, and drug delivery areas. Many different
production methods for carbon nanotubes (CNTs) have been introduced; functionalization, filling, doping, and
chemical modification have been achieved, and characterization, separation, and manipulation of individual CNTs
are now possible. Parameters such as structure, surface area, surface charge, size distribution, surface chemistry, and
agglomeration state as well as purity of the samples have considerable impact on the reactivity of carbon
nanotubes. Otherwise, the strength and flexibility of carbon nanotubes make them of potential use in controlling
other nanoscale structures, which suggests they will have a significant role in nanotechnology engineering.
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Introduction
Carbon is the chemical element with atomic number 6
and has six electrons which occupy 1 s2, 2 s2, and 2p2

atomic orbital. It can hybridize in sp, sp2, or sp3 forms.
Discoveries of very constant nanometer size sp2 carbon
bonded materials such as graphene [1], fullerenes [2],
and carbon nanotubes [3] have encouraged to make in-
quiries in this field. Most of the physical properties of
carbon nanotubes derive from graphene. In graphene,
carbon atoms are densely organized in a regular sp2-
bonded atomic-scale honeycomb (hexagonal) pattern,
and this pattern is a basic structure for other sp2 carbon
bonded materials (allotropes) such as fullerenes and car-
bon nanotubes. Carbon nanotube is theoretically distinct
as a cylinder fabricated of rolled up grapheme sheet. It
can divide into a single well or multiple wells. Nano-
tubes with single well are described as single-wall carbon
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nanotubes (SWCNTs) and were first reported in 1993
[4], while the ones with more than one well are multi-
wall carbon nanotubes (MWCNTs) and were first dis-
covered in 1991 by Iijima [5] (Figure 1).
Carbon nanotubes: structure and properties
Carbon can bond in different ways to construct structures
with completely different properties. The sp2 hybridization
of carbon builds a layered construction with weak out-of-
plane bonding of the van der Waals form and strong in-
plane bounds. A few to a few tens of concentric cylinders
with the regular periodic interlayer spacing locate around
ordinary central hollow and made MWCNTs. The real-
space analysis of multiwall nanotube images has shown a
range of interlayer spacing (0.34 to 0.39 nm) [9].
Depending on the number of layers, the inner diam-

eter of MWCNTs diverges from 0.4 nm up to a few
nanometers and outer diameter varies characteristically
from 2 nm up to 20 to 30 nm. Both tips of MWCNT
usually have closed and the ends are capped by dome-
shaped half-fullerene molecules (pentagonal defects),
and axial size differs from 1 μm up to a few centimeter.
The role of the half-fullerene molecules (pentagonal ring
defect) is to help in closing of the tube at the two ends.
On other hand, SWCNT diameters differ from 0.4 to

2 to 3 nm, and their length is typically of the micrometer
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Figure 1 Schematic structure and TEM images of SWCNT and
MWCNT. (A) Schematic structure of SWCNT and (B) MWCNT. The
transmission electron microscope (TEM) images of a (C) SWCNT and
(D) MWCNT [6-8].
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range. SWCNTs usually can come together and form bun-
dles (ropes). In a bundle structure, SWCNTs are hexago-
nally organized to form a crystal-like construction [3].

MWCNT and SWCNT structure
Dependent on wrapping to a cylinder way, there are
three different forms of SWCNTs such as armchair,
chiral, and zigzag (Figure 2B). A SWCNT's structure is
characterized by a pair of indices (n, m) that describe
the chiral vector and directly have an effect on electrical
properties of nanotubes. The number of unit vectors in
the honeycomb crystal lattice of graphene along two di-
rections is determined by the integers n and m. As a
common opinion, when m = 0, the nanotubes are named
zigzag nanotubes; when n =m, the nanotubes are named
armchair nanotubes, and other state are called chiral.
The chiral vector C = na1 +ma2 (a1 and a2 are the base

cell vectors of graphite) also determines the tube diam-
eter d [4,5], and this vector finds out the direction of
rolling a graphene sheet (Figure 2A). Therefore, the
diameter of a carbon tube can be calculated by

d ¼ a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2 þmnþ n2
p

π

where a ¼ 1:42� ffiffiffi

3
p

corresponds to the lattice con-
stant in the graphite sheet.
When n −m is a multiple of 3, then the nanotube is de-
scribed as ‘metallic’ or highly conducting nanotubes, and if
not, then the nanotube is a semimetallic or semiconductor.
At all times, the armchair form is metallic, whereas

other forms can make the nanotube a semiconductor.
Many parameters and vectors can have an effect on

nanotube structures such as the following [6]:

(1)Translational vector = T = t1a1 + t2a2 » (t1, t2)
(2)Chiral vector = Ch = na1 + na2 » (n, m)
(3)Length of chiral vector = L = a √ (n2 +m2 + n * m),

where a is the lattice constant
(4)Chiral angle = cosθ = (2n +m)/(2 * √ (n2 +m2 + n * m))
(5)Number of hexagons in the unit cell =N = (2 * (n2 +

m2 + n * m)/dR)
(6)Diameter = dt = L/π
(7)Rotation angle of the symmetry vector = ψ = 2π/N

(in radians)
(8)Symmetry vector = R = pa1 + qa2 » (p, q)
(9)Pitch of the symmetry vector = τ= ((m * p–n * q) * T)/N

Multiwalled carbon nanotubes can be formed in two
structural models: Russian Doll model and Parchment
model. When a carbon nanotube contains another nano-
tube inside it and the outer nanotube has a greater
diameter than thinner nanotube, it is called the Russian
Doll model. On other hand, when a single graphene
sheet is wrapped around itself manifold times, the same
as a rolled up scroll of paper, it is called the Parchment
model. MWCNTs and SWCNTs have similar properties.
Because of the multilayer nature of MWCNTs, the outer
walls can not only shield the inner carbon nanotubes
from chemical interactions with outside substances but
also present high tensile strength properties, which do
not exist in SWCNTs (or exist partially) [11] (Table 1).
Since carbon nanotubes have the sp2 bonds between

the individual carbon atoms, they have a higher tensile
strength than steel and Kevlar. This bond is even stron-
ger than the sp3 bond found in diamond. Theoretically,
SWCNTs may really have a tensile strength hundreds of
times stronger than steel.
Another amazing property of carbon nanotubes is also

elasticity. Under high force and press sitting and when ex-
posed to great axial compressive forces, it can bend, twist,
kink, and finally buckle without damaging the nanotube,
and the nanotube will return to its original structure, but
an elasticity of nanotubes does have a limit, and under
very physically powerful forces presses, it is possible to
temporarily deform to shape of a nanotube. Some of the
defects in the structure of the nanotube can weaken a
nanotube's strength, for example, defects in atomic vacan-
cies or a rearrangement of the carbon bonds.
Elasticity in both single and multiwalled nanotubes is

determined by elastic modulus or modulus of elasticity



Figure 2 Different forms of SWNTs. (A) The chiral vector C also determines the tube diameter. (B) Models of three atomically perfect SWCNT
structures [10].
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[7]. The elasticity modulus of multiwall nanotubes
(MWNTs) is analyzed with transmission electron micro-
scopes (TEM). Scientists using the TEM measure and
examine the thermal vibrations at both ends of the
tubes. As a result of the strength of the atomic bonds in
carbon nanotubes, they not only can withstand high
temperatures but also have been shown to be very good
thermal conductors. They can withstand up to 750°C at
normal and 2,800°C in vacuum atmospheric pressures.
Table 1 Comparison between SWNT and MWNT [4]

SWNT

Single layer of graphene

Catalyst is required for synthesis

Bulk synthesis is difficult as it requires proper control over growth
and atmospheric condition

Purity is poor

A chance of defect is more during functionalization

Less accumulation in the body

Characterization and evaluation is easy

It can be easily twisted and is more pliable
The temperature of the tubes and the outside environ-
ment can affect the thermal conductivity of carbon
nanotubes [8]. Some of the major physical properties of
carbon nanotubes are summarized in Table 2.

Synthesis
There are several techniques that have been developed
for fabricating CNT structures which mainly involve gas
phase processes. Commonly, three procedures are being
MWNT

Multiple layers of graphene

Can be produced without catalyst

Bulk synthesis is easy

Purity is high

A chance of defect is less but once occurred it is difficult to improve

More accumulation in the body

It has very complex structure

It cannot be easily twisted



Table 2 The physical properties of carbon nanotubes

Physical properties Values

Equilibrium structure Average diameter of SWNTs 1.2 to 1.4 nm

Distance from opposite carbon atoms (line 1) 2.83 Å

Analogous carbon atom separation (line 2) 2.456 Å

Parallel carbon bond separation (line 3) 2.45 Å

Carbon bond length (line 4) 1.42 Å

C-C tight bonding overlap energy Approximately 2.5 eV

Group symmetry (10, 10) C5V

Lattice: bundles of ropes of nanotubes Triangular lattice (2D)

Lattice constant 17 Å

Lattice parameter (10, 10) Armchair 16.78 Å

(17, 0) Zigzag 16.52 Å

(12, 6) Chiral 16.52 Å

Density (10, 10) Armchair 1.33 g/cm3

(17, 0) Zigzag 1.34 g/cm3

(12, 6) Chiral 1.40 g/cm3

Interlayer spacing: (n, n) Armchair 3.38 Å

(n, 0) Zigzag 3.41 Å

(2n, n) Chiral 3.39 Å

Optical properties

Fundamental gap For (n, m); n −m is divisible by 3 [metallic] 0 eV

For (n, m); n −m is not divisible by 3 [semiconducting] Approximately 0.5 eV

Electrical transport

Conductance quantization (12.9 k O )-1

Resistivity 10-4 O -cm

Maximum current density 1,013 A/m2

Thermal transport

Thermal conductivity Approximately 2,000 W/m/K

Phonon mean free path Approximately 100 nm

Relaxation time Approximately 10 to 11 s

Elastic behavior

Young's modulus (SWNT) Approximately 1 TPa

Young's modulus (MWNT) 1.28 TPa

Maximum tensile strength Approximately 100 GPa
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used for producing CNTs: (1) the chemical vapor depos-
ition (CVD) technique [12,13], (2) the laser-ablation
technique [3,9], and (3) the carbon arc-discharge tech-
nique [14-16] (Table 3). High temperature preparation
techniques for example laser ablation or arc discharge
were first used to synthesize CNTs, but currently, these
techniques have been substituted by low temperature
chemical vapor deposition (CVD) methods (<800°C),
since the nanotube length, diameter, alignment, purity,
density, and orientation of CNTs can be accurately con-
trolled in the low temperature chemical vapor deposition
(CVD) methods [17].
Electric arc discharge
Arc-discharge technique uses higher temperatures
(above 1,700°C) for CNT synthesis which typically causes
the expansion of CNTs with fewer structural defects in
comparison with other methods. The most utilized
methods use arc discharge between high-purity graphite
(6 to 10-mm optical density (OD)) electrodes usually
water-cooled electrodes with diameters between 6 and
12 mm and separated by 1 to 2 mm in a chamber filled
with helium (500 torr) at subatmospheric pressure (he-
lium can be replaced by hydrogen or methane atmos-
phere) [10]. The chamber contains a graphite cathode



Table 3 Summary and comparison of three most common CNT synthesis methods

Method Arc discharge Laser ablation CVD

Yield rate >75% >75% >75%

SWNT or MWNT Both Both Both

Advantage Simple, inexpensive,
high-quality nanotubes

Relatively high purity,
room-temperature synthesis

Simple, low temperature, high purity,
large-scale production, aligned growth possible

Disadvantage High temperature, purification required,
tangled nanotubes

Method limited to the labscale,
crude product purification required

Synthesized CNTs are usually MWNTs, defects
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and anode as well as evaporated carbon molecules and
some amount of metal catalyst particles (such as cobalt,
nickel, and/or iron). Direct current is passed through the
camber (arcing process), and the chamber is pressurized
and heated to approximately 4,000 K. In the course of
this procedure and arcing, about half of the evaporated
carbon solidifies on the cathode (negative electrode) tip,
and a deposit forms at a rate of 1 mm/min which is
called ‘cylindrical hard deposit or cigar-like structure’,
whereas the anode (positive electrode) is consumed. The
remaining carbon (a hard gray shell) deposited on the
periphery and condenses into ‘chamber soot’ nearby the
walls of the chamber and ‘cathode soot’ on the cathode.
The inner core, cathode soot and chamber soot, which
are dark and soft, yield either single-walled or multi-
walled carbon nanotubes and nested polyhedral gra-
phene particles. By using scanning electron microscopy
(SEM), two different textures and morphologies can be
observed in studying of the cathode deposit; the dark
and soft inner core deposits consist of bundle-like struc-
tures, which contain randomly arranged nanotubes and
the gray outer shell, which is composed of curved and
solid grapheme layers.
In the arc discharge deposition and synthesis of CNTs,

there are two main different ways: synthesis with use of
different catalyst precursors and without use of catalyst
precursors. Generally, synthesis of MWNTs could be
done without use of catalyst precursors but synthesis of
single-wall nanotubes (SWNTs) utilizes different catalyst
precursors and, for expansion in arc discharge, utilizes a
complex anode, which is made as a composition of
graphite and a metal, for example, Gd [11], Co, Ni, Fe,
Ag, Pt, Pd, etc., or mixtures of Co, Ni, and Fe with other
elements like Co-Pt, Co-Ru [18], Ni-Y, Fe-Ni, Co-Ni,
Co-Cu, Ni-Cu, Fe-No, Ni-Ti, Ni-Y, etc. Studies have
shown Ni-Y-graphite mixtures can produce high yields
(<90%) of SWNTs (average diameter of 1.4 nm) [19],
and nowadays, this mixture is used worldwide for cre-
ation of SWNTs in high yield. The main advantage of
arc-discharge technique is ability and potential for pro-
duction of a large quantity of nanotubes. On the other
hand, the main disadvantage of this method is rela-
tively little control over the alignment (i.e., chirality) of
the created nanotubes, which is important for their
characterization and role. Additionally, because of the
metallic catalyst needed for the reaction, purification
of the obtained products is essential.

Laser ablation method
By using of high-power laser vaporization (YAG type), a
quartz tube containing a block of pure graphite is
heated inside a furnace at 1,200 ± C, in an Ar atmos-
phere [12]. The aim of using laser is vaporizing the
graphite within the quartz. As described about the syn-
thesis of SWNT by using arc-discharge method, for gen-
erating of SWNTs, using the laser technique adding of
metal particles as catalysts to the graphite targets is ne-
cessary. Studies have shown the diameter of the nano-
tubes depends upon the laser power. When the laser
pulse power is increased, the diameter of the tubes be-
came thinner [13]. Other studies have indicated ultrafast
(subpicosecond) laser pulses are potential and able to
create large amounts of SWNTs [14]. The authors re-
vealed that it is now promising to create up to 1.5 g/h of
nanotube material using the laser technique.
Many parameters can affect the properties of CNTs

synthesized by the laser ablation method such as the
structural and chemical composition of the target material,
the laser properties (peak power, cw versus pulse, energy
fluence, oscillation wavelength, and repetition rate), flow
and pressure of the buffer gas, the chamber pressure and
the chemical composition, the distance between the target
and the substrates, and ambient temperature. This method
has a potential for production of SWNTs with high purity
and high quality. The principles and mechanisms of laser
ablation method are similar to the arc-discharge tech-
nique, but in this method, the needed energy is provided
by a laser which hit a pure graphite pellet holding catalyst
materials (frequently cobalt or nickel).
The main advantages of this technique consist of a rela-

tively high yield and relatively low metallic impurities,
since the metallic atoms involved have a tendency to evap-
orate from the end of the tube once it is closed. On other
hand, the main disadvantage is that the obtained nano-
tubes from this technique are not necessarily uniformly
straight but instead do contain some branching.
Unfortunately, the laser ablation method is not econom-

ically advantageous because the procedure encompasses
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high-purity graphite rods, the laser powers required are
great (in some cases two laser beams are required), and
the quantity of nanotubes that can be synthesized per day
is not as high as arc-discharge technique.

Chemical vapor deposition
One of standard methods for production of carbon nano-
tubes is chemical vapor deposition or CVD. There are
many different types of CVD such as catalytic chemical
vapor deposition (CCVD)—either thermal [20] or plasma
enhanced (PE) oxygen assisted CVD [5], water assisted
CVD [21-23], microwave plasma (MPECVD) [24], radio-
frequency CVD (RF-CVD) [25], or hot-filament (HFCVD)
[26,27]. But catalytic chemical vapor deposition (CCVD)
is currently the standard technique for the synthesis of
carbon nanotubes.
This technique allows CNTs to expand on different of

materials and involves the chemical breakdown of a
hydrocarbon on a substrate. The main process of grow-
ing carbon nanotubes in this method as same as arc-
discharge method also is exciting carbon atoms that are
in contact with metallic catalyst particles.
For all intents and purposes, tubes are drilled into sili-

con and also implanted with iron nanoparticles at the
bottom. After that, a hydrocarbon such as acetylene is
heated and decomposed onto the substrate. Since the
carbon is able to make contact with the metal particles
implanted in the holes, it initiates to create nanotubes
which are a ‘template’ from the shape of the tunnel.
With using of these properties, the carbon nanotubes
can grow very well aligned and very long, in the angle of
the tunnel. In CVD processing, a layer of metal catalyst
particles prepare and process a substrate at approxi-
mately 700°C. Most commonly, metal catalyst particles
are nickel, cobalt [28], iron, or a combination [29]. The
aim of using the metal nanoparticles in combination
with a catalyst support such as MgO or Al2O3 is to de-
velop the surface area for higher by-product of the cata-
lytic reaction of the pure carbon with the metal
particles. In the first step of nanotube expansion, two
types of gases fueled the reactor (the most widely used
reactor is fluidized bed reactor [30,31]): a carbon-
containing gas (such as ethylene, acetylene, methane, or
ethanol) and a process gas (such as nitrogen, hydrogen,
or ammonia). At the surface of the catalyst particle, the
carbon-containing gas is broken apart and so the carbon
became visible at the edges of the nanoparticle where
the nanotubes can produce. This mechanism is still
under discussion [32]. Studies have shown the conven-
tionally accepted models are base growth and tip growth
[33]. Depending on the adhesion and attachment be-
tween the substrate and the catalyst particle, the catalyst
particles can remain at the nanotube base or nanotube
during growth and expansion [34].
As compared with laser ablation, CCVD is an econom-
ically practical method for large-scale and quite pure
CNT production and so the important advantage of
CVD are high purity obtained material and easy control
of the reaction course [35].

Nanotube purification
Depending on technique of carbon nanotube synthesis,
there are many different methods and procedure for
purification. All purification procedures have the follow-
ing main steps: deletion of large graphite particles and
aggregations with filtration, dissolution in appropriate
solvents to eliminate catalyst particles (concentrated
acids as solvent) and fullerenes (use of organic solvents),
and microfiltrations and chromatography to size separ-
ation and remove the amorphous carbon clusters [35].
Purification of MWNTs produced by arc-discharge tech-
niques can be done by using oxidation techniques which
can take apart MWNTs from polyhedral graphite-like
particles [10].
The main disadvantages of this method are low purity,

high destroying rate of starting materials (95%), as well
as high reactivity of the remaining nanotubes at end of
process due to existence of dangling bonds (an unsatis-
fied valence) [36] and for elimination of such dangling
bonds is necessary to use high-temperature annealing
(2,800 ± C).
The nondestructive methods for separating CNTs

couple well-dispersed colloidal suspensions of tubes/par-
ticles with materials which prevent aggregation such as
surfactants, polymers, or other colloidal particles [37].
The other method as aim of size exclusion nanotubes
uses size exclusion chromatography and porous filters
[37] as well as ultrasonically assisted microfiltration which
purifies SWNTs from amorphous carbon and catalytic
particles [38].
Studies have shown the boiling of SWNTs in nitric

acid [39] or hydrofluoric acid [40] aqueous solutions for
purification of SWNTs and removing amorphous carbon
and metal particles as an efficient and simple technique.
For the purification of carbon tubules, scientist prefers

to use sonication of nanotube in different media and after-
ward thermal oxidation of SWNT material (at 470°C) as
well as hydrochloric acid treatments [41]. Another way for
oxidizing unsatisfied carbonaceous particles is use of gold
clusters (OD 20 nm) together with the thermal oxidation
of SWNTs at 350°C [42].
Huang et al. introduce a new way for separation of semi-

conducting and metallic SWNTs by using of size exclusion
chromatography (SEC) of DNA-dispersed carbon nano-
tubes (DNA-SWNT), which have the highest resolution
length sorting [43]. The density-gradient ultracentrifugation
has been used for separation of SWNT based on diameter
[44]. Combination of ion-exchange chromatography (IEC)
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and DNA-SWNT (IEC-DNA-SWNT) has also been used
for purification of individual chiralities. In this process, spe-
cific short DNA oligomers can be used to separate individ-
ual SWNT chiralities. Scientists have used fluorination and
bromination processes as well as acid treatments of
MWNT and SWNT material with the aims of purifying,
cutting, and suspending the materials uniformly in certain
organic solvents [45,46].
As discussed above, depending on nanotube synthesis

way, there are many different methods for purification of
carbon nanotubes, and therefore, existence of methods
which are single-step processes and unaffected on prop-
erties of carbon nanotube products is essential for pro-
ducing clean nanotubes and should be targeted in the
future.

Biomedical applications
The properties of nanotubes are certainly amazing; in
the last few years, many studies have suggested potential
applications of CNTs and have shown innumerable ap-
plications that could be promising when these newly de-
termined materials are combined with typical products
[36,47-51]. Production of nanorods using CNTs as react-
ing templates [51-55].
Applications for nanotubes encompass many fields

and disciplines such as medicine, nanotechnology,
manufacturing, construction, electronics, and so on.
The following application can be noted: high-strength
composites [54,56-61], actuators [62], energy storage
and energy conversion devices [63], nanoprobes and
sensors [61], hydrogen storage media [64], electronic
devices [65], and catalysis [66]. However, the following
sections detail existing applications of CNTs in the bio-
medical industry exclusively. Before use of carbon nano-
tube in biological and biomedical environments, there
are three barriers which must be overcome: functionali-
zation, pharmacology, and toxicity of CNTs. One of the
main disadvantages of carbon nanotubes is the lack of
solubility in aqueous media, and to overcome this prob-
lem, scientists have been modifying the surface of
CNTs, i.e., fictionalization with different hydrophilic
molecules and chemistries that improve the water solu-
bility and biocompatibility of CNT [67].
Another barrier with carbon nanotube is the biodistri-

bution and pharmacokinetics of nanoparticles which are
affected by many physicochemical characteristics such as
shape, size, chemical composition, aggregation, solubility
surface, and fictionalization. Studies have shown that
water-soluble CNTs are biocompatible with the body
fluids and do not any toxic side effects or mortality.
Another important barrier is toxicity of CNTs. Gener-

ally, the combination of the high surface area and the in-
trinsic toxicity of the surface can be responsible for the
harmful effects of nanoparticles.
The toxicity of CNTs can be affected by the size of
nanotubes. The particles under 100 nm have potential
harmful properties such as more potential toxicity to the
lung, escape from the normal phagocytic defenses, modi-
fication of protein structure, activation of inflammatory
and immunological responses, and potential redistribu-
tion from their site of deposition.

Artificial implants
Nanomaterials show probability and promise in regen-
erative medicine because of their attractive chemical and
physical properties [68]. Generally, reject implants with
the postadministration pain, and to avoid this rejection,
attachment of nanotubes with proteins and amino acids
has been promising. Carbon nanotube, both single and
multi-WNT, can be employed as implants in the form of
artificial joints and other implants without host rejection
response. Moreover, because of unique properties such
as high tensile strength, CNTs can act as bone substi-
tutes and implants if filled with calcium and shaped/ar-
ranged in the bone structure [69,70].
It has been investigated the cellular adhesion and pro-

liferation can enhance with SWCNT and MWCNT com-
posites, and therefore, these nanotubes have been
integrated into natural and synthetic materials to gener-
ate nanocomposites. Some nanotube applications as arti-
ficial implants are summarized in Table 4.

Tissue engineering
The aim of tissue engineering is to substitute damaged
or diseased tissue with biologic alternates that can repair
and preserve normal and original function. Major ad-
vances in the areas of material science and engineering
have supported in the promising progress of tissue re-
generative medicine and engineering. Carbon nanotubes
can be used for tissue engineering in four areas: sensing
cellular behavior, cell tracking and labeling, enhancing
tissue matrices, and augmenting cellular behavior [78].
Cell tracking and labeling is the ability to track im-
planted cells and to observe the improvement of tissue
formation in vivo and noninvasively. Labeling of im-
planted cells not only facilitates evaluating of the viabil-
ity of the engineered tissue but also assists and facilitates
understanding of the biodistribution, migration, reloca-
tion, and movement pathways of transplanted cells. Be-
cause of time consuming and challenge of handling in
using of traditional methods such as flow cytometry,
noninvasive methods are incoming popular methods. It
is shown carbon nanotubes can be feasible as imaging
contrast agents for magnetic resonance, optical, and ra-
diotracer modalities.
Another important application of carbon nanotubes in

tissue engineering is its potential for measure of biodis-
tribution and can also be modified with radiotracers for



Table 4 Application of nanotube as artificial implants

CNT type Natural or synthetic
materials type

Cell or tissue type Properties Reference(s)

Porous SWCNT Polycarbonate membrane Osteoblast-like cells Increase lamellipodia (cytoskeletal)
extensions, and lamellipodia extensions

[71]

SWCNT-incorporated Chitosan scaffolds C2Cl2 cells /C2
myogenic cell line

Cell growth improvement [72]

MWCNT Collagen sponge
honeycomb scaffold

MC3T3-E1 cells, a mouse
osteoblast-like cell line

Increase cellular adhesion and proliferation [73]

MWCNT Polyurethane Fibroblast cells Enhance interactions between the
cells and the polyurethane surface

[74]

SWCNT Alginate Rat heart endothelial cell Enhance cellular adhesion and proliferation [75]

MWCNT Poly(acrylic acid) Human embryonic stem cells Increase cellular differentiation toward neurons [76]

SWCNT Propylene fumarate Rabbit tibia Support cell attachment and proliferation [77]
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gamma scintigraphy. Singh et al. bound SWNTs with
[79]. In and administered to BALB/c mice to evaluate
the biodistribution of nanotubes [80]. The design of bet-
ter engineered tissues enhances and facilitates with the
better monitor of cellular physiology such as enzyme/
cofactor interactions, protein and metabolite secretion,
cellular behavior, and ion transport. Nanosensors pos-
sibly will be utilized to make available constant moni-
toring of the performance of the engineered tissues.
Carbon nanotubes present numerous popular features
that make them ideal elements for nanosensors including
their large surface area and capacity to immobilize DNA
or other proteins, and electrical properties. The carbon
nanotube has unique electronic structures which as
carbon nanotube electrochemical sensor probability makes
simpler the investigation of redox-active proteins and
amino acids allowing cell monitoring in engineered tissues.
In one study, MWNTs were conjugated with platinum mi-
croparticles and were able to sense thiols including amino
acids such as glutathione and L-cysteine in rat [81].
The matrix of cells plays an important role in tissue

engineering. While accepted synthetic polymers, for ex-
ample, PLGA and PLA have been employed for tissue
engineering, they lack the required mechanical strength
and cannot simply be functionalized in contradiction of
carbon nanotubes which can be voluntarily functional-
ized. Thus, carbon nanotubes have potential for use as
tissue scaffolds and can provide the required structural
reinforcement, but the main disadvantage of carbon
nanotubes is that they are not biodegradable. Combin-
ation of polymer by dissolving a desired portion of car-
bon nanotubes into a polymer, significant enhancements
in the mechanical strength of the composite has been
detected. MWNTs combined with chitosan illustrated
significant advancement in mechanical properties com-
pared with only chitosan [82]. The SWNT blended colla-
gen improves smooth muscle cell growth [83-89].
Cancer cell identification
Nanodevices are being created that have a potential to
develop cancer treatment, detection, and diagnosis.
Nanostructures can be so small (less than 100 nm) that
the body possibly will clear them too quickly for them to
be efficient in imaging or detection and so can enter
cells and the organelles inside them to interact with
DNA and proteins. Castillo et al., by using a peptide
nanotube-folic acid modified graphene electrode, im-
prove detection of human cervical cancer cells overex-
pressing folate receptors [90-96].
Since a large amount of cancers are asymptomatic

throughout their early stage and distinct morphologic
modifications are absent in the majority of neoplastic
disorders in early stage, consequently traditional clinical
cancer imaging methods, for example, X-ray, CT, and
MRI, do not acquire adequate spatial resolution for de-
tection of the disease in early stage. The imaging studies
with SWCNTs have thrived over the past few years.
Hong et al. [97] evaluated the molecular imaging with
SWNTs and evaluated the combined Gd3 + -functional-
ized SWCNTs when applied to MRI, and high resolution
and good tissue penetration were achieved.
Combination of radioisotopes labeled SWCNTs with

radionuclide based imaging techniques (PET and SPECT)
can improve the tissue penetration, sensitivity, and
medium resolution.
There are many characteristic protein biomarkers which

often are overexpressed in cancer cells, and they provide
an opening gate for early diagnosis, prognosis, maintain-
ing surveillance following curative surgery, monitoring
therapy in advanced disease, and predicting therapeutic
response. Many important tumor markers have been ex-
tensively applied and used in the diagnosis of hepatocel-
lular carcinoma, colorectal cancer, pancreatic cancer,
prostate cancers, epithelial ovarian tumor such as
carbohydrate antigen 19-9 (CA19-9), alpha-fetoprotein



Table 5 Example of detection of cancer biomarker by carbon nanotubes

Carbon nanotube Biomarker Form of cancer Reference

P-type carbon nanotubes Prostate-specific antigen (PSA) Prostate cancer [98]

Multilabel secondary antibody-nanotube bioconjugates Prostate-specific antigen (PSA) Prostate cancer [99]

Microelectrode arrays modified with single-walled
carbon nanotubes (SWNTs)

Total prostate-specific antigen (T-PSA) Prostate cancer [99]

Multiwalled carbon nanotubes-thionine-chitosan
(MWCNTs-THI-CHIT) nanocomposite film

Chlorpyrifos residues Many forms [100]

Carbon nanomaterial Carcinoma antigen-125 (CA125) Carcinoma [101]

MWCNT-platinum nanoparticle-doped chitosan (CHIT) AFP Many forms [102]

Poly-L-lysine/hydroxyapatite/carbon
nanotube (PLL/HA/CNT) hybrid nanoparticles

Carbohydrate antigen 19–9 (CA19-9) Many forms [103]

MWCN-polysulfone (PSf) polymer Human chorionic gonadotropin (hCG) Many forms [104]

Multiwalled carbon nanotube-chitosan matrix Human chorionic gonadotropin (hCG) Many forms [105]

MWCNT-glassy carbon electrode (GCE) Prostate-specific antigen (PSA) Prostate cancer [106]

Nanoparticle (NP) label/immunochromatographic
electrochemical biosensor

Prostate-specific antigen (PSA) Prostate cancer [107]

SWNT-horseradish peroxidase (HRP) Prostate-specific antigen (PSA) Prostate cancer [107]

Carbon nanotube field effect transistor (CNT-FET) Prostate-specific antigen (PSA) Prostate cancer [108]

Carbon nanoparticle (CNP)/poly(ethylene imine)
(PEI)-modified screen-printed graphite electrode (CNP-PEI/SPGE)

Carcinoembryonic antigen (CEA), Urothelial carcinoma [109]

Tris(2,2′-bipyridyl)cobalt(III) (Co(bpy)33+)- MWNTs-Nafion composite film Carcinoma antigen-125 (CA125) Carcinoma [79]

Gold nanoparticles and carbon nanotubes
doped chitosan (GNP/CNT/Ch) film

Alpha-fetoprotein (AFP) Many forms [110]

Multiple enzyme layers assembled multiwall carbon nanotubes (MWCNTs) Alpha-fetoprotein (AFP) Many forms [111]

Table 6 Example of drugs and nucleic acids which were delivered by carbon nanotubes

Drug/nucleic acid CNT type Cell or tissue Properties Reference

Taxoid SWNTs Leukemia High potency toward specific cancer cell lines [116]

Doxorubicin SWNTs Colon cancer Efficiently taken up by cancer cells, then translocates
to the nucleus while the nanotubes remain in the cytoplasm

[113,114]

Cisplatin SWNTs Squamous carcinoma Rapid regression of tumor growth [117]

Cisplatin SWNTs Nasopharyngeal epidermoid
carcinoma, etc.

High and specific binding to the folate
receptor (FR) for the SWNT-1 conjugate

[118]

Doxorubicin SWNTs Breast cancer Glioblastoma Show that large surface areas on
single-walled carbon nanotubes (SWNTs)

[119]

Doxorubicin SWNTs Cervical carcinoma Increase nuclear DNA damage and inhibit the cell proliferation [115]

Radionuclide SWNTs Burkitt lymphoma The selective targeting of tumor in vitro and in vivo [120]

Paclitaxel SWNTs Breast cancer High treatment efficacy, minimum side effects [121]

siRNA SWNTs Tumor cells both in vitro
and in vivo mouse models

Increase suppression of tumor growth [122]

Toxic siRNA
sequence (siTOX)

Functionalized
MWNTs

Human lung
xenograft model

Significant tumor growth inhibition [123]

siRNA SWNT Human neuroblastoma Enhance the efficiency of siRNA-mediated
gastrin-releasing peptide receptor (GRP-R) gene silencing

[124]

SOCS1siRNA sWNT Dendritic cells (DCs) Reduced SOCS1 expression and retarded the growth
of established B16 tumor in mice

[125]
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(AFP), carcinoembryonic antigen (CEA), carcinoma
antigen 125 (CA125), human chorionic gonadotropin
(hCG), and prostate-specific antigen (PSA). Some of the
cancer biomarkers which are detected by CNT-based
detection systems are summarized in Table 5.
Drug and gene delivery by CNTs
There are many barriers with conventional administration
of chemotherapeutic agents such as lack of selectivity, sys-
temic toxicity, poor distribution among cells, limited solu-
bility, inability of drugs to cross cellular barriers, and lack
of clinical procedures for overcoming multidrug resistant
(MDR) cancer [112,113]. Researchers have introduced a
wide range of different types of drug delivery systems to
overcome these problems such as polymers, silica nano-
particles, quantum dots, emulsions, dendrimers, liposomes,
molecular conjugates, and micelles [114]. As mentioned
above, CNTs have the unique properties such as ultrahigh
surface area which make them as promising potential for
delivery of drugs, peptides, and nucleic acids (Table 6). The
specific drug or gene can be integrated to walls and tips of
CNTs and recognize cancer-specific receptors on the cell
surface, by these means CNTs can cross the mammalian
cell membrane by endocytosis or other mechanisms [115]
and carry therapeutic drugs or genes more safely and effi-
ciently in the cells that are previously inaccessible [116].
More recently, researchers have developed a novel and
more efficient SWNT-based tumor-targeted drug delivery
system (DDS) which consists of tumor-targeting ligands,
anticancer drugs, and functionalized SWNTs. If this system
interacts with cancer cells, then it can induce receptor-
mediated endocytosis by recognizing cancer-specific recep-
tors on the surface of cancer cells and so efficiently and
specifically release chemotherapeutic agents.
Conclusions
Nanomaterials explain probability and promise in regen-
erative medicine for the reason that of their attractive
chemical and physical properties.
Carbon nanotubes (purified/modified) have a high po-

tential of finding unique applications in wide areas of
medicine. Moreover, the encapsulation of other materials
in the carbon nanotubes would open up a prospect for
their bioapplications in medicine.
There remains amount of essential issues that require

to be resolved, on the other hand, such as homogeneity
of the material that contains wide distribution of the
nanotube's diameters, unlike nanostructures, presence of
residual metals; division of the individual nanotubes; and
a sensitivity to the different gases and species [126-139].
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