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Abstract

Silicon quantum dots (Si QDs) attract increasing interest nowadays due to their excellent optical and electronic
properties. However, only a few optoelectronic organic molecules were reported as ligands of colloidal Si QDs. In
this report, N-vinylcarbazole - a material widely used in the optoelectronics industry - was used for the modification
of Si QDs as ligands. This hybrid nanomaterial exhibits different spectroscopic properties from either free ligands
or Si QDs alone. Possible mechanisms were discussed. This type of new functional Si QDs may find application
potentials in bioimaging, photovoltaic, or optoelectronic devices.
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Background
Silicon (Si) is one of the most important semiconductor
materials for the electronics industry. The energy struc-
ture of bulk Si is indirect bandgap, which is greatly chan-
ged by the quantum confinement effect for small enough
Si nanocrystals (NCs) called Si quantum dots (QDs), mak-
ing Si QDs fluorescent with a tunable spectrum. Excellent
spectroscopic properties, such as high quantum yield,
broad absorption window, and narrow fluorescent wave-
length, contribute to a rapid development in Si QD re-
search [1]. Nontoxicity to the environment and the use of
an economic source material are other two merits for the
application of Si QDs in optoelectronics [2,3], solar energy
conversion [4,5], biology [6-8], splitting water [9], etc. Si
QDs can be prepared using a variety of techniques such as
wet chemical reduction [10-18], metathesis reaction [19],
disproportionation reaction [20,21], thermal annealing of
Si-rich SiC [22], electrochemical etching [23], plasma syn-
thesis or plasma-enhanced chemical vapor deposition
(PECVD) [24-27], and high-temperature hydrogen reduc-
tion method [28-32]. Because Si QDs are chemically ac-
tive, their surface should be passivated for further use.
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Molecules with alkyl chains and -CH3, -COOH, or -NH2

ends have been widely employed as surface ligands to en-
hance the stability of Si QDs [28-36]. These ligands help
prevent the oxidation of silicon and enhance the dispersi-
bility of Si QDs in organic or aqueous solution. In addition
to the surface protection, optoelectronic functional mole-
cules as ligands of Si QDs are attracting increasing interest
in recent years for the crucial role of the ligands to
the interfacial related process in optoelectronic or light-
harvesting devices. Kryschi and co-workers showed that
3-vinylthiophene ligands may act as surface-bound anten-
nae that mediate ultrafast electron transfer or excitation
energy transfer across the Si QD interface via high-energy
two-photon excitation [37,38]. They also reported that
for 2- and 4-vinylpyridine-terminated Si QDs, ultrafast
excitation relaxation dynamics involving decay and rise
dynamics faster than 1 ps were ascribed to electronic exci-
tation energy transfer from an initially photoexcited ligand
state to Si QD conduction band states [39]. Larsen and
Kauzlarich and their co-workers investigated the transient
dynamics of 3-aminopropenyl-terminated Si QDs [40]. A
formation and decay of a charge transfer excited state be-
tween the delocalized π electrons of the carbon linker and
the Si core excitons were proposed to interpret one-
photon excitation. Zuilhof et al. reported Si QDs function-
alized with a red-emitting ruthenium complex to exhibit
Förster resonance energy transfer (FRET) from Si QDs to
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the complex [41]. The ligands on the Si surface may also
induce optoelectronic interactions to other QDs such as
CdSe QDs, e.g., Sudeep and Emrick found that hydrosily-
lation of Si QDs provides a corona of phosphine oxides
that may serve as ligands for CdSe QDs [42]. This surface
functionalization of the Si QDs was proved a key to the
photoluminescence quenching of CdSe QDs, as conven-
tional (alkane-covered) Si QD samples give no evidence of
such optoelectronic interactions. Recently, we reported 9-
ethylanthracene-modified Si QDs showing dual emission
peaks that originate from the Si QD core and the ligands
[43]. In this report, we demonstrate the synthesis and
surface modification of Si QDs with N-ethylcarbazole,
using hydrogen-terminated Si QDs and N-vinylcarba-
zole as the starting materials. Both anthracene and carba-
zole are fluorescent molecules and organic semiconductors.
The main difference is that anthracene is an electron trans-
port material while carbazole is a hole transport material.
This difference is important for the structure design of op-
toelectronic or photovoltaic devices utilizing these Si QD-
based hybrid materials. N-vinylcarbazole and its derivatives
as a class of typical optoelectronic molecules show abun-
dant attractive properties and can be applied in dye, optics,
electronics, and biology [44-48]. N-vinylcarbazole is also
the monomer precursor of poly(N-vinylcarbazole) (PVK)
polymer which is widely used as a hole transport or
electroluminescent material in organic optoelectronic
devices [49-51]. The N-ethylcarbazole-modified Si QDs
(referred to as ‘N-ec-Si QDs’ for short) exhibit photolumi-
nescence quite different from freestanding N-vinylcarbazole-
or hydrogen-modified Si QDs. This hybrid nanomaterial
was characterized and investigated by powder X-ray dif-
fraction (XRD), transmission electron microscopy (TEM),
Fourier transform infrared spectroscopy (FTIR), photolu-
minescence (PL), and PL lifetime measurement.

Methods
Materials and equipment
N-vinylcarbazole (98%), HSiCl3 (99%), and mesitylene
(97%) were purchased from Aladdin Reagent Co., Ltd.
(Shanghai, China). Analytical-grade ethanol (99.5%) and
hydrofluoric acid (40% aqueous solution) were received
from Sinopharm Chemical Reagent Co., Ltd. (SCRC;
Shanghai, China). All reagents were used as purchased
without further purification. The XRD spectrum was per-
formed on a Bruker D8 Advance instrument (Bruker AXS
GmbH, Karlsruhe, Germany) with Cu Kα radiation (λ =
1.5418 Å). TEM images were obtained on a JEM-2100
transmission electron microscope with an acceleration
voltage of 200 kV (JEOL, Ltd., Akishima, Tokyo, Japan).
The FTIR spectra were measured by a Bruker VECTOR
22 spectrometer (Bruker, Germany) with KBr pellets. The
PL and excitation spectra were collected by a Hitachi
F-4600 fluorescence spectrophotometer (Hitachi, Ltd.,
Chiyoda-ku, Japan). The UV-vis absorption spectra were
measured by a Shimadzu UV-2700 UV-vis spectropho-
tometer (Shimadzu Corporation, Kyoto, Japan). The PL
lifetime was obtained on a Zolix Omni-λ 300 fluorescence
spectrophotometer (Zolix Instruments Co., Ltd., Beijing,
China).

Synthesis of hydrogen-terminated Si QDs
Si QDs were synthesized by reduction of (HSiO1.5)n
powder with hydrogen [28,29]. Typically, 5 mL of HSiCl3
(49.5 mmol) was added to a three-neck flask equipped
with a mechanical stir bar, cooled to −78°C in an ethanol
bath, and kept for 10 min, using standard Schlenk tech-
niques with N2 protection. With the injection of 20 mL
H2O by a syringe, a white precipitate formed immedi-
ately. After 10 min, the white (HSiO1.5)n was collected
by centrifugation, washed by distilled water, and dried in
vacuum at 60°C. In the reduction step, (HSiO1.5)n (1.10 g)
was placed in a corundum crucible and transferred to a
tube furnace. The sample was heated to 1,150°C and
maintained for 1.5 h with a heating rate of 5°C/min under
a slightly reducing atmosphere containing 5% H2 and 95%
Ar (≥99.999%). After cooling to room temperature, a light
brown product of Si/SiO2 composite was collected. The
Si/SiO2 composite (50 mg) was grinded with a mortar and
pestle for 10 min. Then the powder was transferred to a
Teflon container (20 mL) with a magnetic stir bar. A mix-
ture of ethanol (1.5 mL) and hydrofluoric acid (40%, 2.5
mL) was added. The light brown mixture was stirred for
60 min to dissolve the SiO2. Finally, 5 mL mesitylene was
added to extract the hydrogen-terminated Si QDs into the
upper organic phase, forming a brown suspension (A),
which was isolated for further surface modification.

Modification of Si QDs by functional organic molecules
N-vinylcarbazole (1 mmol) was dissolved in 15 mL mesi-
tylene and loaded in a 50-mL three-neck flask equipped
with a reflux condenser. Then 2 mL Si QDs (A) was
injected by a syringe. The mixture was degassed by a
vacuum pump for 10 min to remove any dissolved gases
from the solution. Protected by N2, the solution was
heated to 156°C and kept for 12 h. After cooling to room
temperature, the resulting Si QDs were purified by vac-
uum distillation and then washed by ethanol to remove
excess solvent and organic ligands. The as-prepared
brown solid product was readily re-dispersed in mesity-
lene to give a yellow solution.

Results and discussion
The synthesis route of N-ec-Si QDs is summarized in
Figure 1. The HSiCl3 hydrolysis product (HSiO1.5)n was
reduced by H2 at 1,150°C for 1.5 h. In this step, the
temperature and time are crucial in controlling the size
of Si QDs. The higher the temperature and the longer



Figure 1 Synthetic strategy of N-ec-Si QDs.
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the reduction time, the bigger the sizes of Si QDs. The
following HF etching procedure also plays a key role for
the size tuning of the Si QDs. HF not only eliminates
the SiO2 component and liberates the free Si QDs but
also etches Si QDs gradually. Another contribution of
HF etching is the modification of the surface of Si QDs
with hydrogen atoms in the form of Si-H bonds, which
can be reacted with an ethylenic bond or acetylenic
bond to form a Si-C covalent bond [28-32].
The hydrogen-terminated Si QDs are characterized by

XRD (Figure 2a). The XRD pattern shows broad reflections
(2θ) centered at around 28°, 47°, and 56°, which are readily
indexed to the {111}, {220}, and {311} crystal planes,
respectively, consistent with the face-centered cubic
(fcc)-structured Si crystal (PDF No. 895012). Figure 2b
and its inset show typical TEM and high-resolution
TEM (HRTEM) images of N-ec-Si QDs, respectively.
A d-spacing of approximately 0.31 nm is observed for
the Si QDs by HRTEM. It is assigned to the {111}
plane of the fcc-structured Si. The size distribution of
N-ec-Si QDs measured by TEM reveals that the QD sizes
range from 1.5 to 4.6 nm and the average diameter is
about 3.1 nm (Figure 2c). In the FTIR spectrum of N-ec-
Si QDs, a series of characteristic vibrations from Si QDs
and carbazole are observed (Figure 2d). The weak vibra-
tion resonance centered at 2,090 cm−1 can be assigned to
the coupled H-Si-Si-H stretching or monohydride Si-H
bonds. This result shows that the Si-H bonds were only
partially replaced by Si-C because of the rigid and steric
effect of the N-vinylcarbazole molecule. Compared to the
IR spectrum of N-vinylcarbazole, similar vibrational peaks
can be found in the spectrum of N-ec-Si QDs. The CH2

symmetric and asymmetric stretching vibrations in the
range 2,920 to 2,850 cm−1, the CH2 bending vibration
at approximately 1,450 cm−1, and the aromatic group
vibration bands at approximately 750 cm−1 can be assigned
to the surface-modified N-ethylcarbazole (-NC14H12) li-
gands. This indicates the successful modification of
N-vinylcarbazole onto the Si QDs. It should be noticed
that the Si-O-Si vibration band at 1,000 to 1,200 cm−1 is
recorded, suggesting possible oxidation of the Si QD sur-
face. This may due to the steric effect of carbazole, that is,
the Si QD surface cannot be fully protected by the ligand,
in which some Si-H remained and encountered oxidation
when exposed to air.
Figure 3a shows the absorption spectra of N-vinylcar-

bazole and N-ec-Si QDs. The absorption band at 320 to
360 nm of the N-ec-Si QDs is assigned to the carbazole
ligand. It suggests that ligands can be employed to en-
hance the absorption of pure Si QDs, therefore provid-
ing a potential strategy to increase the light-harvesting
efficiency of QDs in solar cells [52,53]. Upon excitation
at 302 nm, the N-ec-Si QDs and N-vinylcarbazole show
intense emission bands at approximately 358 nm and ap-
proximately 366 nm, respectively (Figure 3b). In com-
parison with N-vinylcarbazole, the emission in the 9-ea-
Si QDs exhibits a blueshift of 8 nm and a shoulder peak
at approximately 372. When carbazole was linked to the
surface of Si QDs by Si-C bond by the hydrosilylation
reaction, the vinyl group in N-vinylcarbazole was trans-
formed into an ethyl group. Therefore, the conjugate
system of the molecule reduced from N-vinylcarbazole
to carbazole, inducing a bigger electronic bandgap. In
addition, the ligand to QD bonding would enhance the
structural rigidity of the ligand. These reasons may con-
tribute to the blueshift of the PL spectrum. Commonly,
the extension of molecular conjugated orbitals of a lig-
and to the attached materials would lead to a redshift.
In N-ec-Si QDs, the ethyl group formed through the
hydrosilylation reaction separates the conjugated part,



Figure 2 Characterization of Si QDs and N-ec-Si QDs. (a) XRD pattern of the hydrogen-terminated Si QDs. (b) TEM image and HRTEM
image (inset) of the N-ec-Si QDs (scale bar 20 nm, inset 2 nm). (c) Size distribution of the N-ec-Si QDs. (d) FTIR spectra of the N-ec-Si
QDs and pure N-vinylcarbazole.
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the carbazole group, from the silicon nanocrystal, which
prevents or weakens the interaction of the carbazole group
with the electronic wave functions of the Si QDs. There-
fore, a redshift is prohibited. A similar blueshift was also
demonstrated in our recent work for 9-ethylanthracene
modified on Si QDs [43].
The N-ec-Si QDs and N-vinylcarbazole show distinct

excitation spectra within the range of 280 to 360 nm
(Figure 3c), indicating that the energy structure of N-ec-Si
QDs is different from N-vinylcarbazole. PL decay curves
of N-ec-Si QDs and N-vinylcarbazole were investigated at
room temperature in mesitylene solution (Figure 3d). The
PL decay curves are fitted to the exponential function

I tð Þ ¼
Xn

i¼1

Ai exp − t−t0ð Þ=τið Þ ð1Þ

where τi is the PL decay lifetime, Ai is the weighting
parameter, and n = 2. The fitting parameters are given in
Table 1. The average lifetime is determined by the equa-
tion [54]

τav ¼
Xn

i¼1

Aiτ
2
i

� �
=
Xn

i¼1

Aiτið Þ ð2Þ

The average PL decay lifetime of N-ec-Si QDs is 1.4
ns, much shorter than that of N-vinylcarbazole which is
3.2 ns. The lifetime diversity may be influenced by many
factors. First, the hydrosilylation reaction induces the
transformation of the molecule structure. Second, the
N-vinylcarbazole dispersion state in the mesitylene is
not clear. Possible π-π packing of the molecules may
lead to a redshift. Support can be found in the fact that
N-ec-Si QDs show a more symmetric PL spectrum to
the absorption spectrum than N-vinylcarbazole exhibits.
Third, the interaction of the ligands with the Si-QDs
and interaction between the modified ligands are inevit-
ably encountered [55]. Additionally, the oxidation of the



Figure 3 Spectroscopic properties of N-ec-Si QDs and N-vinylcarbazole in mesitylene solution. (a) UV spectra. (b) Photoluminescence
spectra. (c) Excitation spectra. (d) PL decay curves. (excitation at 302 nm; emissions of 358 nm for N-ec-Si QDs and 366 nm for N-vinylcarbazole
were adopted for the excitation spectra measurement).
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silicon surface may induce additional non-radiative pass-
ways for the excitation. All of these factors would lead to
PL lifetime shortening [56]. Unlike alkyl ligands or 9-
ethylanthracene-modified Si QDs, the fluorescence from
hydrogen-terminated Si QDs was quenched after the
carbazole modification (Figure 4). It may be induced by
the interaction of carbazole with the Si QDs. The fluor-
escence quantum yield of N-vinylcarbazole and N-ec-Si
QDs was estimated to be 26.6% and 11.2%, respectively,
by using Coumarin 540 dye in methanol as a reference
(91%) [57]. The decrease of the quantum yield could be
a result from fast non-radiative relaxation of the excited
Table 1 Fitting parameters of the PL decay curves

Sample Emission
(nm)

τ1 (ns) τ2 (ns) a1
a a2

a R2 τav (ns)

N-vinylcarbazole 366 0.27 3.5 0.58 0.42 0.998 3.2

N-ec-Si QDs 358 0.35 4.6 0.98 0.02 0.997 1.4
aai ¼ Ai

Xn

j¼1

Aj

, i = 1, 2, n = 2.

Figure 4 Photoluminescence spectra of N-ec-Si QDs (excitation
302 nm) and hydrogen-modified Si QDs (excitation 360 nm).
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states, induced by the interaction of the ligands to Si
QDs or surface states, which also could be an interpret-
ation for the lifetime shortening. From the molecular de-
sign aspect, the functional group modified by a long
alkyl tail with an ethyl or vinyl end would be an ideal lig-
and structure in which the Si QDs and the functional
group are spatially separated. Also, the flexibility of the
long alkyl chain exhibits a smaller steric effect. The sur-
face of Si QDs could be more effectively protected, thus
preserving the fluorescence of the Si QD core.

Conclusions
In conclusion, N-ec-Si QDs were successfully prepared
and characterized. Spectroscopic properties were investi-
gated and discussed. The absorption, excitation, PL, and
PL decay properties of N-ethylcarbazole ligands on the
Si QD surface are significantly different from those of
N-vinylcarbazole in solution. Hopefully, the synthesis
strategy could be extended for the syntheses of a series of
Si QDs containing various optoelectronic functional or-
ganic ligands, with application potentials ranging from
optic, electronic, and photovoltaic devices to biotechnology.
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